Top Banner
Divyansh Aggarwal 100002971 Sabeena Vasandani 100016442 Asaad Rafi 090002252 Roshni Sahni 100000098 CASS BUSINESS SCHOOL Financial Econometrics
19
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Eco No Metrics

       Divyansh  Aggarwal  100002971  Sabeena  Vasandani  100016442  Asaad  Rafi  090002252  Roshni  Sahni  100000098  

C A S S   B U S I N E S S   S C H O O L  

 

   

Financial  Econometrics  

Page 2: Eco No Metrics

[Type  text]   [Type  text]   [Type  text]  

INTRODUCTION  

This  paper  will  assess  the  rationality  of  the  model  !! = ! + !!!! + !!  for  characterising  the  behaviour  of  asset  returns.  The  company  that  has  been  analysed  for  this  study  is  the  Goldman  Sachs  Group  Inc  (GS:US),  and  their  stock   from   January  2001-­‐September  2011.  Goldman   Sachs   has   often  been   referred   to   as   “the  money-­‐making  machine”,  particularly  after  their  performance  even  amidst  a  financial  crisis.  It   is   listed  on  the  NYSE,  NASDAQ  and   S&P500.   For   the   purpose   of   this   report,   our   focus  will   remain   on   the   S&P500   (SPX)   as   it   is   a   free-­‐float  capitalization-­‐weighted  index  and  it   is  one  of  the  most  commonly  used  indices,  after  the  Dow  Jones.  The  US  3  month  bond  yields  have  been  used   as   the   short-­‐term   risk-­‐free   asset   (USTBILL),  while   the  US  10+  year  bond  yields  have  been  used  as   the   long-­‐term  risk   free  asset   (LY).  These  variables  have  been  considered   to  run   the  capital   asset   pricing  model   (CAPM).  The  macroeconomic  model   takes   into   account   the  US   effective   exchange  rate   (EER),   GDP   and   CPI   to   analyse   correlation   between   the   Goldman   Sachs   stock   and   the   macroeconomic  conditions  in  the  US.  Our  analysis  also  includes  the  Goldman  Sachs  dividend  yield  (DIVY),  return  on  investment  (ROI),  earnings  index  (EI)  in  order  to  run  a  regression  on  the  company  specific  model.  These  three  models  have  been  assessed  in  order  to  portray  and  identify  the  most  valid  model  for  the  asset  price  return  on  the  stock  of  Goldman  Sachs  US.  The  data  collected  for  this  investigation  was  obtained  from  Bloomberg.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 3: Eco No Metrics

   

[Type  text]   [Type  text]   [Type  text]  

CONTENTS   PAGE  

INTRODUCTION   1  

CONTENTS   2  

THE  MODEL  AND  THE  FINDINGS   3  

DIAGNOSTIC  TESTS   5  

REMEDY   9  

WALD  TEST   12  

NON-­‐LINEARITY  TEST   12  

CHOW  TEST   14  

SEASONALITY  EFFECTS   15  

THE  BEST  MODEL   16  

EVALUATION   17  

REFERENCES   18  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 4: Eco No Metrics

[Type  text]   [Type  text]   [Type  text]  

THE  MODEL  AND  THE  FINDINGS    The  graph  on  the   left  compares   the  returns  on  the  US  10+  year  bond  yield,  return  on  the  Standard   and   Poor   index   (RSPX)   and   the  returns   on   Goldman   Sachs   (RGS).   It   can   be  seen   that   the   RGS   graph   is   more   volatile;  and   the   fluctuations   in   the   Goldman   Sachs  returns  are  greater  than  RSPX  and  USTBILL  returns.   Even   SPX   returns   are   volatile  compared  to  USTBILL  which  is  supposed  to  be  stable  at  it  is  considered  a  risk-­‐free  asset.      We   can   observe   that   RGS   and   RSPX   are  positively   correlated   as   when   RSPX   falls,  RGS   follows   the   same   trend  and  vice  versa.  However,  as  RGS  is  more  volatile,  the  extent  of  correlation  is  limited.  The  correlation  can  be  seen  in  the  scatter  graph  below.  

   

 

 

 

 

 

 

         

 Following   are   the   statistics   obtained   using  Eviews:    We  can  observe  that   the  average  excess  return  of   Goldman   Sachs   is   negative   and   so   is   RSPX.  This   is   shown  by   the  mean  values   in   the   table.  Also   the   maximum,   minimum   and   standard  deviation  values  show  that  RGS  is  more  volatile  than   RSPX,   whereas   USTBILL   does   not   show  great  fluctuations.    The  kurtosis  is  greater  than  3   for   RSPX   and   RGS   indicating   a   greater  possibility   of   outliers   unlike   USTBILL.   The  negative   skewness   of   RSPX   and   RGS   indicates  that  the  left  side  tail  is  longer  than  the  right  side  

Page 5: Eco No Metrics

   

[Type  text]   [Type  text]   [Type  text]  

and  majority  of  the  values  lie  to  the  right  of  the  mean.    The  Capital  Asset  Pricing  Model  (CAPM)  is  based  on  the  ideology  that  investors  must  be  remunerated  for  their  risk  taking  ability  and  time  value  of  money.      We  have  used  the  principle  of  Ordinary  Least  Squares  (OLS)  throughout  our  project  as  it  is  the  most  common  method   to   fit   a   line   to   data.   We   will   use   OLS   to   estimate   our   CAPM   and   will   regress   it   using   the   simple  regression  model.  The  simple  regression  model  is  in  the  form  of;  Rt=  α  +  βRmt  

Rt  is  our  dependent  variable  which  will  be  RGS.  

α  is  the  excess  returns  which  is  earned  even  if  the  beta  is  0.  

β  is  the  multiplier  factor  of  the  independent  variable.  

!!!  is  the  independent  variable  which  will  be  RSPX.  

The  regressed  model  was  obtained  using  Eviews  by  inputting  the  data  from  January  2001-­‐September  2011  and  producing  a  new  equation  CAPM  from  New  Object.  The  equation  specification  was  as  follows:  RGS  C  RSPX.  The  result  equation  and  estimation  output  were  as  follows:    !"# = !.!!"#"$!%%!%$&& + !.!"##$!!%$"# ∗ !"#$  

 A  general  regression  model   is  given  by  Y=α  +  β1X  +  u.  Our  regression  model   is   in  the   form:  Portfolio   Return=α   +   β1   x   market   return   +  error.    R-­‐squared   is   a   measure   of   how   well   a  regression   function   fits   the  data  and  can   take  any   value  between  0-­‐1.   The   closer  R-­‐squared  is   to   1,   the   more   accurate   the   model.   In   this  case,   the  R-­‐squared   value   is   0.518236,  which  suggests  it  is  a  decent  model.    Adjusted   R-­‐squared  measures   the   proportion  of   the   variation   in   the   dependant   variable  accounted   for   by   the   descriptive   variables;  

therefore   it   is  useful   for   comparing  between  models.   Like  R-­‐Squared,   it   has   the   range  0-­‐1   and   the   closer   the  value   is   to   1,   the   better.   With   regards   to   the   model   we   have   generated,   adjusted   R-­‐squared   is   0.514412,  suggesting  it  can  be  improved  with  some  corrections.    Standard  error  is  the  standard  deviation  of  the  sampling  distribution.  Therefore,  the  lower  the  standard  error,  the  better  the  model.  Our  standard  error  value  is  0.063540.  It   is  a  significant  value  and  as  commented  can  be  lowered  with  some  corrections.    The  sum  squared  residual  (also  called  RSS)  is  the  sum  of  squares  of  the  residuals  is  a  measure  of  the  divergence  between   the   data   and   the   estimating  model.   A   small   RSS   is   a   good   sign   as   it  means   the  model   fits   the   data  closely.  With  reference  to  the  table,  our  RSS  value  is  0.508698  which  is  again  not  a  very  high  value  and  hence,  suggesting  of  having  a  decent  model.    The  F-­‐statistic  test  examines  whether  all   the  slope  coefficients  are  statistically   insignificant  or  not.  The  test   is  represented  as  follows:      H0:  β1=0  (null  hypothesis)        H1:β1≠0  (alternative  hypothesis)    

Page 6: Eco No Metrics

[Type  text]   [Type  text]   [Type  text]  

We  worked  the  F-­‐statistic  value  to  be  135.5387,  and  the  corresponding  probability  of  the  F-­‐statistic  in  this  case,  our  p-­‐value  (Prob(F-­‐statistic))  is  zero,  which  means  we  reject  the  null  hypothesis  and  conclude  that  one  if  not  more  of  the  slope  coefficients  (β)  are  significant.    Seeing  as  the  F-­‐statistic  value  proved  that   the  β  values  are  significant,  we  can  now  use  the  t-­‐statistic  value  to  establish  whether   the  value  of  each   individual  coefficient   is   statistically  significant  or  not.    The   t-­‐statistic   is  a  ratio  of  the  divergence  of  an  estimated  parameter  from  its  theoretical  value  and  its  standard  error.      With  regards  to  the  variables,  they  are  only  significant  if  they  have  a  probability  less  than  5%.  Therefore,  rspx  is  significant  as  its  p-­‐value  is  zero,  which  is  less  than  5%.    The  significance  of  the  other  variables  will  be  checked  in  the  same  way  throughout  this  project.    The  coefficient  of  rspx  is  1.382273,  which  reflects  that  for  every  100%  return  on  spx  will  give  about  138%  for  a  GS   share.   This   suggests   of   a   positive   correlation,   which   has   already   been   represented   through   a   graph  previously.  

 DIAGNOSTIC  TESTS  The  four  assumptions  underlying  the  Classic  Linear  Regression  Model  (CLRM)  are;  1.! !! = 0  2.!"#(!!) = !!  3.!"# !! , !! = 0  4.!"# !! , !! = 0  5.!! ∼ !(0,!!)  The   diagnostic   tests   below   have   been   carried   out   with   the   intention   of   testing   whether   the   assumptions  underlying  the  model  hold  true.  Our  interest  lies  in  determining  whether  the  β  values  obtained  by  OLS  are  the  Best  Linear  Unbiased  Estimators  (BLUE),  this  is  only  possible  if  the  assumptions  mentioned  above  hold.  

 White  Heteroskedasticity  Test  

 

White   test:  a  statistical  test  that  establishes  whether   the   residual   variance   of   the   error  terms  in  a  regression  model  is  constant.  

Heteroskedasticity   arises   when   there   is   no  constant   variance   between   the   errors,   thus  contradicting   the   assumption   of  homoscedasticity.   If   our   objective   is   BLUE,  then   we   require   the   assumption  !"#  (! t)  =  !2   to   be   true.   A   graphical   representation  can  be  used  in  order  to  test  the  variability  of  the   residuals.  However,   such  a  method  does  not   point   out   the   form   and   cause   of  heteroskedasticity.   In   addition,   simply   by  looking   at   the  patterns   in   the   residual   graph,  we  may  be   led   to   the  wrong   conclusions.   Therefore,   running   a  formal   test   such   as   the  White   test   explained   above   is   more   useful   as   it   results   in   assumptions   that   can   be  justified.  We  can  define  our  hypotheses  as  follows:  

Page 7: Eco No Metrics

   

[Type  text]   [Type  text]   [Type  text]  

H0:   the   disturbances   ( ! 2)   are  homoscedastic  H1:   the   disturbances   ( ! 2)   are  heteroscedastic  

The   p   value   for   the   F-­‐test   is   0.0035  (<5%),   thus   we   reject   the   null  hypothesis.   This   indicates   that   there   is  systematically  changing  variability  over  the   sample,   and   that   the   coefficient  estimates   are   no   longer   BLUE   (Best  Linear  Unbiased  Estimators).    

Sources   of   misspecification:   It   is  highly  unlikely  to  experience  periods  of  high   and   low   volatility   in   stock   prices.  Markets  react  to  exogenous  factors.  

   Autocorrelation  Test  Another  assumption  in  the  CLRM  states  that   !"# !! , !! = 0  for  ! ≠ ! ,   this  means   that   the   model   assumes   that  

there  is  no  autocorrelation  in  the  residuals  (there  is  no  pattern  in  the  disturbances).      !!=  no  autocorrelation    !!=  autocorrelation  exists    Durban  Watson    The   easiest   way   to   test   autocorrelation   in   residuals   is   the   Durban   Watson   test.   In   the   regression,   the   DW  statistic   is   1.754542,   which   is   less   than   2   therefore   the   null   hypothesis   is   rejected   and   there   is   evidence   of  positive   autocorrelation.   However,   there   are   two   limitations   to   this   test;   firstly,   it   tests   for   first   order  correlation   which   means   that   it   only   tests   the   relationship   between   an   error   and   the   value   preceding   it.  Secondly,  the  model  assumes  non-­‐stochastic  regressors,  this  simply  means  that  if  the  regression  was  repeated  with  a  new  sample,  the  variable  values  would  remain  unchanged.  Only  the  dependent  variable  would  change,  as  the   new   sample  would   comprise   of   new   values   for   the   disturbance   term.   Therefore,   the  DW   is   limited   in   its  reliability  and  a  more  coherent  test  such  as  the  Breusch-­‐Godfrey  Serial  Correlation  LM  Test  is  used  to  examine  the  existence  of  any  higher  order  autocorrelation  amongst  the  residuals.    

 Breusch-­‐Godfrey  Serial  Correlation  LM  Test  The   BG   test   is   free   of   these   constraints   and   is  therefore  considered  to  be  a  more  reliable  test.  The   test   is   carried  out  with  12   lags   taking   into  consideration   that   monthly   data   has   been  collated.   The   p   value   is   0.6173,   this   is   greater  than  the  5%  significant  level,  and  therefore  the  null  hypothesis  is  accepted.  This  test  indicates  that  there  is  no  autocorrelation   of   independent   variables.   Therefore,   the   result   of   the   BG   test   is   acknowledged   and   the   DW  statistic  is  disregarded.    Residuals  Normality  Test  The  residuals  normality  test  examines  for  the  condition  of  normality,  which  is  said  to  exist  if  the  errors  have  a  mean  of  0;  !(!!) = 0.  Through   the  use  of  Eviews,   the  historgram  normality   test   is   carried  out.  A  normal  bell  

Page 8: Eco No Metrics

[Type  text]   [Type  text]   [Type  text]  

shaped  distribution  has  the   following  properties;  skewness=0  and  kurtosis=3.  The  skewness   for  our  model   is  0.508741  and  the  kurtosis  is  5.364892,  therefore  it  is  evident  that  non-­‐normality  exists.    

Ramsey-­‐RESET  Test  

A   fundamental  assumption   of   the  Classical   Linear  Regression   Model  (CLRM)   is   that  appropriate   functional  form   should   generally  be   linear.   The   Ramsey  Regression   Equation  Specification   Error   Test  (RESET)   is   used   to  detect   any  misspecification   of  functional   form.   To  obtain   the   expected  results,  a  fitted  term  of  1  was   used   so   as   to  consider   only   the  square   of   the   fitted  values.     The   reason   for  

doing  this   is  so  that  non-­‐linearity   is   introduced  into  the  specification.  We  can  then  attempt  to  detect   non-­‐linearities   that   are   in   the   functional   form   and   will   not   be   recovered   by   a   linear  specification.   This  way,  we  would   be   able   to   better   conclude   if   our  model  would   profit   from  having  non-­‐linear  coefficients.    

We  can  define  our  hypotheses:  H0:  correct  specification  is  linear  H1:  correct  specification  is  non-­‐linear  

According  to  the  test  results,  the  p-­‐value  for  both  the  F  and  t-­‐statistics  is  0.4714,  which  is  more  than  5%.  We  accept  the  null  hypothesis  that  all  regression  coefficients  of  the  non-­‐linear  terms  are  0  and  we  conclude  that  there  is  no  apparent  non-­‐linearity  in  the  regression  equation.  The  linear  model  is  thus  appropriate.    

In  addition,  from  the  data  generated  above,  we  can  conclude  that  there  is  no  significant  effect  of  the  inclusion  of  squared  variables  on  our  model.  It  would  thus  be  best  to  omit  such  factors  as  they  would  not  result  in  a  better-­‐fitted  model  but  instead  worsen  our  model  as  the  coefficients  change.  Conclusively,  we  would  not  want  our  model  to  be  non-­‐linear  as  it  goes  against  our  primary  assumption  that  linearity  is  essential  for  appropriate  functional  form.  

 

 

 

 

Page 9: Eco No Metrics

   

[Type  text]   [Type  text]   [Type  text]  

Jarque-­‐Bera  Test  

The   fifth   assumption  of   the  CLRM   suggests   that   the  disturbances   are   normally  distributed:  ! t   ~   N(0,  ! 2).  This   assumption   is  essential   so   that  conclusions   regarding  model   parameters   can   be  made.    The  Jarque-­‐Bera  (JB)  test   is   the   most   common  normality   measure   and   it  

should  have  a  value  that  is  less  than  6  or  7  and  a  p  –  value  that  is  greater  than  0.05  (p  –  value  >  0.05)  for  the  null  hypothesis  to  be  accepted.  

The  hypotheses  may  be  defined  as:  

H0:  distribution  is  normal  H1:  distribution  is  not  normal  

The   Jarque-­‐Bera   value   is   35.34923(>7)   and   the   p-­‐value   is   0(<5%).   We   thus   reject   the   null  hypothesis  at  the  5%  significance  level  and  conclude  that  the  residuals  do  not  follow  a  normal  distribution.   The   cause   of   this   may   be   a   breakpoint   in   the   regression   residuals   or   even   an  outlier.  There  is  no  skewness  in  a  normally  distributed  random  variable,  yet  our  model  displays  a   skewness   coefficient   that   is   quite   large   (0.508741)   and   towards   the   positive   side.   The  Kurtosis  coefficient  is  5.364892  (>3),  which  indicates  a  flat  tail.  Due  to  this,  extreme  events  are  likely  to  happen.  

Accurate  inferences  thus  cannot  be  made  on  the  regression  parameters  due  to  violation  of  the  fifth  assumption.  

Sources  of  misspecifications:  On  the  right  hand  side  of  the  histogram,  there  are  some  outliers  that  have  resulted  from  the  2007-­‐2009  financial  crisis.  Goldman  Sachs,  along  with  other  banks,  had   to   adjust   its  monetary   policy,   incorporate  methods   such   as  Quantitative   Easing   to   battle  against  the  credit  crunch  and  reform  its  structure.    

   

                         

Page 10: Eco No Metrics

[Type  text]   [Type  text]   [Type  text]  

REMEDY  Some   models   experience   a   few   extreme   observations.   These   outliers   exist   due   to   the   very  exogenous  events   that  might  affect   the  returns  on   the  portfolio  and  cause  a  structural  break.  To  cure  this  problem,  dummy  variables  can  be  added  which  normalizes  the  model.  

Below  is  the  residual  graph  for  the  model  with  the  outliers  being  2005M05,  2008M08,  2009M02  and  2010M04  for  which  the  dummy  variables  were  generated  in  Eviews.  

In   April   2010,   the   residual  is   negative   reflecting   that  market   returns   were   less  than   expected.   The   reason  was   that   Goldman   Sachs  was   charged   with   $1bn  fraud  over   toxic   sup-­‐prime  securities   leading   to   fall   in  the   market   return   for   the  stock.  

In  February  2009,  Goldman  Sachs   became   joint   lead  manager,   book   runner   and  underwrite   for   an   Aus$  750   million   share   sale  

boosting  investor  confidence  eventually.  

In  August  2008,  Goldman  Sachs  was  involved  in  a  settlement  with  the  state  regulators  and  had  to  pay  penalty  and  repurchase  auction  rate  securities  for  $1  billion.  

In  May  2005,  Goldman  Sachs  JBWere  appointed  Andrew  Smith  as  the  Senior  Investment  Manager  who  probably  caused  a  drop  in  investor  confidence.  

After   rerunning   the   CAPM   regression  with   the   4   dummy   variables,   the  estimation   output   and   the   residual  graph   for   the   performed   correction  was  as  follows-­‐  

!"#   =  0.00297319544894   +  1.53231238734 ∗ !"#$   −

 0.137902886751 ∗ !"05!05   −  0.136251010166 ∗ !"08!08   +  0.296211721062 ∗ !"09!02   −  0.186740520686 ∗ !"10!04    

 

Page 11: Eco No Metrics

   

[Type  text]   [Type  text]   [Type  text]  

As   we   can   observe,   the  dummy  variables  are  highly  significant   for   the   subject  model   and   increase   the   R-­‐squared  by  0.145407  which  is   substantial.   The   p-­‐value  for   RSPX   is   also   0.0000,  thus,   there   are   no  insignificant  variables  in  the  model.  Hence,  by  adding  the  dummy   variables,   we   have  effectively   eliminated   the  residual  gap  and  the  impact  of  the  big  outliers,  therefore  

made  the  model  more  efficient.  

In   addition,   the   other   problematic   issues   that   we   have   found   (non-­‐normality   and  heteroskedasticity)   have   unfavourable   effects   on   the   validity   of   our   parameter   estimators,  because  they  are  no  longer  BLUE.  We  continue  to  solve  these  problems  below  –    

Non-­‐normality  Correction:  

With  respect  to  the  new  model  above  (that  has  been  created  by  introducing  dummies),  we  have  conducted  another  normality  test  with  the  inclusion  of  the  dummy  variables.  We  now  arrive  at  

a   Jarque-­‐Bera   value   of  2.096821   (<7)   and   a  probability   of   35.0494%  (>5%).   We   thus   accept  our   null   hypothesis   that  the   distribution   of   the  disturbance   terms   is  normal.   Also,   the  kurtosis   coefficient   is  2.929959   (<3),   which  indicates  a  stable  model.  

Our  new  regression  therefore  confirms  that  the  inclusion  of  the  four  dummy  variables  is  very  highly   significant.   Furthermore,   the   advantage   of   this   is   that   our   standard   errors   are   now  accurate  –  dummy  variables  have  been   included   to   represent  events   that  have  only  occurred  once,  thus  they  ‘knock-­‐out’  the  effects  of  the  exogenous  shocks.  

 

 

 

 

 

 

Page 12: Eco No Metrics

[Type  text]   [Type  text]   [Type  text]  

Heteroskedasticity  Correction:  

We  have   run  White’s   test   again  after   the  inclusion   of   the   dummy   variables   to  establish   whether   our   new   regression  model  indicates  heteroskedasticity.  Our  p  –  value  for  the  F-­‐stat  and  !!  =  0.4341  and  0.5037   respectively.   Both   values   are  greater  than  our  significance  level  of  5%;  therefore  we   accept   our   null   hypothesis  that   the   disturbances   ( ! 2)   are  homoscedastic.   As   a   result,   our   new  result   holds   for   the   assumption   that  !"#  (!t)  =  !2.    

We   also   conducted   a   White  heteroskedasticity-­‐consistent   standard  errors   test   to   obtain   the   estimation  output   of   our   new   model.     When   we  compare   the   results   of   the   original  

regression   with   the   new   regression,   we   observe   that   the   standard   errors   of   the   coefficients  have  increased  relative  to  the  original  OLS  standard  errors,  and  this  leads  to  a  change  in  the  t-­‐stat:   which   in   this   case   is   0,   as   β/s.e.   =   0   for   the   new   regression.   This   contradicts   with   the  previous  method  we  used   above,   as  here  we   come   to   the   conclusion   that   our   standard   error  above  has  been  underestimated.  However  with  a  t-­‐stat  of  0,  we  are  less  likely  to  reject  the  null  hypothesis.    

 

There   are   2   other   models   that   can   also   be   regressed   and   compared   with   CAPM   –  Macroeconomic   (MACRO)   and   Company   specific   (COMP).   The   following   models   are  represented  as  follows-­‐  

Page 13: Eco No Metrics

   

[Type  text]   [Type  text]   [Type  text]  

 

 

We  can  observe  that  the  correction  for  the  dummy  variables  has  already  been  performed.  MACRO  has  a  slightly  higher  R-­‐squared  value  (0.668202)  than  the  corrected  CAPM  model  that  has  a  value  of  0.663643,  suggesting  that  the  model  is  insignificantly  better  than  the  CAPM  model.  However,  if  we  see  the  company  specific  model,  we  see  a  very  high  r-­‐squared  value,  0.979931.  Thus,  COMP  is  significantly   better   than   CAPM   with   lesser   standard   error   and   RSS   values.   Also,   the   significant  independent  variables  are  more  in  COMP,  which  allows  for  the  model  to  be  more  precise.    

   WALD  TEST  

!!:! = 0,! = 1  

!!:! ≠ 0,! = 1  

It   is   important   to   investigate   whether   the   beta  coefficient  is  statistically  different  from  1,  and  whether  the   coefficient   (c(1))   is   statistically   different   from   0.  The   Wald   Test   examines   restrictions   on   parameters  and   is   used   to   test   the   null   hypothesis   at   a   5%  significance   level.   The   p   value   is   0.0069,   which   is  significantly   lower   than   0.05   therefore   the   null  hypothesis  has  to  be  rejected.  

The  restrictions  ! = 0  and  ! = 1  were  inserted  into  the  equation.   Through   the   outcome   of   the   Wald   test,  because   the   coefficient  ! ≠ 1 ,   it   is   concluded   that  Goldman  Sachs  returns  on  average  fluctuate  more  than  the   market   returns   as   a   whole.   From   this   result,   it   is  also   derived   that   if   the   market   shows   a   0   return,  

Goldman  Sachs  will  continue  to  generate  returns,  as  ! ≠ 0.  

       NON-­‐LINEARITY  TEST  

A  simple  regression  has  a  linear  form,  which  suggests  that,  the  CAPM  should  be  a  straight  line.  Thus,   to  validate   this   statement  a  Ramsey’s  RESET   test  needs   to  be  carried  out.  To  carry   this  out,   we   augment   the  model   by   adding   the   square   of   the  market   return   (rspx2).  We   include  

!"#   =  0.000371011241589   +  1.45717441113 ∗!"#$   +  0.888045824634 ∗ !"#$   −

 3.2965019748 ∗ !"#   +  0.798033168986 ∗ !"#$   −  0.445025862943 ∗ !""#   −  0.132440827324 ∗!"05!05   −  0.119168922959 ∗ !"08!08   +

 0.299225377047 ∗ !"09!02   −  0.187001508452 ∗!"10!04    

!"#   =  0.00179303049176   +  0.123403015048 ∗!"#$   −  0.911798231838 ∗ !"#$%   +

 0.064354649494 ∗ !"#$   +  0.0133060319989 ∗!"#   +  0.211154801388 ∗ !"03!08   +

 0.163828493908 ∗ !"03!11   +  0.13871075955 ∗ !"04!02   +  0.113480480509 ∗ !"04!05   +  0.0230190834149 ∗ !"09!02   −  0.0649459471681 ∗ !"09!12    

Page 14: Eco No Metrics

[Type  text]   [Type  text]   [Type  text]  

squares  to  make  sure  that  the  positive  and  negative  cefficients  become  positive  and  they  do  not  cancel  each  other  out  when  summed  up.   It  also  penalizes  the  big  differences  over  the  smaller  ones.  

We  regress   the  added  variable  along  with   the  model  and   test   its   significance  on   the  portfolio  return.  The  hypothesis  for  the  same  will  be-­‐  

H0  :  rspx2=0  (no  relationship  between  rspx2  and  rgs)  

H1  :  rspx2≠0  (relationship  between  rspx2  and  rgs)  

After  rerunning  the  regression,  the  estimated  output  is  as  follows-­‐  

 

 

We  can  observe  that  the  F-­‐statistic  provided  by  the  test  is  67.77302,  and  the  p-­‐value  obtained  is  0.4714.  Thus  we  fail  to  reject  our  null  hypothesis  as  p-­‐value  (0.4714)  >  0.05.  Hence,  there  is  no  relation  between  the  portfolio  return  and  the  squares  of  the  market  return.    

There   is  no  significant  change   in   the  R-­‐Squared  also  (just  0.002002),  showing  rspx2  does  not  have  any  substantial  impact  on  the  model.  

Now  to  test  the  linearity  of  this  model,  we  will  run  a  Ramsey  RESET  Test.  The  hypothesis  for  the  test  will  be-­‐  

H0  :  correct  functional  form  

H1  :  incorrect  functional  form  

 

Page 15: Eco No Metrics

   

[Type  text]   [Type  text]   [Type  text]  

The  test  statistics  were  as  follows-­‐  

 

 

 

The   test   shows   that   the   p-­‐value   obtained   is   0.4232  which   is   greater   than   0.05.   So   under   5%  significance  level,  we  accept  the  null  hypothesis  and  conclude  that  the  test  indicates  linearity  in  our   model.   Also,   augmenting   our   model   with   the   square   of   market   return   does   not   cause   a  substantial   change   towards   having   a   proper   functional   form.  Hence,   it   is   also   concluded   that  rspx2  does  not  affect  the  regressed  model.  

 

   CHOW  TEST  The  Chow  Test  is  used  to  analyze  if  there  has  been  a  structural  break  in  the  performance  of  a  financial  portfolio  according  to  certain  events  that  have  happened  in  the  world  such  as  a  stock  market  crash.  We  will  use  this  test  to  determine  whether  our  portfolio’s  return  has  been  significantly  altered  due  to  these  ‘structural  breaks.’  

Page 16: Eco No Metrics

[Type  text]   [Type  text]   [Type  text]  

The  test  has  been  conducted  by  choosing  two  breakpoints  –  2003M03  and  2007M11.  It  was  identified  that   in  2003M03,  Goldman  Sachs  merged  with   JBWere,  an  Australian  Financial   Institution  owning  45%  of   the  newly  formed  merger  and  2007M11  was  chosen  as  the  current  ongoing  recession  started  in  that  period.  If   the   coefficients   change   over   the   period,   it   reflects   a   change   in   the   relationship   of   dependent   and   the  independent  variables  indicating  a  structural  break.  

 H0:  p-­‐value<0.05  (null  hypothesis  stating  there  are  structural  breaks)  H1:  p-­‐value>0.05  (alternative  hypothesis  suggesting  otherwise)    In  Eviews,  we  select  Stability  Diagnostics  in  the  View  window  and  choose  Chow  Breakpoint  test.  We  input:  2003M03  2007M11.  We  get  the  following  result:  

 As   the   p-­‐value   of   the   F-­‐test   is   higher   than  0.05(p=0.5304),   we   reject   the   null   hypothesis  and  conclude  that  the  two  dates  didn’t  have  effect  on   the   return   of   the   portfolio.   Thus,   the  coefficients  are   stable  over   the  period  and   there  are  no  structural  breaks.        

SEASONALITY  EFFECTS  Other   than   the  exogenous   factors,   there  might   also  be   some  seasonal   elements   that   affect   the   returns  on   the  portfolio.  To  overcome  this,  a  dummy  variable  called  Jandum  was  generated  by  entering:   jandum=0  and  then  editing  all  the  January  values  to  1.  The  month  January  has  been  chosen  due  to  the  fact  that  the  income-­‐sensitive  investors,  who  hold  small  stocks,  sell  them  for  tax  reasons  at  the  end  of  the  year  and  re-­‐invest  in  January  when  there  is  an  increase  the  stock  prices,  resulting  in  small  stocks  outperforming  large  stocks.  It  the  most  common  calendar  anomaly  which  is  faced  by  many  other  market  stocks.    H0:  jandum=0  (dummy  variable  is  significant)  H  :  jandum≠0  (dummy  variable  is  not  significant)    The  CAPM  was  re-­‐estimated  to  allow  for  the  independent  variable  jandum.  The  result  were  as  follows-­‐  RGS  =  0.000271884850416  +  1.38941577154*RSPX  +  0.0124085411764*JANDUM  

 As  we  can  observe   from  the   table  above,   the  p-­‐value  for  jandum  is  0.5118,  thus,  reflecting  that  the  January  phenomenon  does  not  affect  the  returns  on  the  stock  significantly.                          

     

Page 17: Eco No Metrics

   

[Type  text]   [Type  text]   [Type  text]  

THE  BEST  MODEL  

The   only   relevant  models   which   can   be   used   to   represent   the   company   returns   and  will   be  

compared  are-­‐  

• Capital  Asset  Pricing  Model  (corrected  for  heteroskedasticity  and  exogenous  factors)  

• Company  Specific  Model  (corrected  for  heteroskedasticity  and  exogenous  factors)    

Models   Schwarz  

Criterion  

R-­‐Squared   Adjusted  

R-­‐Squared  

Standard  

Error  

Sum  Square  

Residual  

CAPM   -­‐2.821896   0.663643   0.649857   0.053955   0.355162  

COMP   -­‐5.451362   0.979931   0.978216   0.013458   0.021191  

   

Normality  

Ramsey  RESET  

Test  

 

Autocorrelation  

 

White  

 

Akaike  

CAPM   2.096821   0.7548   0.8473   0.4341   -­‐2.955585  

COMP   1852.804   0.8690   0.0000   0.0000   -­‐5.696459  

 

As  shown  in  the  table  above,  eight  out  of  the  ten  tests  indicate  that  the  Company  Specific  Model  

is  more  suited   to   the  represent   the  GS  stock  returns.   it   is  evident   that   the  COMP  model  has  a  

higher   R-­‐squared   value,   lower   standard   error,   lower   Schwarz   criterion,   lower   akaike   and   no  

autocorrelation.  

Following  is  the  representation  and  the  graph  of  the  model:  

RGS  =  0.00179303049176  +  0.123403015048*RSPX  -­‐  0.911798231838*LDIVY  +  0.064354649494*LROI  +  0.0133060319989*LEI  +  0.211154801388*DM03M08  +  

0.163828493908*DM03M11  +  0.13871075955*DM04M02  +  0.113480480509*DM04M05  +  0.0230190834149*DM09M02  -­‐  0.0649459471681*DM09M12  

 

Page 18: Eco No Metrics

[Type  text]   [Type  text]   [Type  text]  

   We  can  observe  that  the  fitted  line  fits  the  actual  line  readily  and  hence,  proves  that  the  model  is  the  best  among  those  compared  with.      

 EVALUATION    

The  most  prominent  feature  of  this  model  is  that  it  readily  fits  to  the  data.  Hence,  an  investor  can  make  an  informed  choice  about  their  risk  taking  abilities  and  investment  decisions.  It  is  evident  from  our  findings  that  the  returns  on  GS  stock  are  highly  volatile,  with  a  negative  mean  resulting  in  lower  than  expected  average  returns.  An  investor  looking  for  a  long  term  investment  would  be  better  off  investing  in  the  government  risk  free  bonds  as  they  offer  a  secure  rate  but  with  a  relatively  lower  return.  Our  model  is  highly  efficient  and  can  provide  a  good  indication  on  the  returns  of  GS  and  benefit  the  investor  in  making  greater  returns.  

 

In  order  to  produce  a  more  coherent  model,  we  can  examine  the  effect  of  adding  more  variables  such  as  the  Price  Earnings  ratio,  the  financials  of  a  company  (profit  and  loss),  competitors’  performances  and  other  indices  such  as  the  NASDAQ  and  NYSE.    These  will  also  help  extend  the  model  and  aid  investors  to  forecast  future  returns  on  their  investment  that  could  lead  to  the  formation  of  a  more  proficient  investment  model.  

           

Page 19: Eco No Metrics

   

[Type  text]   [Type  text]   [Type  text]  

REFERENCES    Websites:    Guardian,  April  2010.  Goldman  Sachs  charged  with  $1bn  fraud  over  toxic  sub-­‐prime  securities.  [Online]  Available  at:  <http://www.guardian.co.uk/business/2010/apr/16/goldman-­‐sachs-­‐fraud-­‐charges>  [Accessed  15  November  2011]    Money  to  Metal,  August  2011.  Goldman  Sachs  Group.  [Online]  Available  at:  <http://moneytometal.org/index.php/Goldman_Sachs_Group>  [Accessed  15  November  2011]    Goldman  Sachs,  Aug  2008.  Goldman  Sachs  Settles  with  State  Regulators  and  Offers  to  Repurchase  Auction  Rate  Securities  Sold  to  its  Private  Clients.  [Online]  Available  at:  <http://www2.goldmansachs.com/media-­‐relations/press-­‐releases/archived/2008/repurchase-­‐auction-­‐rate-­‐securities.html>  [Accessed  15  November  2011]    Goldman  Sachs,  March  2003.  Goldman  Sachs  and  JBWere  Agree  on  Australian  /  NZ  Merger.  [Online]  Available  at:  <http://www2.goldmansachs.com/media-­‐relations/press-­‐releases/archived/2003/2003-­‐03-­‐26.html>  [Accessed  15  November  2011]    Goldman  Sachs,  May  2005.  Goldman  Sachs  and  JBWere  Asset  Management  expands  property  team.  [Online]  Available  at:  <http://www.gs.com.au/documents/About/MediaRoom/Smith_May05.pdf>  [Accessed  15  November  2011]    

Investopedia,  2011.  Capital  Asset  Pricing  Model  –  CAPM.  [Online]  Available  at:  <http://www.investopedia.com/terms/c/capm.asp#axzz1dnZAGMJV>  [Accessed  15  November  2011]    Books:    

Gavin  Cameron,  GC.  Trinity  Term  1999.  Lecture  VI:  Stochastic  Regressors  and  Measurement  Errors,  Econometric  Theory.  Nuffield  College,  Oxford,  unpublished.