Top Banner
EE155/255 Green Electronics Electric Motors 10/16/17 Prof. William Dally Computer Systems Laboratory Stanford University
65

EE155/255 Green Electronics - Stanford University

Jun 10, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EE155/255 Green Electronics - Stanford University

EE155/255 Green Electronics

Electric Motors10/16/17

Prof. William DallyComputer Systems Laboratory

Stanford University

Page 2: EE155/255 Green Electronics - Stanford University

Course Logistics• Solar day is Monday 10/23• HW 3 is due today• HW 4 out, due next Monday 10/23• Lab 3 must be checked off this week• Lab 4 out this week

EE155/255 Lecture 7 - Motors

Page 3: EE155/255 Green Electronics - Stanford University

YAH

No Date Topic HWout HWin Labout Labck Lab HW1 9/25/17 Intro(basicconverters) 1 1 IntrotoST32F3 PeriodicSteadyState2 9/27/17 EmbeddedProg/PowerElect.3 10/2/17 PowerElectronics-1(switches) 2 1 2 1 ACEnergyMeter PowerDevices4 10/4/17 PowerElectronics-2(circuits)5 10/9/17 Photovoltaics 3 2 3 2 PVMPPT MotorcontrolMatlab6 10/11/17 FeedbackControl7 10/16/17 ElectricMotors 4 3 4 3 Motorcontrol-Lab/ Feedback8 10/18/17 IsolatedConverters9 10/23/17 SolarDay 5/PP 4 5 4 PS IsolatedConverters10 10/25/17 Magnetics11 10/30/17 SoftSwitching 6 5/PP 6 5 Magnetics MagneticsandInverters12 11/1/17 ProjectDiscussions13 11/6/17 Inverters,Grid,PF,andBatteries 6 P 6 Project14 11/8/17 Thermal&EMI15 11/13/17 QuizReview C116 11/15/17 Grounding,andDebuggingQ 11/15/17 Quiz-intheevening

11/20/17 ThanksgivingBreak C211/22/17 ThanksgivingBreak

17 11/27/17 GuestLecture18 11/29/17 MartinFornage-Enphase C319 12/4/17 ColinCampbell-Tesla20 12/6/17 NoClass

TBD Projectpresentations P12/15/17 Projectwebpagedue

Page 4: EE155/255 Green Electronics - Stanford University

Course to Date• We need sustainable energy systems• Voltage converters PSSA, buck and boost• Real circuits: losses, dead-time, snubbers• PV cells characterized by a diode-like I-V curve• PV systems – 1f store energy, MPPT and invert• Feedback control - PID

– Derivative looks ahead – stabilizes– Integral cancels residual error– Actuators have limits

EE155/255 Lecture 6 - Control

Page 5: EE155/255 Green Electronics - Stanford University

Agenda• Motor Operation• Motor Model• Steady State and Transient Response• Motor control with buck/boost• Types of Motors

– Permanent magnet (PM) (brushed)– Brushless permanent magnet (BLPM)– AC Induction – Radial vs axial flux– Poles and phases

EE155/255 Lecture 7 - Motors

Page 6: EE155/255 Green Electronics - Stanford University

Motors and Generators are Everywhere• Electric and Hybrid Cars• Windmills and Hydro-Power • Windows, door locks, …• Camera focus• Printers

• Anywhere you need to convert between mechanical and electrical energy

EE155/255 Lecture 7 - Motors

Page 7: EE155/255 Green Electronics - Stanford University

Lorentz Force

F = q(v x B)

EE155/255 Lecture 7 - Motors

Page 8: EE155/255 Green Electronics - Stanford University

In a Wire

F = i(L x B)

EE155/255 Lecture 7 - Motors

Page 9: EE155/255 Green Electronics - Stanford University

Force is proportional to Current

F = i(L x B)

EE155/255 Lecture 7 - Motors

Page 10: EE155/255 Green Electronics - Stanford University

Faraday Induction

V = |L|(v x B)

EE155/255 Lecture 7 - Motors

Page 11: EE155/255 Green Electronics - Stanford University

Voltage is proportional to velocity

V = |L|(v x B)This voltage pushes back on the current

EE155/255 Lecture 7 - Motors

Page 12: EE155/255 Green Electronics - Stanford University

Motors Just do this in a circle

EE155/255 Lecture 7 - Motors

Page 13: EE155/255 Green Electronics - Stanford University

Motor Equations

V = |L|(v x B) V = KMw

F = i(L x B)t = KMi

t = IM(dw/dt)

Simultaneously both a motor and a generatorEE155/255 Lecture 7 - Motors

Page 14: EE155/255 Green Electronics - Stanford University

Power is Conserved (mostly)

P = VIP = (KMw)(t/KM)P = wt

EE155/255 Lecture 7 - Motors

Page 15: EE155/255 Green Electronics - Stanford University

Models• Develop mathematical expressions that predict behavior of physical

(electrical and mechanical systems)

• Discard unnecessary detail to focus on the problem at hand

EE155/255 Lecture 7 - Motors

Page 16: EE155/255 Green Electronics - Stanford University

Motor Model

LM RM

V =KVB

+

-

=K iM+-

iM

EE155/255 Lecture 7 - Motors

Page 17: EE155/255 Green Electronics - Stanford University

Motor ModelLM RM

V =KVB

+

-

=K iM+-

iM

Motor is characterized by four parameters

Electrical: LM, RM

Mechanical: IM

Electro-mechanical: KM

EE155/255 Lecture 7 - Motors

Page 18: EE155/255 Green Electronics - Stanford University

Two key time constants• Electrical: tE = LM/RM

• Mechanical: tM = RMIM/KM2

EE155/255 Lecture 7 - Motors

Page 19: EE155/255 Green Electronics - Stanford University

Composite Model

LM RM

V =KMVM

+

-

iM

CM = IM/KM RF = 1/KF

+

iL= LKM2

EE155/255 Lecture 7 - Motors

Page 20: EE155/255 Green Electronics - Stanford University

Composite Model

LM RM

V =KMVM

+

-

iM

CM = IM/KM RF = 1/KF

+

iL= LKM2

EE155/255 Lecture 7 - Motors

Angular Momentum Friction

Energy output to shaft

Page 21: EE155/255 Green Electronics - Stanford University

Steady-State Response

Anguar Velocity (rad/s)

Torq

ue

(N

m)

0

max

max

EE155/255 Lecture 7 - Motors

Page 22: EE155/255 Green Electronics - Stanford University

Steady-State Response

Anguar Velocity (rad/s)

Torq

ue

(N

m)

0

max

max

t0 = KMVB/RM

wmax = VB/KM

t(w) = KM(VB-wKM)/RM

EE155/255 Lecture 7 - Motors

Page 23: EE155/255 Green Electronics - Stanford University

Transient Response

0 0.5 1 1.5 2 2.5 30

10

20

30

40

50

60

70

� (r

ad/s

)

t (s)

EE155/255 Lecture 7 - Motors

Page 24: EE155/255 Green Electronics - Stanford University

Transient Response

0 0.5 1 1.5 2 2.5 30

10

20

30

40

50

60

70

� (r

ad/s

)

t (s)

Second order system

Time constant and damping factor depend on motor parameters

LM RM

V =KVB

+

-

iMCM = IMK KE

RL = KF/K

+

-

EE155/255 Lecture 7 - Motors

Page 25: EE155/255 Green Electronics - Stanford University

Composite Model

Motor is second order, but typically electrical time constant L/R << mechanical time constant (IMKF/KE), so we can approximate it as a first-order system.

LM RM

V =KMVM

+

-

iM

CM = IM/KM RF = 1/KF

+

iL= LKM2

EE155/255 Lecture 7 - Motors

Page 26: EE155/255 Green Electronics - Stanford University

Need to Control the Motor• Applying full battery voltage to a motor system with significant inertia will

generally result in destructive currents– RM is small – milliohms– “Locked rotor” current ILR = VB/RM is large 103-105 A– Unless inertia is very low, sustained current will

• Destroy switching element (MOSFET or IGBT)• Burn insulation off of windings• Disconnect windings from brushes• Fuse windings and wiring• All of the above

EE155/255 Lecture 7 - Motors

Page 27: EE155/255 Green Electronics - Stanford University

Suppose I want to Apply 16V to the motorbut all I have is a 48V battery?

EE155/255 Lecture 7 - Motors

Page 28: EE155/255 Green Electronics - Stanford University

Buck Converter

L

VE

+-

iLVBatt

+-

a

b

Motor controller is just a buck converter

Rotor winding is the inductor L

Back-EMF sets the output voltage VE

EE155/255 Lecture 7 - Motors

Page 29: EE155/255 Green Electronics - Stanford University

What PWM Frequency?• Suppose Lm = 1mH• V = 48V• What frequency is needed to keep ripple current < 1A?

EE155/255 Lecture 7 - Motors

Page 30: EE155/255 Green Electronics - Stanford University

Regenerative Braking

EE155/255 Lecture 7 - Motors

Page 31: EE155/255 Green Electronics - Stanford University

Boost Converter

L

VE+-

iL

a

b

VBatt+-

EE155/255 Lecture 7 - Motors

Page 32: EE155/255 Green Electronics - Stanford University

Types of Motors• Brushed permanent magnet motors (PM)

– What we have been talking about so far– PM on stator, windings on rotor switched by commutator

• Brushless permanent magnet motors (BLPM)– Like PM but no brushes – PM on rotor– Use controller to “commutate” stator current– AC voltage required on windings

• AC induction motors– Rotor is “shorted winding” acts like a transformer– Stator excites rotor and generates field

• Series and shunt wound DC motors– Separate stator and rotor windings

• Radial and axial flux versions of all of the above

EE155/255 Lecture 7 - Motors

Page 33: EE155/255 Green Electronics - Stanford University

All Motors Look Like a Brushed PM Motor

InverterInverterAC

Induction Motor

EE155/255 Lecture 7 - Motors

Page 34: EE155/255 Green Electronics - Stanford University

All Motors Look Like a Brushed PM MotorTorque is proportional to current

Velocity generates back EMF

InverterAC

Induction Motor

Only difference is need for “inverter”, electronic “commutator” or other power shaping electronics

EE155/255 Lecture 7 - Motors

Page 35: EE155/255 Green Electronics - Stanford University

InverterAC

Induction Motor

Separate Motor Controller DesignBrushed PM Controller + Inverter Combine redundant elementsInverter needs to estimate rotor position and/or velocity

PM Controller

Or Brushless PM

EE155/255 Lecture 7 - Motors

Page 36: EE155/255 Green Electronics - Stanford University

Brushless PM Motor

N

S

1

23

EE155/255 Lecture 7 - Motors

Page 37: EE155/255 Green Electronics - Stanford University

Consider Brushless PM as a Generator

N

S

1

23

Angle 0 is up (0,1)Phases at 0, 120, 240 degreesField produced by rotor at angle q:

B = (B0sinq, B0cosq)

f = BA = (B0Asinq, B0Acosq)

Voltage in phase i is df/dt at ai

df(q)/dt = (B0Awcosq, -B0Awsinq)

V(a) = df(q)/dt�U(a)

V(a) = -B0Awsin(q-a)EE155/255 Lecture 7 - Motors

Page 38: EE155/255 Green Electronics - Stanford University

Back EMF

N

S

1

23

V(a) = -Kwsin(q-a)

Open-circuit voltage (back EMF) of each phase is a sinusoid that

Is proportional to w

Reaches peak value when rotor is 90 degrees from phase.

EE155/255 Lecture 7 - Motors

Page 39: EE155/255 Green Electronics - Stanford University

Torque

N

S

1

23

Current in winding i produces a field at angle ai

Torque is effect of this field on the rotor at angle q

t = -(Ki)sin(q-ai)

Power is conserved

tw = -w(Ki)sin(q-ai)= -(i)Kwsin(q-ai)= iV

EE155/255 Lecture 7 - Motors

Page 40: EE155/255 Green Electronics - Stanford University

Torque

N

S

1

23

t = -(Ki)sin(q-ai)

Torque is proportional to current

Torque is maximum when rotor is 90 degrees behind phase

Torque from each phase is sinusoidal

EE155/255 Lecture 7 - Motors

Page 41: EE155/255 Green Electronics - Stanford University

Rotating Stator Field

N

S

1

23

Stator field is superposition of fields from each phase

To generate a field at angle y apply current

Ii = cos(y-ai)

To phase i

Note currents sum to zero with evenly spaced phases

EE155/255 Lecture 7 - Motors

Page 42: EE155/255 Green Electronics - Stanford University

Brushless PM Motors• Sense rotor position

– Hall effect sensors– Measure phase current and voltage– Estimate position by fitting model

• Stator creates rotating magnetic field– Set angle at 90-degrees ahead of rotor to maximize torque

• May be “effective” 90 degrees in multi-pole arrangements

• Stator field rotates at same rate as rotor– ws = wr

• Leads rotor by 90 degrees– Qs = Qr + 90

EE155/255 Lecture 7 - Motors

Page 43: EE155/255 Green Electronics - Stanford University

Angle of Magnetic Fields

Stator Field

RotorField

EE155/255 Lecture 7 - Motors

Page 44: EE155/255 Green Electronics - Stanford University

Brushless PM Motors

EE155/255 Lecture 7 - Motors

Page 45: EE155/255 Green Electronics - Stanford University

Animations of BLPM

http://www.ti.com/general/docs/video/watch.tsp?entryid=3870197889001

http://www.ece.umn.edu/users/riaz/animations/brushlessdc.html

EE155/255 Lecture 7 - Motors

Page 46: EE155/255 Green Electronics - Stanford University

Example Stator – from fan

EE155/255 Lecture 7 - Motors

Page 47: EE155/255 Green Electronics - Stanford University

Stator Outside

EE155/255 Lecture 7 - Motors

Page 48: EE155/255 Green Electronics - Stanford University

AC Induction Motor

EE 155/255 Lecture 8 - Isolated Converters

1

2

3

1'

2'

3'

Page 49: EE155/255 Green Electronics - Stanford University

Equivalent Circuit

EE 155/255 Lecture 8 - Isolated Converters

LS RS

VM

+

-

iM

LM

LR

RR

RR1-ss

Rotor voltage scaled by slips = (ws-wr)/ws

Page 50: EE155/255 Green Electronics - Stanford University

Phase of Currents and Voltages

EE 155/255 Lecture 8 - Isolated Converters

VS

IM

VR

IR

IS

Page 51: EE155/255 Green Electronics - Stanford University

Torque Calculations• Developed power

– P = (1-s/s)I2Rr

• Torque– t = P/w = (1-s/s)I2Rr/wr

• Starting Torque– t0 = I2Rr/ws 1

23

LS RS

VM

+

-

iM

LM

LR

RR

RR1-ss

EE155/255 Lecture 7 - Motors

Page 52: EE155/255 Green Electronics - Stanford University

Torque and Efficiency

EE 155/255 Lecture 8 - Isolated Converters

ωs (rad/s)0 5 10 15 20 25 30

τ (N

m)

0

2

4

6

8

10

ν

0

0.2

0.4

0.6

0.8

1

Page 53: EE155/255 Green Electronics - Stanford University

Torque and Efficiency vs Slip s

EE155/255 Lecture 7 - Motors

σ0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

τ (N

m)

0

2

4

6

8

10

ν

0

0.2

0.4

0.6

0.8

1

Page 54: EE155/255 Green Electronics - Stanford University

AC Motor Control – Low Speed

EE155/255 Lecture 7 - Motors

0 0.5 1 1.5 2 2.5 30

2

4

6

8

10

12

Vmax

Imax

tr

ts (rad/s)

V s (Vol

ts)

Page 55: EE155/255 Green Electronics - Stanford University

AC Motor Control – High Speed

EE155/255 Lecture 7 - Motors

0 1 2 3 4 5 6 70

2

4

6

8

10

12

Vmax

Imax

tr

ts (rad/s)

V s (Vol

ts)

Page 56: EE155/255 Green Electronics - Stanford University

AC Induction Animation

http://www.ece.umn.edu/users/riaz/animations/sqmovies.html

EE155/255 Lecture 7 - Motors

Page 57: EE155/255 Green Electronics - Stanford University

Inverters• BLPM and Induction motors both need 3-phase inverters• 3-channel PWM half-bridge• Control to synthesize desired phase angle

• BLPM – sense (and estimate) rotor position – set field to equal this position

• AC – sense rotor velocity – generate rotating field with desired slip

EE155/255 Lecture 7 - Motors

Page 58: EE155/255 Green Electronics - Stanford University

48V34AH

RCSF1

C1

A

A

B

B

C

C

A B C

3-F Inverter Power Path

EE155/255 Lecture 7 - Motors

Page 59: EE155/255 Green Electronics - Stanford University

48V34AH

RCSF1

C1

A

A

B

B

C

C

A B C

3-F Inverter Power PathDuty factor applied to phase i

Di = DV x Di(q)

Bipolar, D in [-1,1] -1 is 0%, 0 is 50%, 1 is 100%

Level shift to make min 0%

EE155/255 Lecture 7 - Motors

Page 60: EE155/255 Green Electronics - Stanford University

Motor Geometry• Axial Flux and Radial Flux

EE155/255 Lecture 7 - Motors

Page 61: EE155/255 Green Electronics - Stanford University

Poles and Phases• A stator can be described as having P phases and N=kP poles.• Rotating phases Q degrees rotates field Q/k degrees• ws = kwm

• Number or rotor poles may differ to reduce “camming”

EE155/255 Lecture 7 - Motors

Page 62: EE155/255 Green Electronics - Stanford University

EE155/255 Lecture 7 - Motors

Page 63: EE155/255 Green Electronics - Stanford University

EE155/255 Lecture 7 - Motors

Page 64: EE155/255 Green Electronics - Stanford University

Summary• Motors and generators ubiquitous• Voltage is velocity, current is torque

– V = KMw, t = KMi = IM(dw/dt) • Load curve and transient response• Control motor with PWM

– Buck converter during drive– Boost during braking (gen)

• BLPM requires rotating field– Determine rotor angle– Apply stator current for perpendicular fields– In rotor reference field looks just like a brushed motor

• AC Induction motors– Torque is function of slip– Equivalent circuit

• Multiple poles– ws = kwm

LM RM

V =KVB

+

-

=K iM+-

iM

LM RM

V =KVB

+

-

iMCM = IMK KE

RL = KF/K

+

-

Anguar Velocity (rad/s)

Torq

ue

(N

m)

0

max

max

48V34AH

RCSF1

C1

A

A

B

B

C

C

A B C

s = ωs −ωr

ωs Stator Field

RotorField

EE155/255 Lecture 7 - Motors

LS RS

VM

+

-

iM

LM

LR

RR

RR1-ss

Page 65: EE155/255 Green Electronics - Stanford University

YAH

No Date Topic HWout HWin Labout Labck Lab HW1 9/25/17 Intro(basicconverters) 1 1 IntrotoST32F3 PeriodicSteadyState2 9/27/17 EmbeddedProg/PowerElect.3 10/2/17 PowerElectronics-1(switches) 2 1 2 1 ACEnergyMeter PowerDevices4 10/4/17 PowerElectronics-2(circuits)5 10/9/17 Photovoltaics 3 2 3 2 PVMPPT MotorcontrolMatlab6 10/11/17 FeedbackControl7 10/16/17 ElectricMotors 4 3 4 3 Motorcontrol-Lab/ Feedback8 10/18/17 IsolatedConverters9 10/23/17 SolarDay 5/PP 4 5 4 PS IsolatedConverters10 10/25/17 Magnetics11 10/30/17 SoftSwitching 6 5/PP 6 5 Magnetics MagneticsandInverters12 11/1/17 ProjectDiscussions13 11/6/17 Inverters,Grid,PF,andBatteries 6 P 6 Project14 11/8/17 Thermal&EMI15 11/13/17 QuizReview C116 11/15/17 Grounding,andDebuggingQ 11/15/17 Quiz-intheevening

11/20/17 ThanksgivingBreak C211/22/17 ThanksgivingBreak

17 11/27/17 GuestLecture18 11/29/17 MartinFornage-Enphase C319 12/4/17 ColinCampbell-Tesla20 12/6/17 NoClass

TBD Projectpresentations P12/15/17 Projectwebpagedue