Top Banner
Received: July 27, 2012; Revised: September 25, 2012; Published on Web: September 26, 2012. Corresponding author. Email: [email protected]; Tel: +86-411-82159391. The project was supported by the National Natural Science Foundation of China (20973088, 21173109, 21133005) and Specialized Research Fund for the Doctoral Program of Higher Education of China (20102136110001). 国家自然科学基金(20973088, 21173109, 21133005)和教育部高等学校博士点基金(20102136110001)资助项目 Editorial office of Acta Physico-Chimica Sinica 取代基对 1-甲基尿嘧啶与 N-甲基乙酰胺氢键复合物中氢键强度的影响 刘冬佳 王长生 * (辽宁师范大学化学化工学院, 辽宁 大连 116029) 摘要: 使用密度泛函理论 B3LYP 方法和二阶微扰理论 MP2 方法对由 1-甲基尿嘧啶与 N-甲基乙酰胺所形成的 氢键复合物中的氢键强度进行了理论研究, 探讨了不同取代基取代氢键受体分子 1-甲基尿嘧啶中的氢原子对 氢键强度的影响和氢键的协同性. 研究表明: 供电子取代基使 NHOC 氢键键长 r(HO)缩短, 氢键强度 增强; 吸电子取代基使 NHOC 氢键键长 r(HO)伸长, 氢键强度减弱. 自然键轨道(NBO)分析表明: 供电 子基团使参与形成氢键的氢原子的正电荷增加, 使氧原子的负电荷增加, 使质子供体和受体分子间的电荷转移 量增多; 吸电子基团则相反. 供电子基团使 NHOC 氢键中氧原子的孤对电子轨道 n(O)NH 的反键轨 σ*(NH)的二阶相互作用稳定化能增强, 吸电子基团使这种二阶相互作用稳定化能减弱. 取代基对与其相近 NHOC 氢键影响更大. 关键词: 氢键复合物; 取代基; 氢键强度; 自然键轨道分析; 氢键协同性 中图分类号: O641 Effect of Substituents on Hydrogen Bond Strength in Hydrogen-Bonded N-methylacetamide and Uracil Complexes LIU Dong-Jia WANG Chang-Sheng * (School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning Province, P. R. China) Abstract: Theoretical calculations on a series of N HOC hydrogen-bonded complexes containing 1-methyluracil and N-methylacetamide were carried out using B3LYP and MP2 methods. Substituent effects in the hydrogen bond acceptor molecule (1-methyluracil) on the hydrogen bond strength and hydrogen bond cooperativity were explored. The calculation results show that electron donating groups shorten the HO distance and strengthen the NHOC hydrogen bond, whereas electron withdrawing groups lengthen the HO distance and weaken the N HOC hydrogen bond. Natural bond orbital (NBO) analysis further indicates that electron donating groups result in a larger positive charge on the H atom and a larger negative charge on the O atom in the NHOC bond, and result in increased charge transfer between the proton donor and acceptor molecules. Electron withdrawing groups show the opposite results. NBO analysis also indicates that electron donating groups result in larger second-order interaction energies between the oxygen lone pair and the N H antibonding orbital when compared to the 1-methyluracil-containing complex (R=H), while electron withdrawing groups result in smaller second-order interaction energies. Key Words: Hydrogen-bonded complex; Substituent; Hydrogen bond strength; Natural bond orbital analysis; Hydrogen bond cooperativity [Article] doi: 10.3866/PKU.WHXB201209263 www.whxb.pku.edu.cn 物理化学学报(Wuli Huaxue Xuebao) Acta Phys. -Chim. Sin. 2012, 28 (12), 2809-2816 December 2809
8

Effect

Sep 08, 2015

Download

Documents

paper
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Received: July 27, 2012; Revised: September 25, 2012; Published on Web: September 26, 2012.Corresponding author. Email: [email protected]; Tel: +86-411-82159391.The project was supported by the National Natural Science Foundation of China (20973088, 21173109, 21133005) and Specialized Research Fund

    for the Doctoral Program of Higher Education of China (20102136110001).

    (20973088, 21173109, 21133005)(20102136110001) Editorial office of Acta Physico-Chimica Sinica

    1-N- *

    (, 116029)

    : B3LYPMP21-N-,1-.:NHOC r(HO),;NHOC r(HO),.(NBO):,,;.NHOCn(O)NH*(NH),.NHOC.

    : ; ; ; ; : O641

    Effect of Substituents on Hydrogen Bond Strength in Hydrogen-BondedN-methylacetamide and Uracil Complexes

    LIU Dong-Jia WANG Chang-Sheng*

    (School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning Province, P. R. China)

    Abstract: Theoretical calculations on a series of NHOC hydrogen-bonded complexes containing1-methyluracil and N-methylacetamide were carried out using B3LYP and MP2 methods. Substituent

    effects in the hydrogen bond acceptor molecule (1-methyluracil) on the hydrogen bond strength and

    hydrogen bond cooperativity were explored. The calculation results show that electron donating groups

    shorten the HO distance and strengthen the NHOC hydrogen bond, whereas electron withdrawinggroups lengthen the HO distance and weaken the NHOC hydrogen bond. Natural bond orbital(NBO) analysis further indicates that electron donating groups result in a larger positive charge on the H

    atom and a larger negative charge on the O atom in the NHOC bond, and result in increased chargetransfer between the proton donor and acceptor molecules. Electron withdrawing groups show the opposite

    results. NBO analysis also indicates that electron donating groups result in larger second-order interaction

    energies between the oxygen lone pair and the N H antibonding orbital when compared to the1-methyluracil-containing complex (R=H), while electron withdrawing groups result in smaller second-order

    interaction energies.

    Key Words: Hydrogen-bonded complex; Substituent; Hydrogen bond strength; Natural bond orbital

    analysis; Hydrogen bond cooperativity

    [Article] doi: 10.3866/PKU.WHXB201209263 www.whxb.pku.edu.cn

    (Wuli Huaxue Xuebao)Acta Phys. -Chim. Sin. 2012, 28 (12), 2809-2816December 2809

  • Acta Phys. -Chim. Sin. 2012 Vol.28

    1

    , ,.1-12MohajeriNobandegani515NHNNHO.Kolew 9. Dong 13, --. Vargas 14N-NHOC,N-NHOC-36.0kJmol-1, NHOC-29.7 kJmol-1. Kawahara 15,16MP2-AX-UCX-G,. Wang 17-22, , (BSSE)MP2. Dannenberg 23-25 B3LYP/D95**. WuZhao26,27,-310-. Tan 28

    B3LYP/cc-pVTZN-,.

    , . Hunter 29N1. Jeong 30-RNA. Cheng Frankel31HF/6-31G(d) 28-,21. ProtNA-ASA 214-DNA 28-RNA.32MP2 1-N-NHOC,NHOC.

    2 1

    .NHOC HB1HB2HB3 . B3LYP/6-31+G(d, p), ,

    1 Fig.1 Structures of hydrogen-bonded complexes

    2810

  • :1-N-No.12

    BSSEMP2/6-311++G(d, p)MP2/6-311++G(3df, 2p)., B3LYP/6-31+G(d,p).Gaussian 03 33.

    3 3.1 36,

    215.21 S1 ( Supporting Information).

    , R=H1-N-NHOC,HB1 r(HO)HB10.2016 nm,HB2 r(HO)HB2 0.1950 nm. R NH2EtMe,HB1HB2R=H, HB1. : R=NH2, r(HO)HB1 0.1987 nm, 0.0029 nm;r(HO)HB2 0.1947 nm, 0.0003 nm. R BH2COMeCONH2CHOCF3CNNO2SO3H,R=H,HB1HB2. : R=NO2, r(HO)HB10.2076 nm,0.0060 nm; r(HO)HB20.1965

    2 15Fig.2 Optimal geometries of 15 hydrogen-bonded complexes

    bond length in nm, bond angle in degree

    2811

  • Acta Phys. -Chim. Sin. 2012 Vol.28

    nm,0.0015 nm,HB1..HB1

    , HB1,HB1.HB2,HB2. , ,.3.2 1 36

    .1, 1-.NH2EtMe,; BH2COMeCONH2CHOCF3CNNO2SO3H, . BSSEMP2/6-311++G(d, p),, R=H,HB1EHB1=-22.6kJmol-1; HNH2, EHB1=-24.5kJmol-1,1.9 kJmol-1;HSO3H, EHB1=-16.9 kJmol-1,

    1 36Table 1 Hydrogen bond energies and hydrogen bond distances of thirty-six hydrogen-bonded complexes

    dimer

    trimer

    tetramer

    R

    NH2

    Et

    Me

    H

    BH2

    COMe

    CONH2

    CHO

    CF3

    CN

    NO2

    SO3H

    NH2

    Et

    Me

    H

    BH2

    COMe

    CONH2

    CHO

    CF3

    CN

    NO2

    SO3H

    NH2

    Et

    Me

    H

    BH2

    COMe

    CONH2

    CHO

    CF3

    CN

    NO2

    SO3H

    B3LYP/6-31+G(d, p)

    r(HO)HB1nm

    0.2025

    0.2042

    0.2042

    0.2055

    0.2080

    0.2079

    0.2078

    0.2093

    0.2086

    0.2102

    0.2111

    0.2112

    0.1987

    0.2004

    0.2004

    0.2016

    0.2042

    0.2043

    0.2046

    0.2056

    0.2052

    0.2067

    0.2076

    0.2077

    0.1969

    0.1986

    0.1986

    0.1998

    0.2023

    0.2024

    0.2024

    0.2037

    0.2038

    0.2048

    0.2058

    0.2064

    r(HO)HB2nm

    0.1947

    0.1950

    0.1949

    0.1950

    0.1956

    0.1958

    0.1960

    0.1959

    0.1963

    0.1963

    0.1965

    0.1969

    0.1919

    0.1920

    0.1921

    0.1923

    0.1929

    0.1931

    0.1931

    0.1933

    0.1934

    0.1936

    0.1938

    0.1939

    r(HO)HB3nm

    0.1930

    0.1930

    0.1929

    0.1930

    0.1932

    0.1933

    0.1933

    0.1934

    0.1933

    0.1935

    0.1935

    0.1935

    MP2/6-311++G(d, p)with BSSE

    EHB1(kJmol-1)-24.5

    -23.7

    -23.7

    -22.6

    -20.2

    -20.3

    -20.2

    -19.3

    -19.3

    -18.1

    -17.9

    -16.9

    -28.2

    -27.3

    -27.3

    -25.9

    -22.7

    -22.5

    -22.3

    -21.4

    -21.0

    -19.6

    -19.0

    -17.3

    -29.0

    -28.0

    -27.9

    -26.4

    -22.9

    -22.8

    -22.7

    -21.4

    -21.2

    -19.4

    -19.0

    -17.6

    EHB2(kJmol-1)

    -34.4

    -34.3

    -34.3

    -34.0

    -33.3

    -33.0

    -32.8

    -32.8

    -32.5

    -32.3

    -32.0

    -31.2

    -41.3

    -41.3

    -41.2

    -40.7

    -39.6

    -39.4

    -39.3

    -39.0

    -38.7

    -38.3

    -38.0

    -37.4

    EHB3(kJmol-1)

    -36.9

    -36.9

    -36.8

    -36.6

    -36.3

    -36.4

    -36.5

    -36.0

    -36.3

    -35.9

    -35.9

    -36.2

    MP2/6-311++G(3df, 2p)with BSSE

    EHB1(kJmol-1)-26.8

    -25.6

    -25.6

    -24.4

    -21.8

    -21.9

    -21.9

    -20.8

    -21.2

    -19.5

    -19.3

    -18.6

    -31.4

    -30.0

    -30.0

    -28.5

    -25.0

    -24.8

    -24.6

    -23.6

    -23.6

    -21.6

    -21.2

    -19.8

    EHB2(kJmol-1)

    -37.8

    -37.6

    -37.6

    -37.3

    -36.4

    -36.1

    -36.0

    -36.0

    -35.7

    -35.3

    -35.2

    -34.5

    2812

  • :1-N-No.12

    5.7 kJmol-1. , R=H, EHB1=-25.9 kJmol-1, EHB2=-34.0 kJmol-1; HNH2, EHB1=-28.2 kJmol-1, 2.3 kJmol-1, EHB2=-34.4 kJmol-1, 0.4 kJmol-1;HSO3H, EHB1=-17.3 kJmol-1, 8.6 kJmol-1, EHB2=-31.2 kJmol-1,2.8 kJmol-1., R=H, EHB1EHB2EHB3-26.4-40.7-36.6 kJmol-1;HNH2, EHB1EHB2 EHB3-29.0-41.3-36.9 kJmol-1,2.60.60.3 kJmol-1;H SO3H,EHB1EHB2EHB3-17.6-37.4-36.2 kJmol-1, 8.83.30.4 kJmol-1.,,,.EHB1,

    EHB1EHB1, EHB1EHB1,,HB1.EHB2,EHB2EHB2,,HB2.,, , 1- N-NHOC.3.3 (NBO) 2B3LYP/6-31+G(d, p)

    36(NBO)., qH, qO, qt, Eijn(O)NH*(NH)..R=HHB1

    0.4592e,-0.6784e (234);HB2 0.4621e,-0.6947e (278).R=H,NH2,HB1qH0.4614e,0.0022e, qO-0.6984e,0.0200e;HB2qH0.4625e, 0.0004e, qO-0.6969e,

    0.0022e.NH2,1-,,,.RSO3H,HB1qH0.4543e,0.0049e, qO-0.6506e,0.0278e;HB2qH0.4612e, 0.0009e, qO -0.6908e, 0.0039e.SO3H,1-,, , ., , ,, , .25,HB1, R=H

    0.0194e;29,HB2, R=H0.0282e.NH2,HB1HB2 0.0214e 0.0286e,R=H 0.0020e 0.0004e.SO3H,HB1HB2 0.0145e 0.0257e,R=H0.0049e0.0025e.,,.2,HB1HB1HB2. 2 6 10, R=H

    HB1HB241.959.8 kJmol-1.,Me, Eij(HB1) 43.9 kJmol-1, 2.0 kJmol-1, Eij(HB2) 60.0 kJmol-1, 0.2 kJmol-1. BH2, Eij(HB1) 36.6 kJmol-1, 5.3 kJmol-1, Eij(HB2) 58.5kJmol-1, 1.3 kJmol-1.,,,HB1

    2813

  • Acta Phys. -Chim. Sin. 2012 Vol.28

    .,

    .HB1qtEij(HB1)

    , HB1 qtEij(HB1)HB1qtEij(HB1),HB1qtEij(HB1)HB1 qtEij(HB1),,HB1 qt Eij(HB1). HB2 qtEij(HB2),HB2 qtEij(HB2)

    HB2 qtEij(HB2), , HB2qtEij(HB2).,,, n(O)NH*(NH)., 1-N-NHOC

    dimer

    trimer

    tetramer

    R

    NH2Et

    Me

    H

    BH2

    COMe

    CONH2

    CHO

    CF3

    CN

    NO2

    SO3H

    NH2

    Et

    Me

    H

    BH2

    COMe

    CONH2

    CHO

    CF3

    CN

    NO2

    SO3H

    NH2

    Et

    Me

    H

    BH2

    COMe

    CONH2

    CHO

    CF3

    CN

    NO2

    SO3H

    HB1

    qH/e

    0.4554

    0.4545

    0.4545

    0.4540

    0.4511

    0.4511

    0.4515

    0.4503

    0.4499

    0.4492

    0.4486

    0.4482

    0.4614

    0.4602

    0.4601

    0.4592

    0.4572

    0.4573

    0.4575

    0.4562

    0.4568

    0.4554

    0.4543

    0.4543

    0.4632

    0.4621

    0.4620

    0.4610

    0.4588

    0.4587

    0.4590

    0.4577

    0.4581

    0.4570

    0.4561

    0.4559

    qO/e

    -0.6886

    -0.6759

    -0.6758

    -0.6696

    -0.6527

    -0.6531

    -0.6538

    -0.6484

    -0.6523

    -0.6468

    -0.6395

    -0.6402

    -0.6984

    -0.6840

    -0.6839

    -0.6784

    -0.6617

    -0.6640

    -0.6655

    -0.6581

    -0.6631

    -0.6562

    -0.6496

    -0.6506

    -0.7043

    -0.6899

    -0.6882

    -0.6803

    -0.6659

    -0.6657

    -0.6678

    -0.6601

    -0.6655

    -0.6586

    -0.6525

    -0.6538

    qt/e

    0.0189

    0.0175

    0.0176

    0.0169

    0.0151

    0.0153

    0.0154

    0.0143

    0.0151

    0.0135

    0.0134

    0.0132

    0.0214

    0.0204

    0.0204

    0.0194

    0.0178

    0.0174

    0.0166

    0.0164

    0.0162

    0.0156

    0.0152

    0.0145

    0.0230

    0.0216

    0.0216

    0.0209

    0.0190

    0.0187

    0.0185

    0.0177

    0.0178

    0.0168

    0.0162

    0.0154

    Eij(HB1)(kJmol-1)

    41.7

    38.7

    38.9

    37.3

    33.9

    34.3

    34.4

    32.0

    33.8

    30.8

    30.3

    30.0

    46.2

    43.9

    43.9

    41.9

    36.6

    38.2

    36.6

    35.9

    35.5

    34.4

    33.5

    32.3

    48.8

    45.8

    45.8

    44.4

    40.9

    41.0

    39.9

    39.0

    38.1

    36.7

    35.4

    33.8

    HB2

    qH/e

    0.4625

    0.4621

    0.4621

    0.4621

    0.4617

    0.4619

    0.4620

    0.4613

    0.4616

    0.4612

    0.4610

    0.4612

    0.4689

    0.4686

    0.4685

    0.4683

    0.4680

    0.4677

    0.4679

    0.4674

    0.4677

    0.4673

    0.4671

    0.4670

    qO/e

    -0.6969

    -0.6959

    -0.6957

    -0.6947

    -0.6948

    -0.6924

    -0.6928

    -0.6943

    -0.6959

    -0.6916

    -0.6898

    -0.6908

    -0.7092

    -0.7076

    -0.7088

    -0.7091

    -0.7041

    -0.7053

    -0.7045

    -0.7061

    -0.7032

    -0.7030

    -0.7015

    -0.7019

    qt/e

    0.0286

    0.0283

    0.0283

    0.0282

    0.0275

    0.0273

    0.0270

    0.0273

    0.0269

    0.0268

    0.0265

    0.0257

    0.0306

    0.0305

    0.0303

    0.0300

    0.0292

    0.0288

    0.0283

    0.0287

    0.0287

    0.0283

    0.0280

    0.0279

    Eij(HB2)(kJmol-1)

    60.6

    60.0

    60.0

    59.8

    58.5

    58.1

    57.6

    57.8

    57.2

    57.2

    56.7

    55.2

    63.2

    63.5

    62.9

    62.5

    61.0

    60.0

    60.0

    59.8

    59.6

    59.0

    58.5

    58.1

    HB3

    qH/e

    0.4646

    0.4648

    0.4648

    0.4644

    0.4645

    0.4644

    0.4644

    0.4643

    0.4644

    0.4641

    0.4642

    0.4641

    qO/e

    -0.7068

    -0.7069

    -0.7074

    -0.7092

    -0.7053

    -0.7056

    -0.7048

    -0.7077

    -0.7048

    -0.7054

    -0.7042

    -0.7043

    qt/e

    0.0310

    0.0306

    0.0307

    0.0305

    0.0304

    0.0304

    0.0305

    0.0303

    0.0303

    0.0302

    0.0301

    0.0301

    Eij(HB3)(kJmol-1)

    64.9

    64.6

    64.9

    64.4

    64.1

    64.1

    64.2

    63.9

    63.8

    63.7

    63.5

    63.5

    2 n*(NBO)Table 2 n* second-order interaction energies and nature bond orbital (NBO) analysis for the hydrogen-bond complexes

    qH and qO are the partial charges of the hydrogen and oxygen atoms involved in a hydrogen bond, respectively, qt is the charge transfer between the

    hydrogen bond proton donor and acceptor molecules, Eij is the second-order interaction energy between the oxygen lone pair

    and the NH antibonding orbital.

    2814

  • :1-N-No.12

    . 3E

    R=H, qtR=H, EijR=H.3, EqtEij.(),EqtEij,R=H,,, , .

    4 ,

    NHOC., r(HO), ; , r(HO),.(NBO),NHOC, ,

    ,NHOC n(O)NH*(NH); . 1- N-NHOC.

    Supporting Information: The optimal geometries of hydro-

    gen-bonded complexes at the B3LYP/6-31+G(d, p) level have

    been included. This information is available free of charge via

    the internet at http://www.whxb.pku.edu.cn.

    References(1) Desiraju, G. R.; Steiner, T. The Weak of Hydrogen Bond;

    Oxford University Press: New Nork, 1999; pp 343-412.

    (2) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford

    University Press: New York, 1997; pp 184-212.

    (3) Scheiner, S. Hydrogen Bonding: A Theoretical Perspective;

    Oxford University Press: New York, 1997; pp 105-117.

    (4) Chalaris, M.; Samios, J. J. Phys. Chem. B 1999, 103, 1161.

    doi:10.1021/jp982559f

    (5) Mohajeri, A.; Nobandegani, F. F. J. Phys. Chem. A 2008, 112,

    281. doi: 10.1021/jp075992a

    (6) Sun, C. L.; Wang, C. S. Sci. China Ser. B-Chem. 2009, 39 (6),

    481. [,.B:, 2009, 39 (6),481.]

    (7) Jiang, X. N.; Wang, C. S. ChemPhysChem 2009, 10, 3330.

    doi: 10.1002/cphc.200900591

    (8) Li, Y.; Jiang, X. N.; Wang, C. S. J. Comput. Chem. 2011, 32,

    953. doi: 10.1002/jcc.v32.5

    (9) Kolew, S. K.; Petkow, P. S.; Rangelow, M. A.; Vayssilow, G. N.

    3 EqtEijFig.3 Relationship between E and qt, Eij

    E is the relative hydrogen bonding energy obtained by subtracting the hydrogen bonding energy of the R=H system.qt is the relative charge transfer and Eij is the relative second-order interaction energy obtained using the similiar way as E.

    2815

  • Acta Phys. -Chim. Sin. 2012 Vol.28

    J. Phys. Chem. A 2011, 115, 14054. doi: 10.1021/jp204313f

    (10) Angelina, E. L.; Peruchena, N. M. J. Phys. Chem. A 2011, 115,

    4701. doi: 10.1021/jp1105168

    (11) Ji, C. G.; Zhang, Z. H. J. Phys. Chem. B 2011, 115, 12230. doi:

    10.1021/jp205907h

    (12) Izgorodina, E. I.; MacFarlane, D. R. J. Phys. Chem. B 2011,

    115, 14659. doi: 10.1021/jp208150b

    (13) Dong, H.; Hua, W. J.; Li, S. H. J. Phys. Chem. A 2007, 111,

    2941.

    (14) Vargas, R.; Garza, J.; Friesner, R. A.; Stern, H.; Hay, B. P.;

    Dixon, D. A. J. Phys. Chem. A 2001, 105, 4963. doi: 10.1021/

    jp003888m

    (15) Kawahara, S.; Kobori, A.; Sekine, M.; Taira, K.; Uchimaru, T.

    J. Phys. Chem. A 2001, 105, 10596. doi: 10.1021/jp0124645

    (16) Kawahara, S.; Uchimaru, T.; Taira, K.; Sekine, M. J. Phys.

    Chem. A 2001, 105, 3894.

    (17) Sun, C. L.; Zhang, Y.; Jiang, X. N.; Wang, C. S.; Yang, Z. Z. Sci.

    China Ser. B-Chem. 2008, 38 (9), 762. [, ,,,.B:, 2008, 38 (9), 762.]

    (18) Sun, C. L.; Jiang, X. N.; Wang, C. S. J. Comput. Chem. 2009,

    30, 2567. doi: 10.1002/jcc.v30:15

    (19) Wang, C. S.; Zhang, Y.; Gao, K.; Yang, Z. Z. J. Chem. Phys.

    2005, 123, 024307. doi: 10.1063/1.1979471

    (20) Zhang, Y.; Wang, C. S. J. Comput. Chem. 2009, 30, 1251. doi:

    10.1002/jcc.v30:8

    (21) Sun, C. L.; Wang, C. S. J. Mol. Struct. -Theochem 2010, 956, 38.

    doi: 10.1016/j.theochem.2010.06.020

    (22) Jiang, X. N.; Sun, C. L.; Wang, C. S. J. Comput. Chem. 2010,

    31, 1410.

    (23) Chen, Y. F.; Dannenberg, J. J. J. Am. Chem. Soc. 2006, 128,

    8100. doi: 10.1021/ja060494l

    (24) Nobko, N.; Dannenberg, J. J. J. Phys. Chem. A 2003, 107, 6688.

    doi: 10.1021/jp0345497

    (25) Nobko, N.; Dannenberg, J. J. J. Phys. Chem. A 2003, 107,

    10389.

    (26) Zhao, Y. L.; Wu, Y. D. J. Am. Chem. Soc. 2002, 124, 1570. doi:

    10.1021/ja016230a

    (27) Wu, Y. D.; Zhao, Y. L. J. Am. Chem. Soc. 2001, 123, 5313. doi:

    10.1021/ja003482n

    (28) Tan, H. W.; Qu, W. W.; Chen, G. J.; Liu, R. Z. J. Phys. Chem. A

    2005, 109, 6303. doi: 10.1021/jp051444q

    (29) Hunter, K. C.; Millen, A. L.; Wetmore, S. D. J. Phys. Chem. B

    2007, 111, 1858. doi: 10.1021/jp066902p

    (30) Jeong, E.; Kim, H.; Lee, S. W.; Han, K. Mol. Cells 2003, 16,

    161.

    (31) Cheng, A. C.; Frankel, A. D. J. Am. Chem. Soc. 2004, 126, 434.

    doi: 10.1021/ja037264g

    (32) Tkachenko, M. Y.; Boryskina, O. P.; Shestopalova, A. V.;

    Tolstorukov, M. Y. Int. J. Quantum Chem. 2010, 110, 230. doi:

    10.1002/qua.v110:1

    (33) Frish, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gassian 03,

    Revision D.01; Gaussian Inc.: Pittsburgh, PA, 2003.

    2816