Top Banner
1 EE C245 – ME C218 Fall 2003 Lecture 27 EE C245 - ME C218 Introduction to MEMS Design Fall 2003 Roger Howe and Thara Srinivasan Lecture 27 Micromechanical Resonators II 2 EE C245 – ME C218 Fall 2003 Lecture 27 Today’s Lecture MEMS resonators for telecommunications: motivation Electrical feedthrough and its suppression Shielding techniques Electromechanical amplitude modulation (EAM) technique Reducing the motional resistance Scaling resonators for high frequencies (10 MHz to > 1 GHz) Mass reduction NEM resonators Stiffness increase bulk acoustic modes Fabrication technologies for integrating MEMS resonators with CMOS Integration by batch transfer Monolithic processes Reading/reference list: see Lecture 26
14

EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

Jul 31, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

1

EE C245 – ME C218 Fall 2003 Lecture 27

EE C245 - ME C218Introduction to MEMS Design

Fall 2003

Roger Howe and Thara SrinivasanLecture 27

Micromechanical Resonators II

2EE C245 – ME C218 Fall 2003 Lecture 27

Today’s Lecture

• MEMS resonators for telecommunications: motivation

• Electrical feedthrough and its suppressionØ Shielding techniquesØ Electromechanical amplitude modulation (EAM) techniqueØ Reducing the motional resistance

• Scaling resonators for high frequencies (10 MHz to > 1 GHz)Ø Mass reduction à NEM resonatorsØ Stiffness increase à bulk acoustic modes

• Fabrication technologies for integrating MEMS resonators with CMOSØ Integration by batch transfer Ø Monolithic processes

• Reading/reference list: see Lecture 26

Page 2: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

2

3EE C245 – ME C218 Fall 2003 Lecture 27

Motivation for BSAC-BWRC RF MEMS Research (2001 – Present)

• 100 X power reduction over CMOS sensor node transceivers (to 1-5 nJ bit)Ø Power ≤ 100 µW average à indoor solar or ambient

mechanical energy scavenging

• Prof. Jan Rabaey, BWRCØ FBARs + 0.13 µm CMOS + chip-on-board à

demo new transceiver concepts

• Profs. Roger Howe, Tsu-Jae King, Roya Maboudian, Al PisanoØ Poly-SiGe and Poly-SiC MEMS technologies for arrays of MEMS

resonators at frequencies circa 1 GHz.

Integrated Microwatt Transceiver,DARPA MTO, NMASP Program

4EE C245 – ME C218 Fall 2003 Lecture 27

“Analog OFDM” Subsampling Transceiver using Nanomechanical (NM) Filters

fclock

Rejects non-linear LNA components Shapes LNA thermal noise Selects System Frequency Bands

Prefilter: micro-machined LC passive

RF Filter (Low Q)

A

D LNA

NM Filter

NM Filter

NM Filter

Need a range of bandpass filter frequencies

Page 3: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

3

5EE C245 – ME C218 Fall 2003 Lecture 27

Electrical Feedthrough

+

-vd(t)

≈ is(t)+ - R

f

Probe Tip

vo(t)

is (t) + if (t)

What is the origin of the feedthroughcurrent if(t)?

Poly0 probe pad

6EE C245 – ME C218 Fall 2003 Lecture 27

Electrical Equivalent Circuit: Ideal Case

+

vd

Lx Cx Rx

Co Cint

structure node - -

+

is

drive Co

Rint

Cint

Rint

sense

Cf if

* Assumes that structure node (poly0 “ground plane” layer) and conducting layer underneath poly0 interconnect to probe padare shorted together

Interconnect (poly0)Interconnect (poly0) Core comb-drive resonator

Page 4: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

4

7EE C245 – ME C218 Fall 2003 Lecture 27

Obvious Feedthrough Paths

Cf

* Direct probe-probe feedthrough can be 30 fF for closely spacedprobes: suppress by using coaxial probes

* If chip is packaged, then there are direct feedthrough paths betweenbond wires or between pins on the package

8EE C245 – ME C218 Fall 2003 Lecture 27

Substrate Feedthrough PathsCase 1. Substrate is grounded on back of chip (through probe station chuck)

+

-vd

resonatorif

silicon substrateRs

Cp Cp

neglect lateralresistances

Circuit model is an approximation using lumped elements

Page 5: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

5

9EE C245 – ME C218 Fall 2003 Lecture 27

Substrate Feedthrough Analysis

+

-Vd Rs

jωCp

1jωCp

1

If

dps

psf V

CRj

CRI

)2(1

22

ω

ω

+

−=

10EE C245 – ME C218 Fall 2003 Lecture 27

Substrate Feedthrough Example

Substrate resistance Rs = 1 kΩ

Probe-pad capacitance Cp = 1 pF

|If /Vd|

ω101 102 103 104 105 106 107

ωRsCp << 1 for ω < 108 rad/s

dpsf VCRI 22ω−≈

10-5

10-7

10-9

10-11

10-13

Page 6: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

6

11EE C245 – ME C218 Fall 2003 Lecture 27

100 kHz Comb-Drive Resonator in Air

Drive voltage vd(t) = 5 V cos(ωt)

Feedthroughcurrent if(t) = -(2π x 105 )2 (10-19)(5) cos(ωt)= -197 nA cos(ωt)

Typical motional current is(t) = 4 nA cos(ωt) << if(t)

How can the feedthroughcurrent be reduced?

12EE C245 – ME C218 Fall 2003 Lecture 27

Feedthrough ReductionCase 2. Substrate is grounded on the top of the chip (through a metal

interconnect to ground)

+

-

vd

resonator

if

silicon substrateRs

Cp Cp

optional heavily doped layer

Top contacts to ground greatly minimize equivalent Rs àminimize feedthrough current

RlatRlat

Page 7: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

7

13EE C245 – ME C218 Fall 2003 Lecture 27

Electromechanical Amplitude Modulation (EAM)

Clark Nguyen, Ph.D., EECSDept., UC Berkeley, 1994

14EE C245 – ME C218 Fall 2003 Lecture 27

EAM Circuit Implementation

Clark Nguyen, Ph.D., EECSDept., UC Berkeley, 1994

Page 8: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

8

15EE C245 – ME C218 Fall 2003 Lecture 27

Spectrum of EAM Sense Current

Clark Nguyen, Ph.D., EECSDept., UC Berkeley, 1994

16EE C245 – ME C218 Fall 2003 Lecture 27

Demodulation of EAM Sense Current

ω

ω

ωClark Nguyen, Ph.D., EECSDept., UC Berkeley, 1994

Page 9: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

9

17EE C245 – ME C218 Fall 2003 Lecture 27

Reducing the Motional Resistance

21 ηQkm

Rx =

Increase Q, increase electromechanical coupling coefficient η2

2

∂∂

=xC

VPη

xC

∂∂

is higher for || plate capacitors à shrink gap g

18EE C245 – ME C218 Fall 2003 Lecture 27

Increasing the Resonant Frequency

mk

=ω →

option 1. mass à zero

Michael Roukes, Caltech

Motivation: NEM resonator as a sensitive probe of phonontransitions near absolute zero.

Page 10: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

10

19EE C245 – ME C218 Fall 2003 Lecture 27

Increasing the Resonant Frequencyoption 2. spring rate à ∞

Clark Nguyen, Michigan

Motivation: keep mass as large as possible in order to improve precision of fab, power handling

IEEE IEDM 2000.

20EE C245 – ME C218 Fall 2003 Lecture 27

1.14 GHz Poly-Si Disk Resonator

Transducers ’03, Boston

* Note Q in vacuum and in air is the same: little energy loss to ambient; however,energy loss through anchor (“stem ”) is significant

* EAM-like technique is used to extract the motional current.

Page 11: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

11

21EE C245 – ME C218 Fall 2003 Lecture 27

Reducing the Motional Resistance

M. Demirci (Michigan),Transducers ’03, Boston

Mechanical coupling leads to a degenerate mode à lower Rx.

22EE C245 – ME C218 Fall 2003 Lecture 27

Silicon-on-Insulator Platform Transfer

Clark Nguyen,Univ. of Michigan,Transducers 01.

Page 12: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

12

23EE C245 – ME C218 Fall 2003 Lecture 27

SEM of Platform Prior to Transfer

Clark Nguyen, Univ. of Michigan, Transducers 01.

24EE C245 – ME C218 Fall 2003 Lecture 27

Transferred Platform on RF Circuit

Clark Nguyen, Univ. of Michigan, Transducers ‘01.

Page 13: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

13

25EE C245 – ME C218 Fall 2003 Lecture 27

Quality Factor Degradation

Clark Nguyen, Univ. of Michigan, Transducers ‘01.

26EE C245 – ME C218 Fall 2003 Lecture 27

Resonators in the Metal Stack

J. Lund (IBM Research), Hilton Head 2002.

Page 14: EE C245 - ME C218 Introduction to MEMS Design Fall 2003 · EE C245 – ME C218 Fall 2003 Lecture 27 Reducing the Motional Resistance M. Demirci (Michigan), Transducers ’03, Boston

14

27EE C245 – ME C218 Fall 2003 Lecture 27

Poly-SiGe Integrated RF MEMS

RESDrive Electrode Sense Electrode

Microshell Encapsulation(anchors not shown)

DC Bias toResonator

Shielded Interconnectto Drive Electrode Shielded

Vertical SignalPath to Gate ofInput Transistor

5-level metalfoundry CMOS

Poly-SiGe RFMEMS technology

R. T. Howe, T.-J. King, and A. P. Pisano, DARPA MTO NMASP Projects.

28EE C245 – ME C218 Fall 2003 Lecture 27

Why are MEMS Peripheral to the Mainstream of the Industry?

• Answer: because they ARE peripherals

• What is the core of the semiconductor industry?• Computing (microprocessors, memory)

Ø Communications (wired and wireless)

• MEMS RF resonators, RF switches, and RF passivesmay be the breakthrough devices that will finallyget MEMS into the core.