Top Banner
www.nanohub.org NCN EE606: Solid State Devices EE606: Solid State Devices Lecture 9: FermiDirac Statistics Muhammad Ashraful Alam [email protected] Alam ECE606 S09 1
24

EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Mar 18, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

www.nanohub.orgNCN

EE‐606: Solid State DevicesEE‐606: Solid State DevicesLecture 9: Fermi‐Dirac Statistics

Muhammad Ashraful [email protected]

Alam  ECE‐606 S09 1

Page 2: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Carrier Density

Carrier number = Number of states x filling factor

Chapters 2‐3 Chapter 4

Alam  ECE‐606 S09 2

Page 3: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Outline

1) Rules of filling electronic states1) Rules of filling electronic states 

2) Derivation of Fermi‐Dirac Statistics: three techniques

)3) Intrinsic carrier concentration

4) Conclusion

Reference: Vol 6 Ch 4 (pages 96‐105)

Alam  ECE‐606 S09 3

Reference: Vol. 6, Ch. 4 (pages 96 105) 

Page 4: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

E‐k diagram and Electronic States

Energy‐Band Density of States

EE

2 3

22

−*

cm m* E E2 32π

E

E3

E1

E2

kaπ

− g(E)

Alam  ECE‐606 S09 4

Page 5: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Rules for filling up the States

E3E2

3

E11

Pauli Principle:  Only one electron per state

Total number of electrons is conserved T iiN N=∑

Total energy of the system is conserved

T ii∑T i ii

E E N=∑

Alam  ECE‐606 S09 5

Page 6: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Outline

1) R l f l i l t i t t1) Rules of placing electronic states 

2) Derivation of Fermi‐Dirac Statistics: three techniques

3) Intrinsic carrier concentration

4) Conclusion

In 1926, Fowler studied collapse of a star to white dwarf by F‐D statistics, before Sommerfeld used the F‐D statistics to develop a theory of 

Alam  ECE‐606 S09 6

electrons in metals in 1927. Wikipedia has a nice article on this topic. 

Page 7: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Illustrative Example: 3 Energy Levels

T iiN N=∑ T i ii

E E N=∑NT=5 and ET=12

E=2

E=4

E=0

E 2

2035!

0!5!2!

1!27!

3!5

4!3

!W = • •

=

1225!

2!3!72!

1!1!

5!2!!420

W = • •

=

0415!

4!1!2!

0!27!

6!5

1!3

!W = • •

=

Alam  ECE‐606 S09 7

53= 420= 53=

Page 8: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Occupation Statistics

E=4

E=0

E=2

E=4

E=0

122 420W = 041 35W =203 35W =

(E) Choose the most 

probable configuration

W ( probable configuration.

Alam  ECE‐606 S09 8

2,0,3          1,2,2           0,4,1

Page 9: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Occupation Statistics

E=4 * 2f = E

E=0

E=2

E=4 3

*2

725

f

f

=

=

E

E=0

122 420W =*

1 21f =

f(E)

(E)

W (

Alam  ECE‐606 S09 9

2,0,3 1,2,2 0,4,1

Page 10: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

For N‐states

Ni

lnWSi

!iSW =∏

2,0,3  1,2,2   0,4,1

5!2! 7!WR ll( )! !ci i i i

WS N N

=−∏ 203 0!51 ! 3!4!!2!

= • •WRecall. 

[ ]ln( ) ln ! ln( )! ln != − − −∑W S S N N

[ ]ln ( ) ln( ) ( ) ln− − − − + − − +∑ i i i i i i i ii i i ii

NS S S N N NS NS N SStirling approx.

[ ]ln( ) ln ! ln( )! ln !=∑ i i i ii

W S S N N

10

[ ]ln ( ) ln( ) ln= − − − −∑ i i i i i i i ii

S S S N S N N N

Page 11: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Optimization with Lagrange‐Multiplierh hChoose the most 

probable configuration.

lnWlnln( ) ii i

WW dNN

δ ∂=

∂∑configurations

i

ln 1ii i i i

S dN dN E dNN

α β⎡ ⎤⎛ ⎞

− − −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑

l 1iS E dNβ⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟∑

T i iiE E N=∑

i i iiN⎢ ⎥⎝ ⎠⎣ ⎦∑ ∑ ∑

ln 1ii i

i i

S E dNN

α β⎛ ⎞

= − − −⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑T ii

N N=∑

i∑

Alam  ECE‐606 S09 11

i

Page 12: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Final steps …

ln 1 0ii

S EN

α β⎡ ⎤⎛ ⎞

− − − =⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠ E

1iN

iiN

β⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

E

EF1( )1 α β+≡ =+

iE

i

Nf ES e

1f(E)

fmax(E)=1EF

1At , ( ) 02FF FE f EE Eα β= ≡ ⇒ + =

1( ) iNf E1

( )1( )

1 F

iE

iE

Nf ES eβ −

= =+

/A ( ) E k Tf A

( ) /1 BFE kE Te −=

+

Alam  ECE‐606 S09 12

Bk Tβ⇒ =/At , ( ) BE k T

BoltzmanE f E Ae−→ ∞ =

Page 13: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Derivation by Detailed Balance

E 0

E=2E=4

0 1 0 2 0 3 0 4( ) ( )[1 ( )][1 ( )]0

f E f E f E f EA⎧ ⎫− − −⎪ ⎪⎨ ⎬

E=0

0 1 0 2 0 3 0 4

0 3 0 4 0 1 0 2

( ) ( )[ ( )][ ( )]0

( ) ( )[1 ( )][1 ( )]f f f f

Af E f E f E f E

⎪ ⎪ =⎨ ⎬− −⎪ ⎪⎩ ⎭

1 E1 + E2 = E3 + E4 Only solution is …. 0 ( )

1( )1 β −=+ FE Ef E

e

Alam  ECE‐606 S09 13

Pauli Principle, energy, and number conservation all satisfied

Page 14: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Derivation by Partition Function

β β− − − −F Fiiii( E ) ( E )NE E Ne eP β− −= ≡∑ i i Fi ( E N E )

i

e ePe Z

E=2E=4

E=0 1β = Bk T

( )0000 0 β− − × F

i i i

E

state E N P

e Z( )1

00

11

0

1 β− − ×i FE E

e Z

e ZEi

Alam  ECE‐606 S09 14

Page 15: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Derivation by Partition Function1

( )0000 0 β− − × F

i i i

E

state E N P

e Z

1

( )111 1 β− − ×i FE Ee Z

( ) 1

0 1

=+Pf E

P PProbability that state is filled ….

E 0 1

1

− −

− −=i F B

i F B

( E E ) / k T

( E E ) / k T

e / Z/ Z / Z1

f(E)

EF

E

1 + i F B( E E ) / k T/ Z e / Z1

1 −= ( E E ) / k T

11/2f(E)

F

Alam  ECE‐606 S09 15

1 −+ i F B( E E ) / k TeEFE

1 )1/2

Page 16: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Few comments on Fermi‐Dirac Statistics

Applies to all spin‐1/2 particles

Information about spin is not explicit; multiply DOS by 2Information about spin is not explicit; multiply DOS by 2. May be more complicated for magnetic semiconductors. 

C l b i t ti ti l i l t dCoulomb‐interaction among particles is neglected,Therefore it applies to extended solids, not to small molecules 

Alam  ECE‐606 S09 16Lx

Page 17: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Outline

1) Rules of placing electronic states1) Rules of placing electronic states 

2) Derivation of Fermi‐Dirac Statistics: three techniques

3) I i i i i3) Intrinsic carrier concentration

4) Conclusion

Alam  ECE‐606 S09 17

Page 18: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Carrier Distribution 

( )1 f E ( ) ( )tE

∫DOS F‐D concentration

E

E

( )1 f E− ( ) ( )top

c

E

cEn g E f E dE= ∫E E

( )cg EFE

( )g E

cE( ) ( )cg E f E

( ) ( )1g E f E⎡ ⎤−⎣ ⎦Eυ( )g Eυ

( )f E

( ) ( )1g E f Eυ ⎡ ⎤⎣ ⎦

1

( ) ( )1bot

E

Ep g E f E dEυ

υ ⎡ ⎤= −⎣ ⎦∫

18

Page 19: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Electron Concentration in 3D solids

( ) ( )= ∫top

c

E

cEn g E f E dE

( )( )2 3

2 122 1 βπ −

−= ×

+∫top

F

* *E n n C

E EE

m m E EdE( )2 1 βπ +∫ FcE e

( )2 1∞ −∫

*Cn

*nm m

dEE E

( ) ( )2 3 1 β βπ − −+∫ c Fc cE E EE E dEe e

( ) ( )1 22 η η β= ≡ −FC CF EN E

3 22 * dmπ β ξ ξ∞⎛ ⎞

( ) ( )1 2 η η βπ c c FC CF EN E

Alam  ECE‐606 S09 19

( )2 1 20 1

22 nC

dF

emNh ξ η

π β ξ ξη −=

⎛ ⎞≡ ⎜ ⎟

⎝ ⎠ +∫

Page 20: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Boltzmann vs. Fermi‐Dirac Statistics

( ) ( )1 22 3ηη η βπ

= → − ≡ − >cC c C c C Fn N F N e if E E

ηce( )ηF

( ) ( )f

( )1 2 ηcF

( ) ( )cg E f E

( ) ( )1g E f Eυ ⎡ ⎤−⎣ ⎦FE

Alam  ECE‐606 S09 20

Page 21: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Effective Density of States

( )2 E Eβ( ) ( )1 2

2 3c FE EC c C c Fn N F N e if E Eβη β

π− −= → − >

( ) ( )fCN

( ) ( )cg E f E

( ) ( )1g E f Eυ ⎡ ⎤−⎣ ⎦ VNFE

FE

V

As if all states are at a single level E

Alam  ECE‐606 S09 21

As if all states are at a single level EC

Page 22: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Law of Mass‐Action

( )β− −= c FE En N e

( )β+

= C

E E

n N e

( )β+ −= v FE EVp N e

FE

( )β

β

− −× = c vE EC V

E

n p N N eβ−= gE

C VN N e

Alam  ECE‐606 S09 22

Page 23: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Fermi‐Level for Intrinsic Semiconductors

2 β

= = i

E

p nn

2βEFE

2 β−= gV

Ei C Nn eN

2β−=

gEi

F

V

i

Cn eE

NE

N≡F iE E

( ) ( )β β− − + −= ⇒ =c i v iE E E En p e eNN E

12 2β

= ⇒ =

= +Gi

V

VCn p e eEE ln

NN

N

N

3

Alam  ECE‐606 S09 23

2 2β CNk

2

Page 24: EE-606: Solid State Devices Lecture 9: Fermi-Dirac - nanoHUB

Conclusions

We discussed how electrons are distributed in electronic states defined by the solution of Schrodinger equationstates defined by the solution of Schrodinger equation. 

Since electrons are distributed according to their energy,irrespective of their momentum states, the previously developed concepts of constant energy surfaces, density of states etc. turn out to be very useful.y

We still do not know where EF is for general semiconductors … If we did we could calculate electron concentrationIf we did, we could calculate electron concentration. 

Alam  ECE‐606 S09 24