Top Banner

of 15

Econometrics Mini Assignment

Jun 02, 2018

Download

Documents

meprarth
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Econometrics Mini Assignment

    1/15

    Financial Econometrics

    BU7510

    Course ID: 6898722

    Financial Econometrics Mini Assignment

    Prarthana Ravi Kumar 13315488

  • 8/10/2019 Econometrics Mini Assignment

    2/15

    Problem Statement:

    I aim to analyse the relationship between Daily Prices of Oil and Daily prices of Corn to see if they are

    related to each other and to what magnitude can oil prices predict the price of corn.

    Hypothesis: Oil Prices have a significant influence on Corn prices.

    1. Oil

    1.1. Data

    Data on Oil is represented by daily closing price of NYMEX sweet crude oil composite energy

    future continuation. The oil futures price is the price of a contract to buy British Thermal

    Units of crude oil deliverable at the end of the month. These contracts are rolled over at

    expiry to get prices from September 2013.

    1.2. Plots

    Plotting the series at level and first difference to check for breakages or data errors. The Oil

    data seems to be showing a steady downtrend in the last 100 trading days. First

    differencing shows that there are significant spikes in prices.

    88

    92

    96

    100

    104

    108

    112

    OIL

    4

    3

    2

    1

    0

    1

    2

    3

    Differenced OIL

    1.3. Histogram

    The data is plotted as a histogramto check the distribution. The data is not normally

    distributed.

  • 8/10/2019 Econometrics Mini Assignment

    3/15

    0

    2

    4

    6

    8

    10

    92 94 96 98 100 102 104 106 108 110

    Series: OILSample 1 120Observations 100

    Mean 98.54970

    Median 97.46000Maximum 110.5300Minimum 91.66000Std. Dev. 4.747433Skewness 0.657890Kurtosis 2.522336

    Jarque-Bera 8.164343Probability 0.016871

    1.4. AutocorrelationA Correlogram is plotted to graphically display the autocorrelation relationship. The autocorrelation

    looks significant for a large number of lags, but this could be because of stickiness of the

    autocorrelation at lag 1. The Partial ACF confirms this with insignificant values after lag 1

    The autocorrelation seems insignificant when first differenced. Significance is tested by

    checking if the AC value is greater than +0.196 or less than -0.196. In this case none of the

    lags are greater than 0.196 but the p value is very high. This means that we can say with25% confidence that first lagged autocorrelation is not significant. This is not an acceptable

  • 8/10/2019 Econometrics Mini Assignment

    4/15

    level of confidence.

    1.5. Unit Root

    Checking for Unit roots at level using Dickey Fuller Test

    Null Hypothesis: OIL has a unit rootExogenous: Constant

    Lag Length: 0 (Automatic - based on SIC, maxlag=12)

    t-Statistic Prob.*

    Augmented Dickey-Fuller test statistic -2.103992 0.2436

    Test critical values: 1% level -3.497727

    5% level -2.890926

    10% level -2.582514

    *MacKinnon (1996) one-sided p-values.

    Augmented Dickey-Fuller Test Equation

    Dependent Variable: D(OIL)

    Method: Least Squares

    Date: 02/03/14 Time: 11:41

    Sample (adjusted): 2 100

    Included observations: 99 after adjustments

    Variable Coefficient Std. Error t-Statistic Prob.

    OIL(-1) -0.048545 0.023073 -2.103992 0.0380

    C 4.673909 2.276701 2.052931 0.0428

    R-squared 0.043645 Mean dependent var -0.110707Adjusted R-squared 0.033786 S.D. dependent var 1.108432

  • 8/10/2019 Econometrics Mini Assignment

    5/15

    S.E. of regression 1.089546 Akaike info criterion 3.029395Sum squared resid 115.1498 Schwarz criterion 3.081822

    Log likelihood -147.9550 Hannan-Quinn criter. 3.050607

    F-statistic 4.426782 Durbin-Watson stat 1.984063

    Prob(F-statistic) 0.037965

    We can see that the Test Statistic is not more negative than critical values, so the null hypothesisthat " There are no unit roots in the series" cannot be rejected.

    Performing unit root on the first differenced level, we can see that we can reject the null hypothesis.

    At the first difference level the series is stationary.

    Null Hypothesis: D(OIL) has a unit root

    Exogenous: Constant

    Lag Length: 1 (Automatic - based on SIC, maxlag=12)

    t-Statistic Prob.*

    Augmented Dickey-Fuller test statistic -6.351790 0.0000

    Test critical values: 1% level -3.499167

    5% level -2.891550

    10% level -2.582846

    *MacKinnon (1996) one-sided p-values.

    Augmented Dickey-Fuller Test Equation

    Dependent Variable: D(OIL,2)

    Method: Least Squares

    Date: 02/03/14 Time: 11:48

    Sample (adjusted): 4 100Included observations: 97 after adjustments

    Variable Coefficient Std. Error t-Statistic Prob.

    D(OIL(-1)) -0.934210 0.147078 -6.351790 0.0000

    D(OIL(-1),2) -0.079942 0.101895 -0.784552 0.4347

    C -0.117339 0.113473 -1.034067 0.3038

    R-squared 0.505436 Mean dependent var 0.027835

    Adjusted R-squared 0.494913 S.D. dependent var 1.547158

    S.E. of regression 1.099557 Akaike info criterion 3.058132Sum squared resid 113.6484 Schwarz criterion 3.137762

    Log likelihood -145.3194 Hannan-Quinn criter. 3.090330

    F-statistic 48.03313 Durbin-Watson stat 1.938430

    Prob(F-statistic) 0.000000

  • 8/10/2019 Econometrics Mini Assignment

    6/15

    1.6. Model

    The correlogram profiles shows that the ACF function geometrically decays but the partial ACF hasmany non zero points. This means that this is a pure Autoregressive Order.

    1.6.1. Pure AutoRegressive Model

    Dependent Variable: DOIL

    Method: Least Squares

    Sample (adjusted): 3 100

    Included observations: 98 after adjustments

    Convergence achieved after 3 iterations

    Variable Coefficient Std. Error t-Statistic Prob.

    C -0.133727 0.107125 -1.248325 0.2149

    AR(1) -0.032407 0.101162 -0.320342 0.7494

    R-squared 0.001068 Mean dependent var -0.133878

    Adjusted R-squared -0.009338 S.D. dependent var 1.089766

    S.E. of regression 1.094842 Akaike info criterion 3.039294

    Sum squared resid 115.0731 Schwarz criterion 3.092048

    Log likelihood -146.9254 Hannan-Quinn criter. 3.060632

    F-statistic 0.102619 Durbin-Watson stat 1.929113

    Prob(F-statistic) 0.749405

    Inverted AR Roots -.03

    1.6.2. ARMA(1,1) Model

    Dependent Variable: DOIL

    Method: Least Squares

    Sample (adjusted): 3 100

    Included observations: 98 after adjustments

    Convergence achieved after 13 iterations

    MA Backcast: 2

    Variable Coefficient Std. Error t-Statistic Prob.

    C -0.130707 0.107516 -1.215706 0.2271

    AR(1) -0.201207 0.459320 -0.438053 0.6623

    MA(1) 0.160931 0.474035 0.339491 0.7350

    R-squared 0.004054 Mean dependent var -0.133878

    Adjusted R-squared -0.016913 S.D. dependent var 1.089766

    S.E. of regression 1.098943 Akaike info criterion 3.056708

    Sum squared resid 114.7291 Schwarz criterion 3.135840

    Log likelihood -146.7787 Hannan-Quinn criter. 3.088715

    F-statistic 0.193350 Durbin-Watson stat 1.927546

    Prob(F-statistic) 0.824517

    Inverted AR Roots -.20Inverted MA Roots -.16

  • 8/10/2019 Econometrics Mini Assignment

    7/15

    But the p values for AR(1) and MA(1) are high implying that confidence levels are only about 30-40%.

    Here it shows that Inverted AR and MA roots are significantly lower than 1. This implies that both AR

    and MA parts are stationary and invertible.

    1.6.3.ARMA(1,2)

    Dependent Variable: DOILMethod: Least Squares

    Date: 02/03/14 Time: 21:00

    Sample (adjusted): 3 100

    Included observations: 98 after adjustmentsConvergence achieved after 9 iterations

    MA Backcast: 1 2

    Variable Coefficient Std. Error t-Statistic Prob.

    C -0.135456 0.119048 -1.137828 0.2581

    AR(1) -0.020839 0.101423 -0.205464 0.8376

    MA(2) 0.101433 0.104203 0.973421 0.3328

    R-squared 0.012783 Mean dependent var -0.133878

    Adjusted R-squared -0.008001 S.D. dependent var 1.089766

    S.E. of regression 1.094116 Akaike info criterion 3.047905Sum squared resid 113.7236 Schwarz criterion 3.127037

    Log likelihood -146.3473 Hannan-Quinn criter. 3.079912

    F-statistic 0.615051 Durbin-Watson stat 1.930155

    Prob(F-statistic) 0.542752

    Inverted AR Roots -.02

    1.6.4.ARMA(2,2)

    Dependent Variable: DOIL

    Method: Least Squares

    Date: 02/03/14 Time: 13:32

    Sample (adjusted): 4 100Included observations: 97 after adjustments

    Convergence achieved after 15 iterations

    MA Backcast: 2 3

    Variable Coefficient Std. Error t-Statistic Prob.

    C -0.112930 0.113431 -0.995588 0.3220

    AR(2) -0.683025 0.117444 -5.815770 0.0000MA(2) 0.826784 0.115257 7.173411 0.0000

    R-squared 0.126363 Mean dependent var -0.124845

    Adjusted R-squared 0.107775 S.D. dependent var 1.091733S.E. of regression 1.031226 Akaike info criterion 2.929813

    Sum squared resid 99.96207 Schwarz criterion 3.009443

    Log likelihood -139.0959 Hannan-Quinn criter. 2.962011

    F-statistic 6.798096 Durbin-Watson stat 2.013442Prob(F-statistic) 0.001748

    ARMA(2,2) has the lowest AIC and SBIC values and so we accept ARMA(2,2)

  • 8/10/2019 Econometrics Mini Assignment

    8/15

    1.7. Heteroskedasticity

    Testing for Heteroskedasticity in ARMA(2,2) Model we can see that the F Statistic is notsignificant, suggesting that there is no serial autocorrelation among the error terms in first differencedoil series.

    Heteroskedasticity Test: ARCH

    F-statistic 1.721433 Prob. F(5,86) 0.1383Obs*R-squared 8.369972 Prob. Chi-Square(5) 0.1370

    Test Equation:Dependent Variable: RESID^2

    Method: Least Squares

    Date: 02/03/14 Time: 21:10

    Sample (adjusted): 9 100Included observations: 92 after adjustments

    Variable Coefficient Std. Error t-Statistic Prob.

    C 1.834662 0.335701 5.465162 0.0000

    RESID^2(-1) -0.094398 0.111096 -0.849694 0.3979

    RESID^2(-2) -0.213451 0.110193 -1.937063 0.0560

    RESID^2(-3) -0.234038 0.109978 -2.128055 0.0362RESID^2(-4) -0.037404 0.109696 -0.340978 0.7340

    RESID^2(-5) -0.166391 0.112684 -1.476617 0.1434

    R-squared 0.090978 Mean dependent var 1.082818Adjusted R-squared 0.038128 S.D. dependent var 1.375347

    S.E. of regression 1.348873 Akaike info criterion 3.499409

    Sum squared resid 156.4734 Schwarz criterion 3.663874

    Log likelihood -154.9728 Hannan-Quinn criter. 3.565788F-statistic 1.721433 Durbin-Watson stat 1.976410

    Prob(F-statistic) 0.138260

  • 8/10/2019 Econometrics Mini Assignment

    9/15

    2. Corn

    2.1. Data

    Data on corn is represented by daily closing price of Corn on the Chicago Board of Trade

    commodity futures continuation. The quotes represent the price in US Dollars of a contract

    to buy 5000 bushels of corn at the end of the month.

    2.2. Plot

    The corn prices too show a steady downtrend like that of oil. The first differenced data

    shows less spikes than oil. It is mostly confined between +/-$5.

    10

    20

    30

    40

    50

    60

    70

    80

    90

    CORN

    -30

    -20

    -10

    0

    10

    20

    30

    Differenced CORN

    2.3. Histogram

    The prices of corn appear normal with a left skew.

    0

    2

    4

    6

    8

    10

    12

    14

    410 420 430 440 450 460 470 480

    Series: CORNSample 3 100Observations 98

    Mean 434.0612Median 430.3750Maximum 479.7500Minimum 412.0000Std. Dev. 14.26778Skewness 1.242890Kurtosis 4.582799

    Jarque-Bera 35.46111Probability 0 .000000

  • 8/10/2019 Econometrics Mini Assignment

    10/15

    2.4. Autocorrelation

    Autocorrelation at level is similar to oil series, where the first lag is significant and then the

    significance decays.

    At first differenced level, the significance is reduced.

  • 8/10/2019 Econometrics Mini Assignment

    11/15

    2.5. Unit Root

    Testing using Dickey-Fuller test, we can see that at level , we can reject the null hypothesis

    with a confidence of 99.77%

    Null Hypothesis: CORN has a unit root

    Exogenous: Constant

    Lag Length: 0 (Automatic - based on SIC, maxlag=11)

    t-Statistic Prob.*

    Augmented Dickey-Fuller test statistic -3.981207 0.0023

    Test critical values: 1% level -3.498439

    5% level -2.891234

    10% level -2.582678

    *MacKinnon (1996) one-sided p-values.

    Augmented Dickey-Fuller Test Equation

    Dependent Variable: D(CORN)Method: Least Squares

    Date: 02/03/14 Time: 22:38

    Sample: 3 100

    Included observations: 98

    Variable Coefficient Std. Error t-Statistic Prob.

    CORN(-1) -0.139034 0.034922 -3.981207 0.0001

    C 59.82638 15.18912 3.938764 0.0002

    R-squared 0.141708 Mean dependent var -0.607143

    Adjusted R-squared 0.132767 S.D. dependent var 5.687865

    S.E. of regression 5.296843 Akaike info criterion 6.192296Sum squared resid 2693.428 Schwarz criterion 6.245051

    Log likelihood -301.4225 Hannan-Quinn criter. 6.213634

    F-statistic 15.85001 Durbin-Watson stat 2.123500

    Prob(F-statistic) 0.000133

    At first difference level, the unit root test gives a better results with greater confidence.

    Null Hypothesis: D(CORN) has a unit root

    Exogenous: Constant

    Lag Length: 2 (Automatic - based on SIC, maxlag=11)

    t-Statistic Prob.*

    Augmented Dickey-Fuller test statistic -7.694709 0.0000

    Test critical values: 1% level -3.499910

    5% level -2.891871

    10% level -2.583017

    *MacKinnon (1996) one-sided p-values.

    Augmented Dickey-Fuller Test Equation

    Dependent Variable: D(CORN,2)

    Method: Least SquaresDate: 02/03/14 Time: 22:40

  • 8/10/2019 Econometrics Mini Assignment

    12/15

    Sample (adjusted): 5 100Included observations: 96 after adjustments

    Variable Coefficient Std. Error t-Statistic Prob.

    D(CORN(-1)) -1.485120 0.193005 -7.694709 0.0000

    D(CORN(-1),2) 0.347286 0.147411 2.355898 0.0206D(CORN(-2),2) 0.183560 0.099252 1.849429 0.0676

    C -0.732061 0.569458 -1.285540 0.2018

    R-squared 0.574468 Mean dependent var 0.028646

    Adjusted R-squared 0.560592 S.D. dependent var 8.250348

    S.E. of regression 5.468977 Akaike info criterion 6.276834

    Sum squared resid 2751.694 Schwarz criterion 6.383682

    Log likelihood -297.2880 Hannan-Quinn criter. 6.320024

    F-statistic 41.40004 Durbin-Watson stat 1.985070

    Prob(F-statistic) 0.000000

    2.6. Models

    As per the ACF Functions, the first lag is persistent. The partial ACF is insignificant apart

    from that at lag 1. This usually means that a simple Autoregressive model with lag 1 is

    sufficient.

    2.6.1. AR(1)

    Dependent Variable: DCORN

    Method: Least Squares

    Date: 02/03/14 Time: 22:51

    Sample (adjusted): 3 100

    Included observations: 98 after adjustments

    Convergence achieved after 3 iterations

    Variable Coefficient Std. Error t-Statistic Prob.

    C -0.605620 0.525980 -1.151412 0.2524

    AR(1) -0.093248 0.101519 -0.918531 0.3606

    R-squared 0.008712 Mean dependent var -0.607143

    Adjusted R-squared -0.001614 S.D. dependent var 5.687865

    S.E. of regression 5.692453 Akaike info criterion 6.336357

    Sum squared resid 3110.786 Schwarz criterion 6.389111

    Log likelihood -308.4815 Hannan-Quinn criter. 6.357695

    F-statistic 0.843700 Durbin-Watson stat 1.946677

    Prob(F-statistic) 0.360643

    Inverted AR Roots -.09

  • 8/10/2019 Econometrics Mini Assignment

    13/15

    2.6.2. ARMA(1,1)Dependent Variable: DCORN

    Method: Least Squares

    Date: 02/03/14 Time: 22:47

    Sample (adjusted): 3 100

    Included observations: 98 after adjustments

    Convergence achieved after 16 iterationsMA Backcast: 2

    Variable Coefficient Std. Error t-Statistic Prob.

    C -0.585482 0.563059 -1.039824 0.3011

    AR(1) -0.793624 0.199388 -3.980308 0.0001MA(1) 0.782703 0.214655 3.646325 0.0004

    R-squared 0.045350 Mean dependent var -0.607143

    Adjusted R-squared 0.025252 S.D. dependent var 5.687865S.E. of regression 5.615590 Akaike info criterion 6.319104

    Sum squared resid 2995.811 Schwarz criterion 6.398236

    Log likelihood -306.6361 Hannan-Quinn criter. 6.351111F-statistic 2.256454 Durbin-Watson stat 2.081236Prob(F-statistic) 0.110306

    Inverted AR Roots -.79

    Inverted MA Roots -.78

    ARMA(1,1) is preferred over AR(1) because of greater significance of the coefficients.

    AIC and SBIC criteria also support selecting ARMA(1,1).

    2.7. Heteroskedasticity

    ARMA(1,1) does not have ARCH problem. The F statistic is not significant and null

    hypothesis can be rejected.Heteroskedasticity Test: ARCH

    F-statistic 0.146802 Prob. F(5,87) 0.9805

    Obs*R-squared 0.778066 Prob. Chi-Square(5) 0.9784

    Test Equation:

    Dependent Variable: RESID^2

    Method: Least Squares

    Date: 02/03/14 Time: 22:57Sample (adjusted): 8 100

    Included observations: 93 after adjustments

    Variable Coefficient Std. Error t-Statistic Prob.

    C 23.07306 7.043929 3.275595 0.0015RESID^2(-1) -0.009989 0.063628 -0.156994 0.8756

    RESID^2(-2) -0.012009 0.063644 -0.188695 0.8508

    RESID^2(-3) -0.029897 0.063597 -0.470098 0.6395

    RESID^2(-4) -0.007626 0.063586 -0.119937 0.9048RESID^2(-5) 0.043036 0.063550 0.677196 0.5001

    R-squared 0.008366 Mean dependent var 22.62247

    Adjusted R-squared -0.048624 S.D. dependent var 51.61077S.E. of regression 52.85064 Akaike info criterion 10.83516

  • 8/10/2019 Econometrics Mini Assignment

    14/15

    Sum squared resid 243007.5 Schwarz criterion 10.99855Log likelihood -497.8348 Hannan-Quinn criter. 10.90113

    F-statistic 0.146802 Durbin-Watson stat 2.051665

    Prob(F-statistic) 0.980500

    3. Relationship between Corn and Oil

    3.1. Cointegration check using Engel-Granger MethodThe first differenced corn and oil series are linearly regressed to get the residual values. The residualvalues are checked for unit roots to confirm if the series are cointegrated.

    Null Hypothesis: D(STATRESID) has a unit root

    Exogenous: Constant

    Lag Length: 6 (Automatic - based on SIC, maxlag=12)

    t-Statistic Prob.*

    Augmented Dickey-Fuller test statistic -7.282815 0.0000

    Test critical values: 1% level -3.503879

    5% level -2.893589

    10% level -2.583931

    *MacKinnon (1996) one-sided p-values.

    Augmented Dickey-Fuller Test Equation

    Dependent Variable: D(STATRESID,2)

    Method: Least Squares

    Date: 02/03/14 Time: 23:11

    Sample (adjusted): 10 100

    Included observations: 91 after adjustments

    Variable Coefficient Std. Error t-Statistic Prob.

    D(STATRESID(-1)) -5.444545 0.747588 -7.282815 0.0000D(STATRESID(-1),2) 3.532707 0.682267 5.177891 0.0000

    D(STATRESID(-2),2) 2.713732 0.578382 4.691935 0.0000

    D(STATRESID(-3),2) 1.865882 0.459733 4.058623 0.0001

    D(STATRESID(-4),2) 1.127552 0.326451 3.453966 0.0009

    D(STATRESID(-5),2) 0.524432 0.200891 2.610535 0.0107

    D(STATRESID(-6),2) 0.165213 0.091039 1.814742 0.0732

    C 0.266542 0.539695 0.493874 0.6227

    R-squared 0.827935 Mean dependent var 0.057282

    Adjusted R-squared 0.813424 S.D. dependent var 11.86871

    S.E. of regression 5.126629 Akaike info criterion 6.190579

    Sum squared resid 2181.433 Schwarz criterion 6.411314

    Log likelihood -273.6713 Hannan-Quinn criter. 6.279632F-statistic 57.05371 Durbin-Watson stat 2.072421

    Prob(F-statistic) 0.000000

    The test stat is more negative than the critical values and hence we can reject the null hypothesis of the

    Augmented Dickey Fuller Unit root test, i.e. , we can conclude that series are co-integrated.

    Linear combination of Oil and Corn Prices are stationary.

  • 8/10/2019 Econometrics Mini Assignment

    15/15

    4. ConclusionThe Error Correction Model used at level is able to predict the relationship between the series with R

    2=75%.

    The coefficients are significant. So as per the relationship, a dollar price increase in oil can cause a $2.74increase in corn prices.

    Dependent Variable: CORN

    Method: Least SquaresDate: 02/03/14 Time: 23:37

    Sample (adjusted): 3 100

    Included observations: 98 after adjustments

    Variable Coefficient Std. Error t-Statistic Prob.

    C 163.9211 16.07726 10.19583 0.0000

    OIL 2.747343 0.163338 16.81999 0.0000

    STATRESID(-1) 0.221929 0.131561 1.686897 0.0949

    R-squared 0.748692 Mean dependent var 434.0612

    Adjusted R-squared 0.743401 S.D. dependent var 14.26778

    S.E. of regression 7.227428 Akaike info criterion 6.823778Sum squared resid 4962.393 Schwarz criterion 6.902909

    Log likelihood -331.3651 Hannan-Quinn criter. 6.855785

    F-statistic 141.5111 Durbin-Watson stat 0.756067

    Prob(F-statistic) 0.000000