Top Banner
disorder on the fracture of materials Elisabeth Bouchaud Solid State Physics Division (SPEC) CEA-Saclay, France MATGEN IV, Lerici, Italy September 19-23, 2011
80

Effect of disorder on the fracture of materials

Feb 24, 2016

Download

Documents

aretha

Effect of disorder on the fracture of materials. Elisabeth Bouchaud Solid State Physics Division (SPEC) CEA-Saclay, France. MATGEN IV, Lerici , Italy September 19-23, 2011. Irradiation defects in solids. Good compromise of mechanical properties. Other « defects ». Frenkel. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Effect  of  disorder  on the fracture of  materials

Effect of disorder on the

fracture of materialsElisabeth Bouchaud

Solid State Physics Division (SPEC)CEA-Saclay, France

MATGEN IV, Lerici, ItalySeptember 19-23, 2011

Page 2: Effect  of  disorder  on the fracture of  materials

Irradiation defects in solids

Vacancy Interstitial FrenkelOther « defects » Good compromise of

mechanical properties

Metallic alloys(ONERA)

ToughenedPolymer(ESPCI)

Fiber composite(Columbia)

Tough ceramics(Berkeley)

Page 3: Effect  of  disorder  on the fracture of  materials

How to estimate the properties of a composite?

s

s

Ecomposite F E + F E

sr= F sr + F sr

Include the effect of heterogeneities in a statistical description

- Rare events statistics- Strong stress gradients in the vicinity of a crack tip

Page 4: Effect  of  disorder  on the fracture of  materials

OUTLINE1. Elements of LEFM2. Effect of disorder on the morphology

and dynamics of the crack front3. Experimental observations4. Discussion

Page 5: Effect  of  disorder  on the fracture of  materials

1- Elements of LEFM

s

s

a

A crude estimate of the strength to failure

s=E Dxa

Failure : Dx≈a sf ≈ E

sf ≈ E/100

Presence of flaws!

Page 6: Effect  of  disorder  on the fracture of  materials

Stress concentration at a crack tip (Inglis 1913)

s

s

2b

2a

AsA > s: stress concentration

)21(ba

A +ss

ab

aA

2

)21(

+

ss

1- Elements of LEFM

Page 7: Effect  of  disorder  on the fracture of  materials

Infinitely sharp tip:

A

Aa

s

ss

,0

2s

s

r +ijs Irwin (1950)

)(2

s ijij fr

K

K=stress intensity factor

)(f2WaaK s

aW

Sample geometry

s (r)

r

rar ss )(

Strong stress gradient

A

1- Elements of LEFM

Page 8: Effect  of  disorder  on the fracture of  materials

Mode IIIn-plane, shear,

slidingKII

Mode ITension, opening

Mode IIIOut-of-plane, shear

TearingKI KIII

Mixed mode, to leading order:

)()()(21

s IIIijIII

IIijII

IijIij fKfKfK

r++

1- Elements of LEFM

Page 9: Effect  of  disorder  on the fracture of  materials

Griffith’s energy balance criterionElastic energy

'

22

EBaUE

s

Surface energy BaU S 4

Total change in potential energy:SE UUU +D

Propagation at constant applied load: 0DdaUd2a

B

s

strain plane1

'

stress plane'

2

EE

EE

1- Elements of LEFM

Page 10: Effect  of  disorder  on the fracture of  materials

Happens for a critical load:lengthCrack constant Material'2

aE

C s

Or for a critical stress intensity factor:

'4 EKK C Fracture toughness

' ;

2

EK

GdAdUG E Energy release rate

)2

M(1 , IfR

ccC V

KKKVKK

1- Elements of LEFM

Page 11: Effect  of  disorder  on the fracture of  materials

KII=0

Crack path: principle of local symmetry

1- Elements of LEFM

Page 12: Effect  of  disorder  on the fracture of  materials

)1( ,G

VVKK RC

Onset of fracture: 4'

2

EKc

Beyond threshold:

PMMA Glass

22IcI KKV

(E. Sharon & J. Fineberg, Nature 99)

1- Elements of LEFM

Page 13: Effect  of  disorder  on the fracture of  materials

Heterogeneities

Rough crack front

Uneven SIFs

Heterogeneous pathSteady crack morphology?Dynamics?

(JP Bouchaud & al, 93J. Schmittbuhl & al, 95D. Bonamy & al, 06)

2- Effect of disorder…

Page 14: Effect  of  disorder  on the fracture of  materials

2- Effect of disorder…

2D 3D

Page 15: Effect  of  disorder  on the fracture of  materials

)()( 0 zKKzK III +

))(')'(

)()'(211()( 2

20 fodz

zzzfzfPVKzK II +

+ +

(Meade & Keer 84, Gao & Rice 89)

Stabilizing term

2- Effect of disorder…

Page 16: Effect  of  disorder  on the fracture of  materials

2threshold

2 )()()( zKzKMV II M(f(z),z)

))')'(

)()'((21()( 2

202 dzzz

zfzfPVKzK II

+

))'(),(()',())'(,'())(,(

;0))(,(

)))(,(211()(threshold

zfzfzzzfzzfz

zfz

zfzKzK IcI

))(,()')'(

)()'((2)( 22

20220 zfzKdzzz

zfzfPVKKKtzf

IcIIcI

+

+

2- Effect of disorder…

Page 17: Effect  of  disorder  on the fracture of  materials

tensionLine))(,(),(++

zfzF

ttzf

F

2

2 ),(z

tzf

Edwards-Wilkinson model

)')'(

)()'(( 2 dzzz

zfzfPV 220

IcI KK

Non local elastic restoring force

2- Effect of disorder…

Page 18: Effect  of  disorder  on the fracture of  materials

))(,()')'(

)()'((2)( 22

20220 zfzKdzzz

zfzfPVKKKtzf

IcIIcI

+

+

Depinning transition:• order parameter V• control parameter KI

0(KI

0-KIc)

(KI0-KIc)

V

KI0KIc

~

tzztzf

,

),(

Stable

Propagating

2- Effect of disorder…

Page 19: Effect  of  disorder  on the fracture of  materials

Depinning: line in a periodic potential

f(x=0,t=0)=0

x

f0

)cos( fFFtf

m

F

Pulling forceObstacle force

Obst

acle

forc

ef

f=0

F

1

m

m

FFF

2)( 2fF

dfdtm +

T?

1

2)(

0

0 2 +

f

m fFdfT V (F-Fm)

2- Effect of disorder…

Page 20: Effect  of  disorder  on the fracture of  materials

z2D=0.39 (A. Rosso & W. Krauth & O. Duemmer)

z z+Dz

Df(Dz)

x2/12))()(()(

zzfzzfzf D+DD

Dzzf 2)( zDDD

tt+Dt

ttfttftft

DD+DD 2/12))()(()(

Page 21: Effect  of  disorder  on the fracture of  materials

In plane projection of crack front

')'(

)',(),(2

3222

),( 2

000 dz

zzzxhzxhK

xhKKzxK II

IIII +

+

(Movchan, Gao & Willis 98)

Out of plane projection of crack front

X

Z

f(z) ')'(

)()'()(21)()( 2

00 dzzz

zfzfzKPVzKzK III

+ +

zyh(z)

2- Effect of disorder…

Page 22: Effect  of  disorder  on the fracture of  materials

Local symmetry principleKII=0

Crack trajectory

)),(,,(')'(

)'()()2(

3212 20

0

zxhzxdzzz

zhzhKK

xh

I

II

+

+

+

)(.),( /1

xzfxzxh

DD

DDDD

1 if1 if1

)(

uu

uuf

z ≈ 0.4 ≈ 0.5 ≈ z/ ~ 0.8 (Bonamy et al, 06)

2- Effect of disorder…

Page 23: Effect  of  disorder  on the fracture of  materials

f(z)

Out-of-plane

Projection on theyz plane

In-plane

Projection on thexz plane

3- Experiments 3D

Page 24: Effect  of  disorder  on the fracture of  materials

P.Daguier et al. (95)

x

z2D ≈ 0.55-06

3- Experiments 3D

Page 25: Effect  of  disorder  on the fracture of  materials

Aluminiumalloy

z=0.773nm0.1mm

(M. Hinojosa et al., 98)

Profiles perpendicular to the directionof crack propagation

3- Experiments 3D

z= 0.78from 5nm to

0.5mm

Dz

Profiles perpendicular to the direction of crack propagation

(Dz)

(µm

)

z = 0.77

Z max

(Dz)

(µm

)

Dz (µm)

Page 26: Effect  of  disorder  on the fracture of  materials

Aluminum alloy (SEM+Stereo)

)( /1

xzfxh

DD

DD

1 if1 if1

)(

uu

uuf

Dh/D

x

Dz/ Dx1/

3- Experiments 3D

A+

B+ΔxΔz

z = 0.75 = 0.6 = z/ ~ 1.2

xy

z

Dh/D

x

Dz/ Dx1/

Mortar

Quasi-crystal(STM)

h (Å

)

Δh2D(Δz, Δx) = (<(h(zA+Δz, xA+Δx) - h(zA, xA))2>A)1/2

Dz/ Dx1/

Dh/D

x

Page 27: Effect  of  disorder  on the fracture of  materials

Exceptions…Sandstone fracture surfaces

log(P(f))

log(f)

z≈0.47

(Boffa et al. 99)

zz P

(Dh)

Dh/(z)z

(Ponson at al. 07)

z≈0.4

3- Experiments 3D

Page 28: Effect  of  disorder  on the fracture of  materials

« Model » material : sintered glass beads (Ponson et al, 06)

Porosity 3 to 25%Grain size 50 to 200 mmVitreous grain boundaries

Exceptions…

3- Experiments 3D

Page 29: Effect  of  disorder  on the fracture of  materials

ζ=0.4 ± 0.05β=0.5 ± 0.05 =ζ/β=0.8 ±0.05

2 independent

exponents« Universal » structure

function +

Roughness at scales> Grain size

1/

(Ponson et al. 06)

3- Experiments 3D

Page 30: Effect  of  disorder  on the fracture of  materials

Rc increases with time

x1

x

S. Morel & al, PRE 2008

Rc(x1)

z=0.75

z=0.4

z=0.79

z=0.4

Rc(x1) Rc(x2)

X2Rc(x2)>Rc (X1)

3- Experiments 3D

Mortar specimens

Page 31: Effect  of  disorder  on the fracture of  materials

(K.J. Måløy & al)3- Experiments: interfacial fracture

Page 32: Effect  of  disorder  on the fracture of  materials

z(mm)

x(mm)

3- Experiments: interfacial fracture

z2D=0.63 z2D=0.37

100µm

log(

Dh(D

z)/ 0

); 0

=1µm

log(Dz/0); 0=1µm

F 200µm

(S. Santucci et al, EPL 2010)

Page 33: Effect  of  disorder  on the fracture of  materials

z

xx

x

<v>=28.1µm/s; a=3.5µm

(K.J. Måløy et al. 06)

Waiting time matrix:t=0 W(z,x)=0t>0 Wt+t(z,x)=1+Wt(z,x)

if front in (z,x)

Front location

Spatial distribution of clusters (white) v(z,x)>10 <v>

ta

xzwxzv

),(1),(

3- Experiments: interfacial fracture

Page 34: Effect  of  disorder  on the fracture of  materials

0.39µm/s≤<v>≤40µm/s1.7µm ≤a≤10µm

C=3

Cluster size distribution

Slope -1.6

(K.J. Måløy et al. 06)

(D. Bonamy & al., 08)

3- Experiments: interfacial fracture

Page 35: Effect  of  disorder  on the fracture of  materials

(S. Santucci & al., 08)

3- Experiments: interfacial fracture

Page 36: Effect  of  disorder  on the fracture of  materials

•Disorder roughnening •Elastic restoring forces rigidity

Undamaged materialTransmission of stresses throughundamaged material :long range interactions (1/r2) very rigid line

Transmission of stressesthrough a « Swiss cheese »: Screening of elastic interactions low rigidity

4- Discussion

Page 37: Effect  of  disorder  on the fracture of  materials

Gradient percolation(A. Hansen & J. Schmittbuhl, 03)

Z

X

Damage RFM gradient percolation process

z3D=3D= 2/(1+2)=4/5(RFM/3D=2)

4- Discussion

Page 38: Effect  of  disorder  on the fracture of  materials

r « Rc r » Rc

Rc

Damage zonescale

Large scales:elastic domain

z=0.75, =0.6 z=0.4, =0.5

?4- Discussion

Page 39: Effect  of  disorder  on the fracture of  materials

3 regions on a fracture surface:1 Linear elastic region z=0.4 =0.5/log2 Intermediate region: within the FPZ

Damage = « perturbation » of the front (screening)z=0.8 =0.6 direction of crack propagation3 Cavity scale: isotropic region

1 2 3

- Size of the FPZ- Direction of crack propagation within FPZ- Damage spreading reconstruction

Fracture of an elastic solid is a dynamic phase transition

4- Discussion

Page 40: Effect  of  disorder  on the fracture of  materials

Questions•A model in the PFZ? How to reconcile line model and percolation gradient model ?

•Size of FPZ? Reliable measurements?

•Direct measurement of the disorder correlator

•Dynamics of crack propagation in 3D?

• Radiation damage?

•Breaking liquids…

cuttu ++D ]v)()][(v)([)vt(

Page 41: Effect  of  disorder  on the fracture of  materials

Thank you!

Page 42: Effect  of  disorder  on the fracture of  materials

2/12

/1

/1

)()(

)()()(

)()()(

x

k

x

k

k

k

x

kk

xhxxh

xhxxhxR

xhxxhxh

D+

D+D

D+DD

k

Gk

k

R

/1

21

2

+

(S. Santucci et al., 07)

R k(D

x)/R

kG

Log10(Dx/0)

PMMAL ≈ 50µm

Dx/0

Dhk(D

x)/R

kG

PMMA≈0.6

3- Statistical characterization of fracture

3.2- Interfacial fracture

Page 43: Effect  of  disorder  on the fracture of  materials

(Salminen et al, EPL06)

Peel-in(paper)

3- Statistical characterization of fracture

Page 44: Effect  of  disorder  on the fracture of  materials

Gutenberg-Richter exponent

3- Statistical characterization of fracture

3.2- Interfacial fracture

Page 45: Effect  of  disorder  on the fracture of  materials

Omori’s law

Slope -1

3.2- Interfacial fracture

3- Statistical characterization of fracture

Page 46: Effect  of  disorder  on the fracture of  materials

vv

tip

Au(111) film(~150 nm)

mica plate

Sample holder

Z-piezo

It

wedge

preamplifier

feedbacksystem of STM PC

Vibration isolation system

Ut

(A. Marchenko et al., 06)

3.2- Interfacial fracture

3- Statistical characterization of fracture

Page 47: Effect  of  disorder  on the fracture of  materials

Humid air

n-tetradecane

Page 48: Effect  of  disorder  on the fracture of  materials

Humid air Tetradecane

3.2- Interfacial fracture

3- Statistical characterization of fracture

Page 49: Effect  of  disorder  on the fracture of  materials

smv

vvvP

O

O

/10

)/exp()(6

9.2)( vvP

Page 50: Effect  of  disorder  on the fracture of  materials

Magnitude

10-4 10-2 1 102

Approximate energy radiated (1015J)

104

102

1

103

10Nu

mbe

r of e

arth

quak

es

San Andreas fault

(J. Sethna et al)

3.2- Interfacial fracture

3- Statistical characterization of fracture

Page 51: Effect  of  disorder  on the fracture of  materials

AE measurements on mortar (B. Pant, G. Mourot et al., 07)

Energy distribution

Log(E/Emax)

Log(

N(E)

)

P(E)E-1.41

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Page 52: Effect  of  disorder  on the fracture of  materials

P(E)E-1.49

P(E)E-1.40

AE measurements on polymeric foams (S. Deschanel et al., 06)

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Page 53: Effect  of  disorder  on the fracture of  materials

Al alloy Ni-platedBS SEM

(E.B. et al., 89)

r/x

C(r)rz

z≈0.8

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Page 54: Effect  of  disorder  on the fracture of  materials

Profiles perpendicular to the directionof crack propagation

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Page 55: Effect  of  disorder  on the fracture of  materials

z= 0.78from 5nm to

0.5mmDz

Profiles perpendicular to the direction of crack propagation

(Dz)

(µm

)

(P. Daguier & al., 96)

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Page 56: Effect  of  disorder  on the fracture of  materials

Aluminiumalloy

z=0.773nm0.1mm

z = 0.77

Z max

(Dz)

(µm

)

Dz (µm)(M. Hinojosa et al., 98)

Profiles perpendicular to the direction of crack propagation

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Page 57: Effect  of  disorder  on the fracture of  materials

(J. Schmittbuhl et al, 95)

Profiles perpendicular to the directionof crack propagation: granite

z≈0.8

z≈0.85

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Page 58: Effect  of  disorder  on the fracture of  materials

z (µm)direction ofcrack front

x (µm)direction of

crackpropagation

Anisotropy of fracture surfaces

z ~ 0.8

~ 0.6

Direction ofcrack propagation

Direction of crack front

Log(Δx), log(Δz)

Log

(Δh)

L. Ponson, D. Bonamy, E.B. (05)

1 10 102 103

1

10

0.1

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Page 59: Effect  of  disorder  on the fracture of  materials

Exceptions…Sandstone fracture surfaces

log(P(f))

log(f)

z≈0.47

(Boffa et al. 99)

zz P

(Dh)

Dh/(z)z

(Ponson at al. 07)

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Page 60: Effect  of  disorder  on the fracture of  materials

« Model » material : sintered glass beads (Coll. H. Auradou, J.-P. Hulin & P. Vié 06)

Porosity 3 to 25%Grain size 50 to 200 mmVitreous grain boundaries

Linear elastic material

3.3- Fracture of three-dimensional solids

3- Statistical characterization of fracture

Exceptions…

Page 61: Effect  of  disorder  on the fracture of  materials

1/zζ=0.4 ± 0.05β=0.5 ± 0.05 z=ζ/β =0.8 ±0.05

2 independent

exponents« Universal » structure

function +

Roughness at scales> Grain size

(Ponson et al. 06)

3- Statistical characterization of fracture

Page 62: Effect  of  disorder  on the fracture of  materials

SummaryCracks and fracture surfaces are self-affine:

-Thin sheets ≈0.6 at scales > L

- Interfacial fracture z’ ≈0.6 at scales < L

- 3D solid out-of-plane perpendicular to crack propagation z≈0.75 (5 decades!)

- Out-of-plane parallel to the direction of crack propagation ≈0.6

- In-plane z’ ≈0.6

3- Statistical characterization of fracture

Page 63: Effect  of  disorder  on the fracture of  materials

f(z)

Out-of-plane

Projection on theyz plane

In-plane

Projection on thexz plane

3.3- Fracture of 3D specimens

3- Statistical characterization of fracture

Page 64: Effect  of  disorder  on the fracture of  materials

P.Daguier et al. (95)

x

z’≈0.55-06

3.3- Fracture of 3D specimens

3- Statistical characterization of fracture

Page 65: Effect  of  disorder  on the fracture of  materials

Out-of-plane roughness measurements

Polishing

3.3- Fracture of 3D specimens

3- Statistical characterization of fracture

Page 66: Effect  of  disorder  on the fracture of  materials

Al alloy Ni-platedBS SEM

(E.B. et al., 89)

r/x

C(r)rz

z≈0.8

3.3- Fracture of 3D specimens

3- Statistical characterization of fracture

Page 67: Effect  of  disorder  on the fracture of  materials

(J. Schmittbuhl et al, 95)

Profiles perpendicular to the direction of crack propagation: granite

z≈0.8

z≈0.85

3.3- Fracture of 3D specimens

3- Statistical characterization of fracture

Page 68: Effect  of  disorder  on the fracture of  materials

z (µm)direction ofcrack front

x (µm)direction of

crackpropagation

Anisotropy of fracture surfaces

z ~ 0.8

~ 0.6

Direction ofcrack propagation

Direction of crack front

Log(Δx), log(Δz)

Log

(Δh)

L. Ponson, D. Bonamy, E.B. (05)

1 10 102 103

1

10

0.1

3.3- Fracture of 3D specimens

3- Statistical characterization of fracture

Page 69: Effect  of  disorder  on the fracture of  materials

Béton(Profilométrie)

Glass (AFM)

Alliage métallique (SEM+Stéréoscopie)

Quasi-cristaux (STM)

130mm

Δh2D(Δz, Δx) = (<(h(zA+Δz, xA+Δx) - h(zA, xA))2>A)1/2

Dh (n

m)

Dz (nm)

A B

ΔxΔz

L. Ponson et al, PRL 2006L. Ponson et al, IJF 2006

Dh/D

x

Dz/ Dx1/ z

)(. /1

xzfxh

DD

DD

1 si1 si1

)(

uu

uuf

z = 0.75 = 0.6Z= z/ ~ 1.2

z

Page 70: Effect  of  disorder  on the fracture of  materials

Béton(Profilométrie)

Glass (AFM)

Alliage métallique (SEM+Stéréoscopie)

Quasi-crystals(STM)

Δh2D(Δz, Δx) = (<(h(zA+Δz, xA+Δx) - h(zA, xA))2>A)1/2

A B

ΔxΔz 130mm

Quasi-crystalsCourtesy P. Ebert

Coll. D.B., L.P., L. Barbier, P. Ebert

z

z

)(. /1

xzfxh

DD

DD

1 si1 si1

)(

uu

uuf

z = 0.75 = 0.6

z = z/ ~ 1.2

h (Å

)4- Statistical characterization of fracture

Page 71: Effect  of  disorder  on the fracture of  materials

Béton(Profilométrie)

Glass (AFM)

Aluminum alloy (SEM+Stereo)

Quasi-crystals (STM)

Δh2D(Δz, Δx) = (<(h(zA+Δz, xA+Δx) - h(zA, xA))2>A)1/2

A B

ΔxΔz 130mm

)(. /1

xzfxh

DD

DD

1 si1 si1

)(

uu

uuf

z = 0.75 = 0.6

z = z/ ~ 1.2

Dh/D

x

Dz/ Dx1/z

h (Å

)

Coll. D.B., L.P., L. Barbier, P. Ebert

4- Statistical characterization of fracture

Page 72: Effect  of  disorder  on the fracture of  materials

Mortar(Profilometry)

Glass (AFM)

Aluminum alloy (SEM+Stereo)

Quasi-crystals(STM)

Δh2D(Δz, Δx) = (<(h(zA+Δz, xA+Δx) - h(zA, xA))2>A)1/2

A B

ΔxΔz 130mm

)(. /1

xzfxh

DD

DD

1 si1 si1

)(

uu

uuf

z = 0.75 = 0.6

z= z/ ~ 1.2

Dh/D

x

Dz/ Dx1/z

Mortar

(Coll. S. Morel & G. Mourot)h

(Å)

Coll. D.B., L.P., L. Barbier, P. Ebert

Page 73: Effect  of  disorder  on the fracture of  materials

Mortar(Profilometry)

Glass (AFM)

Metallic alloy (SEM+Stereo)

Quasi-crystals(STM)

A B

ΔxΔz 130mm

Dz/ Dx1/z(lz/lx)1/z(Dz/lz)/(Dx/lx)1/z

Dh/D

x(D

h/l x)

/(Dx/

l x)

Universal structure functionVery different length scalesh

(Å)

Coll. D.B.,L.P.,L. Barbier,P. Ebert

4- Statistical characterization of fracture

Page 74: Effect  of  disorder  on the fracture of  materials

Expo

nent

1mm

Preliminary results(G. Pallarès, B. Nowakowski et al., 08)

4- Statistical characterization of fracture

Page 75: Effect  of  disorder  on the fracture of  materials

Exceptions…

Sandstone fracture surfaceslog(P(f))

log(f)

z≈0.47

(Boffa et al. 99)

zz P

(Dh)

Dh/(z)z

(Ponson at al. 07)

Page 76: Effect  of  disorder  on the fracture of  materials

ζ=0.4 ± 0.05β=0.5 ± 0.05 z=ζ/β=0.8 ±0.05

2 independent

exponents« Universal » structure

function +

Roughness at scales> Grain size

1/z

(Ponson et al. 06)

4- Statistical characterization of fracture

Page 77: Effect  of  disorder  on the fracture of  materials

1D crack in a 2D sample

4.1- Random Fuse Models

L. De Arcanglis et al, 1985

4- Stochastic models of failure

Page 78: Effect  of  disorder  on the fracture of  materials

2/1

1

2)(1)(

L

x

yxyL

Lw

(E. Hinrichsen et al. 91)

≈0.7=2/3 ?

4.1- Random Fuse Models

4- Stochastic models of failure

(P.Nukala et al. 05)

Page 79: Effect  of  disorder  on the fracture of  materials

(P.Nukala et al. 06)(G. Batrouni & A. Hansen, 98)

z==0.52

Minimum energy surface z≈0.41(A. Middleton, 95

Hansen & Roux, 91)

z≈0.5

Fracture surface=juxtapositionof rough damage cavities

(Metallic glass, E.B. et al, 08)

4.1- Random Fuse Models

Page 80: Effect  of  disorder  on the fracture of  materials

s-2.55

P(E)E-1.8

Esa, a≈1.3

Avalanche size distribution (S. Zapperi et al.05)

4.1- Random Fuse Models

4- Stochastic models of failure