Top Banner
1 EE 560 MOS TRANSISTOR THEORY EE 560 MOS TRANSISTOR THEORY Kenneth R. Laker, University of Pennsylvania PART 1
22
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ee560 mos theory_p101

1

EE 560MOS TRANSISTOR THEORY

EE 560MOS TRANSISTOR THEORY

Kenneth R. Laker, University of Pennsylvania

PART 1

Page 2: Ee560 mos theory_p101

2

GATEOXIDE

SiO2

VG

(GATE VOLTAGE)

VB (SUBSTRATE VOLTAGE)

tox

TWO TERMINAL MOS STRUCTURE

p-type doped Si(N

A = 1015 to 1016 cm-3)

SUBSTRATE

EQUILIBRIUM: n p = ni2 (n

i ≈ 1.45 x 1010 cm-3)

Let SUBSTRATE be uniformy doped @ NA

n p 0 ≈ n i2

NA

and pp0

= NA (BULK concentrations)

Kenneth R. Laker, University of Pennsylvania

Page 3: Ee560 mos theory_p101

ENERGY BAND DIAGRAM FOR p - TYPE SUBSTRATE

φF = E F − E i

q

3

ni = 1.45 x 10-10 cm-3 @ room temp,

k = 1.38 x 10-23 J/oK,q = 1.6 x 10-19 C

=> kT/q = 26 mV @ room temp

Work Function

(NA >> n

i) (N

D >> n

i)

Kenneth R. Laker, University of Pennsylvania

qΦS = q χ + (Ec − E F)

φFp = kTq

lnn i

NA

φF n = kTq

lnND

ni

qΧ = electron affinity of Si

Page 4: Ee560 mos theory_p101

EFm

ENERGY BAND DIAGRAMS FORCOMPONENTS OF MOS STRUCTURE

METAL (Al) OXIDEEo

Ec

Ev

band-gap:E

g = 8 eV

qχox

= 0.95 eVqΦM

=qχ

m = 4.1 eV

4

Kenneth R. Laker, University of Pennsylvania

band-gap: Eg = 1.1 eV

SEMICONDUCTOR (Si)

Ec

Ev

EFp

Ei

qφFp

qχSi = 4.15 eVqΦ

S

ΦS > Φ

M => p-type Si

ΦM

> ΦS => n-type Si

Page 5: Ee560 mos theory_p101

5

Kenneth R. Laker, University of Pennsylvania

METAL (Al) OXIDE SEMICONDUCTOR (Si)

Ec

Ev

EFp

Ei

EFm

Flat-band voltage:V

FB = Φ

M - Φ

S volts Equilibrium

φs = surface potential

qφs

VG = 0

p-type Si Substrate

Oxide

VB = 0

Equilibrium

qΦM

Built-in potential:

qφF

qΦS

Page 6: Ee560 mos theory_p101

7MOS SYSTEM WITH EXTERNAL BIAS

holesACCUMULATEDon the Si surface

Kenneth R. Laker, University of Pennsylvania

VG < 0

p-type Si Substrate

OxideEOX E

OX

VB = 0

Accumulation Region

VG = 0

p-type Si Substrate

Oxide

VB = 0

Equilibrium

Page 7: Ee560 mos theory_p101

8

METAL (Al) OXIDE SEMICONDUCTOR (Si)

Ec

Ev

EFp

Ei

EFm

qVG

VG > 0 (small)

p-type Si Substrate

OxideEOX E

OX

VB = 0

DEPLETIONRegion

MOS SYSTEM WITH EXTERNAL BIAS

Depletion Region

Kenneth R. Laker, University of Pennsylvania

Page 8: Ee560 mos theory_p101

MOS SYSTEM BIASED IN DEPLETION REGION 9V

G > 0 (small)

p-type Si Substrate

OxideEOX E

OX

VB = 0

DEPLETIONRegion

xd

x

0x

d

Mobile charge in thin layerparallel to Si surface

Change in surface potentialto displace dQ

Depletion Region Charge

Kenneth R. Laker, University of Pennsylvania

Page 9: Ee560 mos theory_p101

10

VG > 0 (large)

METAL (Al) OXIDE SEMICONDUCTOR (Si)

Ec

Ev

EFp

Ei

EFm

qVG

p-type Si Substrate

OxideEOX E

OX

VB = 0

Electronsattracted to Sisurface

MOS SYSTEM WITH EXTERNAL BIAS

Inversion Region

Inversion Conditionφ

s = -φ

F

xdm

Kenneth R. Laker, University of Pennsylvania

xdm = xd φs = − φF = 2εSi | 2φF |qNA

φs = -φ

F

Page 10: Ee560 mos theory_p101

11G

B

S D

G

B

SD D

G

B

S

IDS

VGS0 +VTn

n-channel enhancement

IDS

VGS0-VTn

n-channel depletionG

B

SD

S

G

B

G

B

S D

G

B

S D

IDS

VGS0

-VTp

p-channel enhancement

IDS

VGS0

+VTpp-channel depletion

Kenneth R. Laker, University of Pennsylvania

IDS

IDS

IDS

IDS

VGS

VGS

VGS

VGS

+VTn

-VTn

-VTp

+VTp

Page 11: Ee560 mos theory_p101

12

Kenneth R. Laker, University of Pennsylvania

p

substrate or bulk B

conductingchannel

depletion layer

DSB

n+

W

oxide

G

L

n+

polysilicon gate

active area

metal

contact areaW

L

nMOS Layout

N-CHANNEL ENHANCEMENT-TYPE MOSFET

Page 12: Ee560 mos theory_p101

n+ n+

p -substrate

n-well

p+p+

B BSS D DG G

CUT-OFF REGIONVGS < VTn

13

Kenneth R. Laker, University of Pennsylvania

0 < VGS < VTn

DEPLETION REGION

n+

p

substrate or bulk B

depletion region

GDSG2B ( )

oxide

n+

CGC

CBCn+ n+

VGS VDS

substrateor bulk B

p

depletion region

CGC

CBC

Page 13: Ee560 mos theory_p101

14

Kenneth R. Laker, University of Pennsylvania

n+

p

substrate or bulk B

conductingchannel

orinversion region

depletion region

GDS

oxide

n+

CGC

CBCn+ n+

G2B ( )

VGS VDS

INVERSION REGION

METAL (Al) OXIDE SEMICONDUCTOR (Si)

Ec

Ev

EFp

Ei

EFm

qVTn

Underneath GateV

G = V

Tn

φF

-φF

2φF

substrateor bulk B

p

depletion region

conductingchannel

orinversion region

CGC

CBC

VGS > VTn

Page 14: Ee560 mos theory_p101

15

Kenneth R. Laker, University of Pennsylvania

tox

= 50 nm, εox

= 0.34 pF/cm => Cox

= 6.8 x 10-8 F/cm2

W x L = 50 µm x 50 µm => CGC

= 170 fF

MOS Capacitance [tox

-> TOX in SPICE]

Depletion Capacitance

NA = 3 x 1017 cm-3, n

i = 1.45 x 1010 cm-3 => φ

F = -0.438 V

(recall that at room temp or 27oC kT/q = 26 mV)

VSB

= 0 V, εSi = 1.06 pF/cm, q = 1.6 x 10-19 C, N

A, φ

F => x

d = 6.22 µm

εSi, x

d => C

j = 0.17 x 10-8 F/cm2

W x L = 50 µm x 50 µm => CBC

= 42.5 fF

[NSUB

-> NSUB in SPICE](p - substrate)

C j = εSi

xd

CGC = WLCox Cox = εox

t ox

,

CBC = WLC j,

[Cox

-> COX in SPICE]

φFp = kTq

lnn i

NA

NSUB

Page 15: Ee560 mos theory_p101

ΦGC

= φF(substrate) -φ

M

ΦGC

= φF(substrate) -φ

F (gate)

16

Kenneth R. Laker, University of Pennsylvania

Threshold Voltage for MOS Transistors

n-channel enhancement[V

T0 -> VT0 in SPICE] For VSB = 0, the threshold voltage is denoted as VT0 or VT0n,p

[2φF = PHI in SPICE]

[N A = NSUB in SPICE]

(+ for nMOS and - for pMOS)

[Qox = qNSS in SPICE]

metal gatepolysilicon gate

VT 0 = ΦGC − 2φF − QB 0

Cox

− Qox

Cox

Threshold Voltage factors:

-> Gate conductor material;

-> Gate oxide material &

thickness;

-> Channel doping;

-> Impurities in Si-oxide

interface;

-> Source-bulk voltage Vsb;

-> Temperature.

Page 16: Ee560 mos theory_p101

17

Kenneth R. Laker, University of Pennsylvania

Threshold Voltage for MOS Transistorsn-channel enhancement

For : the threshold voltage is denoted as VT or V

Tn,p

where

[γ = GAMMA in SPICE]

VT0

(γ = Body-effect coefficient)

VT = ΦGC − 2φF − QB

Cox

− Qox

Cox

= ΦGC − 2φF − QB 0

Cox

− Qox

Cox

− QB − QB0

Cox

+

Page 17: Ee560 mos theory_p101

18

Kenneth R. Laker, University of Pennsylvania

Threshold Voltage for MOS Transistors

n-channel -> p-channel

• φF is negative in nMOS, positive in pMOS

• QB0

, QB are negtive in nMOS, positive in pMOS

• γ is positive in nMOS, negative in pMOS• V

SB is negative in nMOS, positive in pMOS

****BE CAREFULL*** WITH SIGNS

NOTE: γ ∝ CBC

CGC

Page 18: Ee560 mos theory_p101

19

Kenneth R. Laker, University of Pennsylvania

VT0

3V

-3V

NA10

14 1016

nMOS

pMOS

VT

3V

-3V

VBS0 3

(nMOS 10 /cm )16 3

6

(nMOS 3 x10 /cm )14 3

(pMOS 10 /cm )16 3

Threshold Voltage for MOS Transistors

NBULK

NBULK

= NA

NBULK

= ND

VSB

Page 19: Ee560 mos theory_p101

20

Kenneth R. Laker, University of Pennsylvania

EXAMPLE 3.2 Calculate the threshold voltage VT0

at VBS

= 0, fora polysilicon gate n-channel MOS transistor with the followingparameters:

substrate doping density NA = 1016 cm-3,

polysilicon doping density ND = 2 x 1020 cm-3,

gate oxide thickness tox

= 500 Angstroms,oxide-interface fixed charge density N

ox = 4 x 1010 cm-2.

VT 0 = ΦGC − 2φF(sub) − QB 0

Cox

− Qox

Cox

ΦGC = φF(sub) − φF(gate)

φF(sub) = kTq

lnni

NA

= 0.026Vln1.45x1010

1016

= −0.35V

φF(gate) = kTq

lnND

ni

= 0.026Vln2x1020

1.45x1010

= 0.60V

ΦGC = φF(sub) − φF(gate) = -0.35 V - 0.60 V = -0.95 V

φF(sub)

, ΦGC

:

Page 20: Ee560 mos theory_p101

VT 0 = ΦGC − 2φF(sub) − QB 0

Cox

− Qox

Cox

EXAMPLE 3-2 CONT.

QB0

:

Kenneth R. Laker, University of Pennsylvania

21

= − 2(1.6x10−19 C)(1016 cm−3)(1.06 x10−12 Fcm−1) | 2x0.35V|F = C/V

= - 4.87 x 10-8 C/cm2

Cox

:

Cox = εox

t ox

= 0.34x10−12 Fcm−1

500x10−8 cm= 6.8x10−8 F/cm2

Qox

:Qox = qNox = (1.6x10 −19 C)(4 x1010 cm−2 ) = 6.4x10−9 C/cm2

QB 0

Cox

= −4.87x10−8 C/cm2

6.8x10−8 F/cm2 = −0.716VQox

Cox

= 6.4x10−9 C/cm2

6.8x10−8 F/cm2 = 0.094V

VT 0 = −0.95V− (−0.70V) − (−0.72V) − (0.09V) = 0.38V

Page 21: Ee560 mos theory_p101

Kenneth R. Laker, University of Pennsylvania

22EXAMPLE 3.3 Consider the n-channel MOS transistor with thefollowing process parameters:

substrate doping density NA = 1016 cm-3,

polysilicon doping density ND = 2 x 1020 cm-3,

gate oxide thickness tox

= 500 Angstroms,oxide-interface fixed charge density N

ox = 4 x 1010 cm-2.

In digital circuit design, the condition VSB

= 0 can not always bequaranteed for all transistors. Plot the threshold voltage V

T as a

function of VSB

.

γ - Body-effect coefficient: F = C/V

γ =2qNAeSi

Cox

= 2(1.6 x10−19 C)(1016 cm−3)(1.06 x10−12 Fcm−1)6.8x10−8 F/cm2

= 5.824x10−8 C/V−1/ 2cm2

6.8x10−8 C/Vcm2 = 0.85V1/ 2

Page 22: Ee560 mos theory_p101

-1 0 1 2 3 4 5Kenneth R. Laker, University of Pennsylvania

23EXAMPLE 3-3 CONT.

whereVT 0 = 0.38V (from EX 3-2)

γ = 0.85V1 /2

VT(Volts)

VSB

(Volts)6

0.200.40

0.60

0.80

1.00

1.20

1.40

1.60