Top Banner
193

Edexcel Maths M1

Nov 03, 2014

Download

Documents

MiSty

Edexcel Maths M1 Student Book
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

CChhaapptteerr 22 AAnnsswweerrssExercise 2A 1 20 m s12 1.6 m s23 0.625 m s24 26 m5 20 m s16 6 m s1 in direction 7 a 9 m s1b 72 m8 a 3 m s1b m s29 a 9.2 m s1b33.6 m10a 18 km h1b312.5 m11a 8 s b 128 m12a 0.4 m s2b 320 m13a 0.25 m s2b 16 s c 234 m14a 19 m s1b 2.4 m s2c 430 m15a x = 0.25 b 150 m16b 500 mExercise 2B 1 7 m s12m s23 2 m s24 8.5 m s15 2.5 s6 0.175 m s27 a 2.5 m s2b 4.8 s8 a 3.5 m s1b 15.5 m s19 a 54 m b 6 s10a 90 m b 8.49 m s1 (3 s.f.)11a 3.3 s (1 d.p.) b 16.2 m s1 (1 d.p.)12a 4, 8 b t = 4: 4 m s1 in direction, t = 8: 4 m s1 in direction 13a 0.8, 4 b 15.0 m s1 (3 s.f.)14a 2 s b 4 m15a 0.34 m s1b 25.5 s (3 s.f.)16 a P: (4t + t2) m Q: [3(t 1) + 1.8(t 1)2] mb t = 6 c 60 mExercise 2C1 10 m2 3.2 s (2 s.f.)3 1.8 m (2 s.f.)4 4.1 s (2 s.f.)5 41 m (2 s.f.)6 a 29 m (2 s.f.) b 2.4 s (2 s.f.)7 a 5.5 m s1 (2 s.f.) b 20 m s1 (2 s.f.)8 a 40 m s1 (2 s.f.) b 3.7 s (2 s.f.)9 a 39 m s1b 78 m (2 s.f.)10 4.7 m (2 s.f.)11a 3.4 s (2 s.f.) b 29 m (2 s.f.)12 2.8 s (2 s.f.)13a 29 (2 s.f.) b 6 s14 30 m (2 s.f.)15a 5.6 m (2 s.f.) b 3.1 m (2 s.f.)18 a 1.4 s (2 s.f.) b 7.2 m (2 s.f.)Exercise 2D1 a 2.25 m s2b 90 m2 a b 360 m3 a 0.4 m s2b158m s2c 460 m4 ab 2125 m5 ab 100 s6 a 0.8 m s2b 1960 m7 ab T = 320 c 3840 m8 ab 60 sc9 a b m s21011ab 720 m12ab T = 12cExercise 2E1 2 m s22 1.9 s (2 s.f.)3 u = 84 a 23 m (2 s.f.) b 2.1 S (2 s.f.)5 a 28 m s1b 208 m6 0.165 m s2 (3 d.p.)7 a8 ab 315 m c 30 s8 a 4.1 s (2 s.f.) b 40 m s1 (2 s.f.) c air resistance9 a 8 m s1b 1.25 m s2c 204.8 m10a 33 m s1 (2 s.f.) b 3.4 s (2 s.f.)11a 60 m b 100 m12ab75m s2c13a u = 11 b 22 m14ab 230 mc15 1.2 s (2 s.f.)16a 50 s b 24.2 m s1 (3 s.f.)17 h = 39 (2 s.f.)18a 32 m s1b 90 m c 10 s19ab 180 m20ac x = 0.2 d 3 km e 125 sCChhaapptteerr 33 AAnnsswweerrssExercise 3A 1 39.2 N2 50 kg3 112 N4 4.2 N5 0.3 m s26 25 kg7 a 25.6 N b 41.2 N c P is 34 N, Q is 49 N8 a 2.1 kg (2 s.f.) b 1.7kg (2 s.f.)c 0.22kg (2 s.f.)9 a 5.8 m s2b 2.7 m s2c 2.7 m s210a 31.2 N b 39.2 N c 41.2 NExercise 3B1 2.3 N (2 s.f.)2 0.35 N3 a 0.9 m s2b 7120 N c 8560 N4 2.25 N5 a 0.5 m s2b 45 N6 a 4 m s2b 800 N7 a 708 N b 498 Nc She feels lighter.8 a 32 s b 256 mc Air resistance unlikely to be constant.9 a 1.5 m s2b 60 kg c 40 kg10a 2.9 m (2 s.f.) b 3.6 m s1(2 s.f.)c 2.17 s (3 s.f.)Exercise 3C1 a i 11.3 N (3 s.f.) ii 4.10 N (3 s.f.)b i 0 N ii 5 N c i 5.14 N (3 s.f.) ii 6.13 N (3 s.f.)d i 8.66 N (3 s.f.) ii 5 Ne i 3.86 N (3 s.f.) ii 4.60 N (3 s.f.)fi Fcos N ii Fsin N 2 a i 2 N ii 6.93 N (3 s.f.)b i 8.13 N (3 s.f.)ii 10.3 N (3 s.f.)c i Pcos + Q Rsin ii Psin RcosExercise 3D1 a i 3 N ii F = 3 N and body remains at restb i b7 N ii F = 7 N and body remains at restc i 7 N ii F = 7 N and body acceleratesiii 1 m s2d i 6 N ii F = 6 N and body remains at reste i 9 N ii F = 9 N and body remains at rest in limiting equilibriumfi 9 N ii F = 9 N and body accelerates iii 0.6 m s2g i 3 Nii F = 3 N and body remains at resth i 5 N ii F = 5 N and body remains at rest in limiting equilibriumi i 5 N ii F = 5 N and body acceleratesiii 0.2 m s2ji 6 N ii F = 6 N and body acceleratesiii 1.22 m s2 (3 s.f.)k i 5 N ii F = 5 N and body acceleratesiii 3.85 m s2 (3 s.f.)l i 12.7 N (3 s.f.) ii The body accelerates.iii 5.39 m s2 (3 s.f.)2 a R = 88 N, = 0.083 (3 s.f.)b R = 80.679 N, = 0.062 (2 s.f.)c R = 118 N, = 0.13 (2 s.f.)Exercise 3E1 3.35 m s2 (3 s.f.)2 a 27.7 N (3 s.f.) b 2.12 m s23 a 2.43 m s2 (3 s.f.) b 4.93 m s1 (3 s.f.)4 28 N5 0.20 (2 s.f.)6 0.15 (2 s.f.)7 a 88.8 N (3 s.f.) b 0.24 (2 s.f.)8 a1513gb 23.5 m (3 s.f.) c 2.35 s (3 s.f.)d 12 .4 m s1 (3 s.f.)Exercise 3F1 a 4 N b 0.8 N2 a R = 45 b 100 N3 a 3 m s2b 2500 N4 a 33.6 N (3 s.f.) b 2m5 a 0.613 m s2 (3 s.f.) b 27.6 N (3 s.f.)c 39.0 N (3 s.f.)6 2.8 m s17 a 0.569 m s2 (3 s.f.) b 0.56 mg8 a 1.12 m s2b 4100 N9 a 21.9 N b 0.418 (3 s.f.) c 38 N (2 s.f.)10a 2 m s2b 600 N c 100 mExercise 3G1 30 m s12 2.5 m s13 2.59 N s4 6.5m s15 3 m s1Exercise 3H1 4 m s12 292m s13 4.5 m s14 a 232m s1b 232 N s5 a 1 m s1 and direction unchanged b 15 N s6 107 a32u b 8 mu8 Larger 8 m s1 and smaller 4 m s19 a 3 b29mu10a 3 m s1b 4.511a 4 m s1 in same directionb 3 m s1 in opposite direction12a 3 m s1b 6 kgExercise 3I1 a 0.103 kg b 4.103 kg2 0.14 (2 s.f.)3 a21u = v b 6mu4 a 0.22 m (2 s.f.) b2514gc 1.1 m s1 (2 s.f.)5 0.12 (2 s.f.)6 a 9.8 N b 9.8 N7 a 14 m s1b335m s1c 0.75 m (2 s.f.)8 a31 g b 3.6 m s1 (2 s.f.) c 232md iacceleration both masses equalii same tension in string either side of pulley9 a 540 N b 180 Nc 450 N10 1000 N vertically downwards11a 2000 b 36 m12a 1.75 m s1b 0.45 N s13a 2.5 m s1b 15 000 N s14a 0.7 m s1b unchanged c 8.25 N s155416a 1.25 m s1b 0.77 (2 s.f.)17 0.44 (2 s.f.)18a 1.3 N (2 s.f.) b 19 m (2 s.f.)1928520a 830 N (2 s.f.) b 1500 N (2 s.f.) c 1700 N (2 s.f.)d Air resistance would reduce speed of lift as it falls and so impulse would be reduced.21a 18 N (2 s.f.) b 0.12 m s2 (2 s.f.)22a 243 N (3 s.f.) b 3.08 m s2 (3 s.f.)c 36.7 m (3 s.f.)23a 7.5 m s1b 11 000 (2 s.f.)c R could be modelled as varying with speed.24a712g N b 1.225a 3.2 m s2b 5.3 N (2 s.f.) c 0.75 (2 s.f.)d The information that the string is inextenible has been used when, in part c the acceleration of A has been taken as equal to the acceleration of B obtained in part a.26a 18 N (2 s.f.) b 2 c 4.2 N s d72sRReevviieeww EExxeerrcciissee 11 1ms v6O 3 11 s t 1ms v30O 2 s tO 1ms v75 s t24T1tT 4T 50 1ms v20O s t 1ms v16 1ms v25O 20 140 s tExercise A 1 a 1.12 m s2b 31.25 s2 a 3.6 m s2b AC = 760 m BC = 440 m3 a 14.4 b 36 m s14 a 0.5 m s2b 7.5 m s15= 6 m s1 (3 s.f.)7 a 24 b OA = 96 m c 4 s and 12 s8 a 2.5 m s2b 31.7 m s1 (3 s.f.)c 1.69 s (3 s.f.)9 a 6t t2b 7 m c t = 510 a 34 (2 s.f.) b 60 m (2 s.f.)11 a 28 m s1b 5.7 s (2 s.f.)12 2 or 413 a 14 (2 s.f.) b 23 m s1 (2 s.f.)14 10 m (2 s.f.)15 a 28 b 4s16 ab 33 m17 ab 18 s18 a constant acceleration b constant speedc 30.5 m19 ab 0.48 m s2c 250 d 375 s20 ab 8 c 2.5 m s221 a 162 m b 6.2 c 0.56 m s222 a 185 s b 2480 mc23 ab 200 s c 60 s d 50 m s12t 20 O s t1t 1ms v3024O T 60 s tBA1t 1ms v10O312 27 s t 2ms aO38712 s t12 27 35O140501080 220 s t 1ms v128O6 Tbuscycle 1ms v6030O 12 40 64 T s tTrain A Train B1tO 1ms v15T s t34T2t240 4t 1ms v3010240 s tOt 3tT24 ab 10 s c 3425 ab 78 m c 35 sd26 a 1ms vb 5400 m c112 s27 a bus has not overtaken cyclistb s t28 ab 9829 ab 96 s c m s230 ab c 800 m31 66 m s132 a 13 m s1b 2 m s1 in direction 33 6.3 N34 a 2.25 m s1 direction of motion unchangedb 1.5 N s35 a 2.4 m s1 b due west c 3000 kg36 a A2.2 m s1B3 m s1 b 0.4 N sc 1.6 N s37 a 3 m s1 b i m = 3.6 ii 18 N s38 750 N39 a 0.42 N b 2.540 a 2.45 m s2 b 0.2541 0.30 (2 s.f.)42 0.37 (2 s.f.)43 a 3 m s2 b 14.8 m s1(3 s.f.) c 0.1 kgd 3.06 s (3 s.f.)44 a 8.6 m s1 b 24 m c 79.2 m45 520 (2 s.f.)46 a 0.693 m s2 (3 s.f.)b 7430 N(3 s.f.)c 28 kN (2 s.f.)47 a 3.6 m s2b 0.75(2 s.f.) c14 m (2 s.f.)48 a 0.35 (2 s.f.)b normal reaction unchanged hence friction force unchangedc 1500 N (2 s.f.)49 a 15 m s1 b 991(3 s.f.)50 a 22.4 b 4.64(3 s.f.) c 6380 (3 s.f.)d Consider air resistance due to motion under gravity51 a 4.2 m s2 b 3.4 N(2 s.f.) c 2.9 m s1 (2 s.f.)d 0.69 s (2 s.f.)52 a 1.4 m s2b 3.4 N(2 s.f.), 4.2 N53 a i 1050 N ii 390 Nb 3 m s54 a 2.2 m s2(2 s.f.) b 22 N(2 s.f.)c 4.4 m(2 s.f.)55 a mg b 0.693(3 s.f.)c mg vertically downwards56 a 1.2 m s2 b 16 Nc The information that the string is inextensible has been used in assuming that the accelerations of P and Q, and hence of the whole system, are the same.d 3 se 20 m s1

57 a 1.0 m (2 s.f.) b 17 N (2 s.f.)c 26 N, direction bisecting angle ABCd 0.55 (2 s.f.)58 a 11 500 N b 6.2 m s2 c 3700 Nd 31 m s1(2 s.f.)59 a 0.24 6.2 m s2 b 530 N (2 s.f.) c 54 md normal reaction of the road on the car is increased when the towbar breaks80T NT NR NBCChhaapptteerr 44 AAnnsswweerrssExercise 4A 1 a Q 5cos30 = 0b P 5sin30 = 0c Q = 4.33 N P = 2.5 N2 a Q Pcos60 = 0b Psin60 43 = 0c Q = 4 N P = 8 N3 a 9 Pcos30 = 0b Q + Psin30 8 = 0c Q = 2.80 N P = 10.4 N4 a 9 Pcos30 = 0b Q + Psin30 8 = 0c Q = 2.80 N P = 10.4 N5 a 4cos45 + Pcos 7 = 0b 4sin45 Psin = 0 c = 34.1 P = 5.04 N6 a 6cos45 2cos60 Psin = 0b 6sin45 + 2sin60 Pcos 4 = 0c = 58.7 P = 3.80 N7 a Pcos + 8sin40 7cos35 = 0b Psin + 7sin35 8cos40 = 0c = 74.4 (allow 74.3) P = 2.20 (allow 2.19)8 a 9cos40 + 3 Pcos 8sin20 = 0b Psin + 9sin40 8cos20 = 0c = 13.6 P = 7.36 9 a Pcos30 Qcos 45 8cos45 = 0b Psin 30 + Qsin45 8sin45 4 = 0c P = 11.2 (3 s.f.)Q = 5.73 (3 s.f.) 10a Qcos60 Pcos 60 + 5sin45 6sin45 = 0b Psin 60 + Qsin60 5cos45 6cos45= 0c P = 3.784 NQ = 5.198 N 11a Q 10sin45 = 0b P 10cos45= 0c P = 7.07 NQ = 7.07 N 12a Q + 2cos60 6sin60 = 0b P 2sin60 6cos60= 0c P = 4.73Q = 4.20 13a 8sin30 Qcos30 = 0b P Qsin30 8cos30= 0c P = 9.24 NQ = 4.62 N 14a 8cos45 10sin30 Q = 0b P + 8sin45 10cos30= 0c P = 3.00 NQ = 0.657 N 15a 2 + 8sin30 Pcos = 0b 4 8cos30 + Psin = 0c = 26.0 P = 6.68 N Exercise 4B1 34.7 N2 a 20 N b 1.773 14.44 S = 30.4 or 30.5, T = 43.05 a 5.46 N b 0.762 kg6 a 1.46 b 55g7 a 3 N b 2 N8 a 2.6 b 4.49 a F = 19.6m, R = 9.8mb F = 17m (3 s.f.), R = 0c P = 11.2 (3 s.f.)Q = 5.73 (3 s.f.) 10 13.9 N11 39.212 37.2 N (3 s.f.)13 F = 12.25, R = 46.6 (3 s.f.)14 P= 20.4 (3 s.f), R = 0.400Exercise 4C1 0.4462 0.1233 a 1.5 N b not limiting4 a 40b The assumption is that the crate and books may be modelled as a particle.5 a 11.9 b 6.406 0.601 (accept 0.6)7 a 13.3 b F = 3.33, X = 9.548 a 9.97 N down the plane b 22.7 Nc 0.4399 a and bX = 44.8 (accept 44.7), R = 51.310 F = 22.1, T = 102 (3 s.f.)11a T = 3.87 b T = 2.7512 0.758Exercise 4D1 = 52.6, T = 24.72 a and bThe weight of the particle is 80 N and the tension in the second string is 69.3 N (3 s.f.).3 a 6.93 (3 s.f.) b 3.46 (3 s.f.)4 a 43 (to nearest degree)b 53 N (to nearest Newton)5 a 138.2 (1 d.p.) b 8.95 (2 d.p.)6 T = 17.3, S = 21.37 R= 20.7, = 0.24 (2 s.f.)8 = 0.296 (3 s.f.)9 36310 1111a 0.577b The book was modelled as a particle.12a W = 11.4 b R = 13.913 2.2 (1 d.p.)14 0.75 (2 d.p.)15 0.262 (3 s.f.)16ab 40.46 c 0.279 (3 s.f.)17a R = 88.3 b P = 74.7c resultant force 9 N down plane and box will move18 11.019 sin cossin cos20a 15.7 (3 s.f.) b 0.62521 0.577 (3 s.f.)22 0.399 (3 s.f.)23a 0.684 (3 s.f.) b 2.33c As 2.425 > 1.596 the ring is not in equilibrium.CChhaapptteerr 55 AAnnsswweerrssExercise 5A 1 6 Nm clockwise2 10.5 Nm clockwise3 13 Nm anticlockwise4 0 Nm5 10 Nm anticlockwise6 11.6 Nm clockwise7 30.5 Nm anticlockwise8 0 Nm9 13.3 Nm clockwise10 33.8 Nm anticlockwiseExercise 5B1 a 5 Nm anticlockwiseb 13 Nm clockwisec 19 Nm anticlockwised 11 Nm anticlockwisee 4 Nm clockwisef 7 Nm anticlockwise2 a 16 Nm clockwiseb 1 Nm anticlockwisec 10 Nm clockwised 7 Nm clockwisee 0.5 Nm anticlockwisef 9.59 Nm anticlockwiseExercise 5C1 a10 N, 10 N b 15 N, 5 Nc 8.6 N, 11.4 Nd 12.6 N, 7.4 N2 a 7.5, 17.5 b 30, 35c 245, 2 d 49, 1.53 0.5 m from B4 59 N5 31 cm from the broomhead6 16.25 N, 13.75 N7 1.71 m8 59m10 2.05 m11a 15 N b rod will tilt c 3.17 mExercise 5D1 2.4 N, 3.6 N2 3.5 m from A3m from 4 a 29.4 N, 118 N b 4.25 mExercise 5E1 a 105 N b 140 N c 1.03 m2 b 0 x < 3 a 40g b x = c i the weight acts at the centre of the plankii the plank remains straightiii the mans weight acts at a single point4 b W = 790 300x c x = 2.53, W = 305 a 200 N b 21 cm6 a 36 kg b 2.2 m7 a 19.6 N b 58 a 588 N bm9 a 125 N b 1.8 mCChhaapptteerr 66 AAnnsswweerrssExercise 6A 1 8.60 km from starting point on bearing of 0542 10 km, 7.2 km on bearing of 3263 7.43 km, 0624 9.13 km, 3405 31.8 km, 2616 174, 328.67 3.01 km, 220Exercise 6B1 a 2b b d c b d 2b e d + b f d + bg 2d h b i 2d + b j b + 2dk b + d l b d2 a 2m b 2p c m d m e p + mf p + m g p +2m h p m i m pj 2m + p k 2p + m l m 2p3 a 2p b 2r c 2p+ 2r d p + re p + r f r g p h 2r + p4 a +b5 a +bExercise 6C1 4i2 5i + 2j3 3i + j4 2i + 3j5 2i j6 3jExercise 6D1 a 6i + 2j b 10i + 8j c 7j d 10i + je 2i + j f 2i 10j g 14i 7j h 8i + 9j2 a 5 b 10 c 13 d 4.47 (3 s.f.)e 5.83 (3 s.f.) f 8.06 (3 s.f.) g 5.83 (3 s.f.)h 4.12 (3 s.f.)3 a 53.1 above b 53.1 below c 67.4 aboved 63.4 above4 a 149 to the right b 29.7 to the rightc 31.0 to the left d 104 to the left5 a = 5 b = 6 a =b = 1 c s = 1 d t = 7 a 3.61 (3 s.f.), 023 b 4.12 (3 s.f.), 104c 3.61 (3 s.f.), 304 d 2.24 (3 s.f.), 243Exercise 6E1 a 5 m s1b 25 km h1c 5.39 m s1d 8.06 cm s12 a 50 km1b 51.0 m c 4.74 km d 967 cm3 a 5 m s1, 75 m b 5.39 m s1, 16.2 mc 5.39 km h1, 16.2 km d 13 km h1, 6.5 kmExercise 6F1 a 8i + 3j b 2i 7j c 17i + 16j d 7i 13j2 a 2i + 5j b i + 3j c 2i + 4j d 2i 5je 2i 5j3 a 6i 8j b 12i + 9j c 4.5i + 6j d 5i + 5je 4i + 6j f 32i 52j g 43i 23jh 35i + 65j4 a 6i + 12j b 7i + 4j c 2i + 6j d 10i 13je 2i 3j, f 4.61 m s1g 4 h 2.55 a 5i + 12j, 13 m s1b 6i 5j, 7.81 m s1c 2i 5j, 5.39 m s1d 3i 2j, 3.61 m s1e 7i + 9j, 11.4 m s16 4.8i 6.4j7 10.1 m8 2.03 m s19 a 2ti + (500 + 3t)j b 721 m10 a 7ti + (400 + 7t)j, (500 3t)i + 15tjb 350i + 750j11 a (1 + 2t)i + (3 t)j, (5 t)i + (2 + 4t)j b5.39 km12 a 121 m s1, 6.08 m s1b 18i 3j c 15i 12jExercise 6G1 a i 8j b 5i + j c 2i + 5j d 3i + 2j2 a 8.06, 82.9 below b 5.10, 169 abovec 5.39, 68.2 above d 3.61, 146 above3 a 6i, 3i m s2b 3i 2j, (i j) m s2c 3i 2j, ( i j) m s2d i 6j, ( i 3j) m s24 a 5.83 N, 59 b 6.32 N, 18.4c 6.40 N, 38.75 a 5.83 N, 3.83 N b 4.39 N, 5.38 Nc 4.20 N, 6.53 N d 14.4 N, 12.7 Ne 4.54 N, 31.9Exercise 6H1 a p = 2, q = 6 b 6.32 N c 182 a (3 + t)i + (10 + t)j b 4.24 km c 16303 a p= 6ti, q = (12 3t)i + (6 + 6t)j b 38.4 kmc 14 a 3 b 10.2 m s2c 168.75 a 4 i + 2j m s2b 22.4 N c 26 m6 a 031 b a= 6ti, b = 3ti + (10 + 5t)jc 1400 d 14567 a 108 b (2 + 9t)i + (4 3t)j c 41, 238 a 124 b (3 2t)i + (2 + 3t)j c 11.2 m s1d 19 a 9.85 m s1b (3 + 4t)i + (2 + 9t)j c 6.5 sd 7.46 m s110 a (5i + 3j) km h1b (10 + 5t)i + (15 + 3t)j, (16 + 12t)i + 26jc 0525RReevviieeww EExxeerrcciissee 221 a 48 b 41.62 a 40.8 b 22.7 N (3 s.f.)3 a 42.9 b 52.8 N (3 s.f.)4 a 35.1 N b 33.0 N (3 s.f.)5 a 26.1 b 51.4 (3 s.f.)6 a 7.5 b 127 a25mgb748 a 86.6 b 1009 47.5 (1 d.p.)10 a 19.9 N b 3.4611 a 23.0 b 17.6c The friction is not limiting and so equilibrium is maintained.12 a 18.7 b 0.60 (2 s.f.)c Equilibrium is maintained and so the parcel does not move.13 a 1.68 b 0.54814 a 257 (3 s.f.) b 12.5 s15 a 131 N b 209 Nc i Friction acts down the slope,. magnitude 0.4Rii No acceleration so net force on package is zero16 a 0.270 b 3.76 m s2 down the plane17 a 125 b 1.46 m s218 5.6 m19 a 88.2 N b 0.875 m20 m21 a 2 b 0.6 m22 a 911 N b 1176 N c 2.25 m23 a 784 N b 0.5 m24 1.6d25 a 50 N b 1.9 m26 a 0.75 b 24 N c 144 Nd The weight of the rock acts precisely at B.27 a 1.25b The weight of the beam acts through its mid-point at C.c 0.4 m28 a 70 N b 120 cm c 3029 a 0.8b The weight acts through the mid-point of the rod.30a i 7.5 kg ii 477.75 Nb Assumed that the centre of mass acts at the point C.31 a 90 X b 2X 30 c 15 X 90d 7532 a Model the plank as a uniform rod.b 240g c 210g33 a 30 kg b 3.6 kgc i plank is uniform so weight acts through mid-point ii rock is a particle so mass of rock acts through end-point A34 a p = 2, q = 6 b 210 or 6.32 (3 s.f.)c 18 (to nearest degree)35 a 7.55 b 14.836 a 14.8 b 144.237 a 63.4 b 2 + 1 = 0 c 4.47 (3 s.f.)38 a 17.5 (1 d.p.) b 66c P = 3i + 12jQ = 4i + 4j39 a 2i + j b 26.6 c 12.6 m40 a 5.83 b 9.4341 a (2i + 6j) km h1b (3i 4j)+ (2i + 6j)tc = 2 d 40 km h142 a 3i 1.5j b 6.71 c 21i 7j43 a 6.5 km h1 (2 s.f) b 337 c 8.5i + 23jd 11i + (17 + 5t)j e 1512 f 4.72 km44 a 6.08 m s1b 3517 c 5i + 32jd 21 m45 a 9.43 m s1b 2i + j + t(5i + 8j) c1.6 sd 4.25 m s1e friction on field so velocity of ball not constant or vertical component of balls motion or time for player to accelerate46 a velocities destroyer: 10i km h1, cruiser: 20j km h1b position vectors destroyer:10ti = d cruiser: 50i +20tj = cc d2 = 500t21000t +2500d as 44.72 > 40 cruiser will not be able to detect destroyer 47 a 031 (to nearest degree)b (3t 10)i + 5tj c 15.20d d2 = 25t260t +100 e 14.24EExxaammiinnaattiioonn SSttyyllee PPaappeerr( )1ms v128O6 15( ) s t39013848O6 15 36( ) s t( ) m sExercise A 1 a14 msb The direction of motion of P has been changed by the collision.c 3.2 N s .2 a 12 3 \N.b 243 ab 36 s. c 4 a34 g .b For A 28 m =c The accelerations of the particles have the same magnitude.5 a 70.9 , to 3 significant figures.b27.46 ms, to 3 significant figures.6 a21ms3.b 2.5 N,to 2 significant figures.c 0.54, to 2 significant figures.7 a 146.b ( ) 8 2 3 t = + s i i j ,6t = r ic 8 T =d 24 2 \km.8 a400 6N6Wx+ | | |\ ..b( ) 600 230xWx=+c W0x2