Top Banner
http://www.ee.unlv.edu/~b1morris/ee292/ EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 20 121101
23

EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Jul 06, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

http://www.ee.unlv.edu/~b1morris/ee292/

EE292: Fundamentals of ECE

Fall 2012

TTh 10:00-11:15 SEB 1242

Lecture 20

121101

Page 2: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Outline β€’ Chapters 1-3

β–« Circuit Analysis Techniques β€’ Chapter 10 – Diodes

β–« Ideal Model β–« Offset Model β–« Zener Diodes

β€’ Chapter 4 – Transient Analysis β–« Steady-State Analysis β–« 1st-Order Circuits

β€’ Chapter 5 – Steady-State Sinusoidal Analysis β–« RMS Values β–« Phasors β–« Complex Impedance β–« Circuit Analysis with Complex Impedance

2

Page 3: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Chapter 10 – Diodes

3

Page 4: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Diode Voltage/Current Characteristics

β€’ Forward Bias (β€œOn”)

β–« Positive voltage 𝑣𝐷 supports large currents

β–« Modeled as a battery (0.7 V for offset model)

β€’ Reverse Bias (β€œOff”)

β–« Negative voltage no current

β–« Modeled as open circuit

β€’ Reverse-Breakdown

β–« Large negative voltage supports large negative currents

β–« Similar operation as for forward bias

4

Page 5: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Diode Models β€’ Ideal model – simple

β€’ Offset model – more realistic

β€’ Two state model

β€’ β€œOn” State

β–« Forward operation

β–« Diode conducts current

Ideal model short circuit

Offset model battery

β€’ β€œOff” State

β–« Reverse biased

β–« No current through diode open circuit

5

Ideal Model

Offset Model

Page 6: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Circuit Analysis with Diodes

β€’ Assume state {on, off} for each ideal diode and check if the initial guess was correct

β–« 𝑖𝑑 > 0 positive for β€œon” diode

β–« 𝑣𝑑 < π‘£π‘œπ‘› for β€œoff” diode

These imply a correct guess

β–« Otherwise adjust guess and try again

β€’ Exhaustive search is daunting

β–« 2𝑛 different combinations for 𝑛 diodes

β€’ Will require experience to make correct guess

6

Page 7: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Zener Diode

β€’ Diode intended to be operated in breakdown

β–« Constant voltage at breakdown β€’ Three state diode

1. On – 0.7 V forward bias

2. Off – reverse bias

3. Breakdown 𝑣𝐡𝐷 reverse breakdown voltage

7

𝑣𝐡𝐷

π‘£π‘œπ‘› = 0.7 𝑉

Page 8: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Chapter 4 – Transient Analysis

8

Page 9: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

DC Steady-State Analysis

β€’ Analysis of C, L circuits in DC operation

β–« Steady-state – non-changing sources

β€’ Capacitors 𝑖 = 𝐢𝑑𝑣

𝑑𝑑

β–« Voltage is constant no current open circuit

β€’ Inductors 𝑣 = 𝐿𝑑𝑖

𝑑𝑑

β–« Current is constant no voltage short circuit

β€’ Use steady-state analysis to find initial and final conditions for transients

9

Page 10: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

General 1st-Order Solution β€’ Both the current and voltage in an 1st-order circuit has an

exponential form β–« RC and LR circuits

β€’ The general solution for current/voltage is:

β–« π‘₯ – represents current or voltage β–« 𝑑0 βˆ’ represents time when source switches β–« π‘₯𝑓 - final (asymptotic) value of current/voltage

β–« 𝜏 – time constant (𝑅𝐢 or 𝐿

𝑅)

Transient is essentially zero after 5𝜏

β€’ Find values and plug into general solution β–« Steady-state for initial and final values β–« Two-port equivalents for 𝜏

10

Page 11: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Example Two-Port Equivalent

β€’ Given a circuit with a parallel capacitor and inductor

β–« Use Norton equivalent to make a parallel circuit equivalent

β€’ Remember:

β–« Capacitors add in parallel

β–« Inductors add in series

11

Page 12: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

RC/RL Circuits with General Sources

β–« 𝑅𝐢𝑑𝑣𝑐(𝑑)

𝑑𝑑+ 𝑣𝑐(𝑑) = 𝑣𝑠(𝑑)

β€’ The solution is a differential equation of the form

β–« πœπ‘‘π‘₯(𝑑)

𝑑𝑑+ π‘₯(𝑑) = 𝑓(𝑑)

β–« Where 𝑓(𝑑) the forcing function

β€’ The full solution to the diff equation is composed of two terms β€’ π‘₯ 𝑑 = π‘₯𝑝 𝑑 + π‘₯β„Ž(𝑑)

β€’ π‘₯𝑝 𝑑 is the particular solution

β€’ The response to the particular forcing function

β€’ π‘₯𝑝 𝑑 will be of the same functional form as the forcing function

β–« 𝑓 𝑑 = 𝑒𝑠𝑑 β†’ π‘₯𝑝 𝑑 = 𝐴𝑒𝑠𝑑

β–« 𝑓 𝑑 = cos πœ”π‘‘ β†’ π‘₯𝑝 𝑑 =

𝐴cos πœ”π‘‘ + 𝐡sin(πœ”π‘‘) β€’ π‘₯β„Ž(𝑑) is the homogeneous

solution β€’ β€œNatural” solution that is

consistent with the differential equation for 𝑓 𝑑 = 0

β€’ The response to any initial conditions of the circuit

β–« Solution of form

π‘₯β„Ž 𝑑 = πΎπ‘’βˆ’π‘‘/𝜏

12

𝑣𝑠(𝑑)

Page 13: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Second-Order Circuits

β€’ RLC circuits contain two energy storage elements

β–« This results in a differential equation of second order (has a second derivative term)

β€’ Use circuit analysis techniques to develop a general 2nd-order differential equation of the form

β–« Use KVL, KCL and I/V characteristics of inductance and capacitance to put equation into standard form

β–« Must identify 𝛼,πœ”0, 𝑓(𝑑)

13

Page 14: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Useful I/V Relationships

β€’ Inductor

β–« 𝑣 𝑑 = 𝐿𝑑𝑖(𝑑)

𝑑𝑑

β–« 𝑖 𝑑 =1

𝐿 𝑣 𝑑 𝑑𝑑𝑑

𝑑0+ 𝑖 𝑑0

β€’ Capacitor

β–« 𝑖 𝑑 = 𝐢𝑑𝑣(𝑑)

𝑑𝑑

β–« 𝑣 𝑑 =1

𝐢 𝑖 𝑑 𝑑𝑑𝑑

𝑑0+ 𝑣 𝑑0

14

Page 15: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Chapter 5 – Steady-State Sinusoidal Analysis

15

Page 16: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Steady-State Sinusoidal Analysis

β€’ In Transient analysis, we saw response of circuit network had two parts

β–« π‘₯ 𝑑 = π‘₯𝑝 𝑑 + π‘₯β„Ž(𝑑)

β€’ Natural response π‘₯β„Ž(𝑑) had an exponential form that decays to zero

β€’ Forced response π‘₯𝑝(𝑑) was the same form as

forcing function

β–« Sinusoidal source sinusoidal output

β–« Output persists with the source at steady-state there is no transient so it is important to study the sinusoid response

16

Page 17: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Sinusoidal Currents and Voltages β€’ Sinusoidal voltage

β–« 𝑣 𝑑 = π‘‰π‘š cos πœ”0𝑑 + πœƒ

β–« π‘‰π‘š - peak value of voltage

β–« πœ”0 - angular frequency in radians/sec

β–« πœƒ – phase angle in radians

β€’ This is a periodic signal described by

β–« 𝑇 – the period in seconds

πœ”0 =2πœ‹

𝑇

β–« 𝑓 – the frequency in Hz = 1/sec

πœ”0 = 2πœ‹π‘“ β€’ Note: Assuming that ΞΈ is in degrees, we have

β–« tmax = –θ/360 Γ— T.

17

Page 18: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Root-Mean-Square Values

β€’ π‘ƒπ‘Žπ‘£π‘” =

1

𝑇 𝑣2(𝑑)𝑑𝑑𝑇0

2

𝑅

β€’ Define rms voltage

β–« π‘‰π‘Ÿπ‘šπ‘  =1

𝑇 𝑣2(𝑑)𝑑𝑑𝑇

0

β€’ Similarly define rms current

β–« πΌπ‘Ÿπ‘šπ‘  =1

𝑇 𝑖2(𝑑)𝑑𝑑𝑇

0

18

Page 19: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

RMS Value of a Sinusoid β€’ Given a sinusoidal source

β–« 𝑣 𝑑 = π‘‰π‘š cos πœ”0𝑑 + πœƒ

β€’ π‘‰π‘Ÿπ‘šπ‘  =1

𝑇 𝑣2(𝑑)𝑑𝑑𝑇

0

β€’ The rms value is an β€œeffective” value for the signal

β–« E.g. in homes we have 60Hz 115 V rms power

β–« π‘‰π‘š = 2 βˆ™ π‘‰π‘Ÿπ‘šπ‘  = 163 𝑉

19

Page 20: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Conversion Between Forms β€’ Rectangular to polar form

β€’ π‘Ÿ2 = π‘₯2 + 𝑦2

β€’ tanπœƒ =𝑦

π‘₯

β€’ Polar to rectangular form

β€’ π‘₯ = π‘Ÿcosπœƒ

β€’ 𝑦 = π‘Ÿsinπœƒ

β€’ Convert to polar form

β€’ 𝑧 = 4 βˆ’ 𝑗4

β€’ π‘Ÿ = 42 + 42 = 4 2

β€’ πœƒ = arctan𝑦

π‘₯=

arctan βˆ’1 = βˆ’πœ‹

4

β€’ 𝑧 = 4 2π‘’βˆ’π‘—πœ‹/4

π‘₯ (degrees) π‘₯ (radians) sin (π‘₯) cos (π‘₯) tan (π‘₯)

0 0 0 1 0

15 πœ‹

12 βˆ’1 + 3

2 2

1 + 3

2 2

2 βˆ’ 3

30 πœ‹

6

1

2

3

2

1

3

45 πœ‹

4

1

2

1

2

1

60 πœ‹

3

3

2

1

2 3

75 5πœ‹

12

1 + 3

2 2

βˆ’1 + 3

2 2

2 + 3

90 πœ‹

2

1 0 π‘π‘Žπ‘

20

Source: Wikipedia

Page 21: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Phasors β€’ A representation of sinusoidal

signals as vectors in the complex plane β–« Simplifies sinusoidal steady-

state analysis

β€’ Given

β–« 𝑣1 𝑑 = 𝑉1cos (πœ”π‘‘ + πœƒ1)

β€’ The phasor representation is

β–« 𝑽1 = 𝑉1βˆ πœƒ1

β€’ For consistency, use only cosine for the phasor

β–« 𝑣2 𝑑 = 𝑉2 sin πœ”π‘‘ + πœƒ2 =

𝑉2 cos πœ”π‘‘ + πœƒ2 βˆ’ 90Β°

β–« 𝑽2 = 𝑉2∠(πœƒ2βˆ’90Β°)

β€’ Phasor diagram

β–« 𝑽1 = 3∠ 40Β°

β–« 𝑽2 = 4∠ βˆ’20Β°

β€’ Phasors rotate counter clockwise

β–« 𝑽1 leads 𝑽2 by 60Β°

β–« 𝑽2 lags 𝑽1 by 60Β°

21

Page 22: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Complex Impedance β€’ Impedance is the extension of resistance to AC

circuits β–« Extend Ohm’s Law to an impedance form for AC

signals

𝑽 = 𝑍𝑰 β€’ Inductors oppose a change in current

β–« 𝑍𝐿 = πœ”πΏβˆ πœ‹

2= π‘—πœ”πΏ

β–« Current lags voltage by 90Β° β€’ Capacitors oppose a change in voltage

β–« 𝑍𝐢 =1

πœ”πΆβˆ  βˆ’

πœ‹

2= βˆ’π‘—

1

πœ”πΆ=

1

π‘—πœ”πΆ

β–« Current leads voltage by 90Β° β€’ Resistor impendence the same as resistance

β–« 𝑍𝑅 = 𝑅

22

Page 23: EE292: Fundamentals of ECEb1morris/cpe260/docs/slides20.pdfΒ Β· RC and LR circuits β€’The general solution for current/voltage is: – represents current or voltage 𝑑0βˆ’ represents

Circuit Analysis with Impedance

β€’ KVL and KCL remain the same

β–« Use phasor notation to setup equations

β€’ Replace sources by phasor notation

β€’ Replace inductors, capacitors, and resistances by impedance value

β–« This value is dependent on the source frequency πœ”

β€’ Use your favorite circuit analysis techniques to solve for voltage or current

β–« Reverse phasor conversion to get sinusoidal signal in time

23