Top Banner
軸対称型スクラムジェットエンジンのBusemann形状空気吸込み口の 軸方向短縮過程におけるマッハ反射形態のヒステリシスの数値解析 小川秀朗(ロイヤルメルボルン工科大学),モルダー・サンヌ(Ryerson大学) Numerical Analysis of Hysteresis in Mode Transition of Centerline Mach Reflection in Stunted Busemann Intakes for Axisymmetric Scramjet Engines Hideaki Ogawa (RMIT University) and Sannu Mölder (Ryerson University) ABSTRACT Hypersonic air-breathing propulsion, in particular, scramjet (supersonic combustion ramjet) engines, is a promising technology for efficient and economical access-to-space and atmospheric transport. Axisymmetric air intakes based on the Busemann geometry offer appreciable efficiency with maximum total pressure recovery and minimum shock loss, but the inherently long geometry incurs large skin friction drag and structural weight, requiring shortening by some means. Two distinctly different configurations of Mach reflection are found to exist at the centerline for identical inflow conditions and intake lengths in the course of shortening by axial contraction (stunting). Parametric studies with steady and transient numerical simulations are performed to examine the inviscid transient flowfields with variations in the shortening length and freestream Mach number. This paper presents the results and flowfields with focus on the variations of the exit Mach number and temperature as well as intake drag and discusses the hysteresis observed in the stunting and reverse (stretching) process of the Busemann intakes. 1.はじめに ƃŇ»lj1ù(ľƿǯǑĞǔłǢ)Ɗœű%âäLj Ǎw+&ǸǑ%ÙǨǡǷƤ>æŧ:3(ĔŅ#! ıĂ;!:ţ&MGhcLCSVǹƿǯǑšşh cLCSVǺDmLm)ªŦűķDŽ&ŢƼ>ÌŨ ǃǗ,LjǍ:3(į§%Ėƥ#!NJõŲ?& ŹƂǠŰǔ38;!:MGhcLCSV(«) y&BmToGǹƃŇ»lj1´Ǻ&7:ÙŇx(ƃŇ (²9lj17+ÊƔšĤÅé#Œ·®+šş°Ċ ă(Ň([Nj&:ƛû&7:Ğǔ§(ŰŬ# ǻ(ǖƁ&79Ŀđ;:BmToG)ţ&Ǹ Ê>%8Ŷś#šş&ĉƪ%ǸÊǸŖ( Ťď&ŏƃŇ>ÊƔ:3(ǜƪ%Ā¥>Ě! : È 1 MGhcLCSVDmLm(Ŀđ ǐò(Ý«Ťď&!MGhcLCSV(Ňŏ )Ð&!ƿǯǑ"%8'*%8%Ǹ ÊƔ(BmToG)Ī#!rŏ&üúŤƦĠŌ> Ǜŏ}ǯǑ#%9RgoG:tÝ«#7*; :eoW&Ǧ9ƋĶű&Ň(ŏǝ#DmLm(Ğ §¦ű&s:(BmToGtÝ«)ţ& SCRAMSPACE`lLCGV 1) "ŭ8;!:7% ¤%ƃŇ>×Ǜ&ǎłĿ>Ĝ%džèſÏǛ ÊƔù(þŤ&ǵơ"9ǷƤx(ƜŰű%DmLm Ý«(æŧ&¹!İ-Ù%ĖƥűƶǴ": (ǜƪČ6&¤ŏ(ØßÕ5MlSV&7: ×Ǜ,(ĝŇ5lISVþŤ(`hH(¢ĦéƢ ƚ(ŷǡű%źĥ%$ŀ%ĔŋƖĻ;ļƱ ;! 2)3) È 2 BusemannBmToG(ǭƈČŏ;Òǹpŀŏa S\Ģ8Taylor-Maccoll ĦƁùƯǹũƸǺ EulerĦƁùƯǹĢưƇǺǺ BusemannBmToG 4) ǹÈ2Ǻ)ǭƈČ"±Ɣ: ŏǂ&!ǞƦĠŌ&7:Âp(DmVl_o Ô¨>ǥ 97%#ǸÊÆĆ>æŧ:# 145 第 45 回流体力学講演会 / 航空宇宙数値シミュレーション技術シンポジウム 2013 論文集 This document is provided by JAXA.
6

軸対称型スクラムジェットエンジンのBusemann形状空気吸 …aero.kyushu-u.ac.jp/stsel/_stsel/wp-content/uploads/2020/...Axisymmetric air intakes based on the Busemann

Feb 09, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 軸対称型スクラムジェットエンジンのBusemann形状空気吸込み口の 軸方向短縮過程におけるマッハ反射形態のヒステリシスの数値解析

    小川秀朗(ロイヤルメルボルン工科大学),モルダー・サンヌ(Ryerson大学)

    Numerical Analysis of Hysteresis in Mode Transition of Centerline Mach Reflection in Stunted Busemann Intakes

    for Axisymmetric Scramjet Engines

    Hideaki Ogawa (RMIT University) and Sannu Mölder (Ryerson University)

    ABSTRACT Hypersonic air-breathing propulsion, in particular, scramjet (supersonic combustion ramjet) engines, is a promising technology for efficient and economical access-to-space and atmospheric transport. Axisymmetric air intakes based on the Busemann geometry offer appreciable efficiency with maximum total pressure recovery and minimum shock loss, but the inherently long geometry incurs large skin friction drag and structural weight, requiring shortening by some means. Two distinctly different configurations of Mach reflection are found to exist at the centerline for identical inflow conditions and intake lengths in the course of shortening by axial contraction (stunting). Parametric studies with steady and transient numerical simulations are performed to examine the inviscid transient flowfields with variations in the shortening length and freestream Mach number. This paper presents the results and flowfields with focus on the variations of the exit Mach number and temperature as well as intake drag and discusses the hysteresis observed in the stunting and reverse (stretching) process of the Busemann intakes.

    1.はじめに

    1

    SCRAMSPACE 1)

    2)3)

    2 Busemann

    8 Taylor-MaccollEuler

    Busemann 4) 2

    97%

    145第 45 回流体力学講演会 /航空宇宙数値シミュレーション技術シンポジウム 2013 論文集

    This document is provided by JAXA.

  • 5)

    43%leading-edge truncation

    stunting 2 3 Busemann

    6)

    3 Busemann 8

    6)

    .解

    30km

    1197Pa 226.5K 8

    Busemann Taylor-Maccoll5)

    Δ L / L full11.2

    0.1m Metacomp

    CFD++ Euler 2 1

    0.0150 6

    8)

    276201 55,000

    . お

    8 BusemannΔ L / L full = 0.01

    4 2 Δ L / L full = 0.33 4(b)

    9)

    A Δ L / L full = 0.34 4(c)

    BΔ L / L full = 0.44 4(d)

    (a) Δ L / L full = 0.23 A

    (b) Δ L / L full = 0.33 A

    (c) Δ L / L full = 0.34 B

    (d) Δ L / L full = 0.44 B

    4 Busemann

    −3 −2.5 −2 −1.5 −1 −0.5 0

    −0.2

    0

    0.2

    x [m]

    r [m

    ]

    full BusemannΔL /Lfull =0.2 (truncated)

    ΔL /Lfull =0.4 (truncated)

    ΔL /Lfull =0.2 (stunted)

    ΔL /Lfull =0.4 (stunted)

    146 宇宙航空 13 011

    This document is provided by JAXA.

  • 5 yΔ L / L fullr z x

    5 (a)Δ L / L full = 0.33

    Δ L / L full = 0.34

    5 (b)

    (a)

    (b)

    5 Busemann

    6)

    stream thrust 10)

    6 (a)4 Δ L / L full = (b) 0.33 (c) 0.34

    6 (b)

    (a)

    (b)

    6 Busemann

    6)

    (a) Δ L / L full = 0.23 B

    (b) Δ L / L full = 0.17 B

    (c) Δ L / L full = 0.16 A

    7 Busemann

    200

    400

    600

    800

    1000

    0

    2

    4

    6

    8

    0 0.1 0.2 0.3 0.4 0.5

    T 2 [K

    ]

    M2

    L / Lfull

    temperature

    Mach number

    Δ L / L full = 0.34

    0

    0.05

    0.1

    0.15

    0.2

    0 0.1 0.2 0.3 0.4 0.5

    Cd

    L / Lfull

    Δ L / L full = 0.34

    147第 45 回流体力学講演会 /航空宇宙数値シミュレーション技術シンポジウム 2013 論文集

    This document is provided by JAXA.

  • 7

    Δ L / L full8

    three-shock theory 9 (a)

    p3a = p3c θa = θ b+θc

    8 Busemann

    (a)

    (b)

    9

    9 (b)Polar I

    Polar II4 (c) (d) B

    9 (b)normal

    7 (a) (b)

    9 (b) inverted

    2

    10

    B 4 (c) Δ L / L full = 0.34 0.1

    12

    10 10 (a) 1210 (b)

    Boverspeeding

    A

    8 AΔ L / L full = 0.33

    0.111 4 (a) (b)

    6 11 (a)

    4 11 (b)

    2

    A

    0 0.44/LfullL

    0.16 0.17 0.33 0.34

    Mach reflection (type A)

    Mach r

    eflectio

    n (type

    B)intakeunstart

    (full Busemann)

    Mac

    h st

    em h

    eigh

    t

    11, pMaβ

    bβ cθbθ

    22 , pM

    pM 3a3a ,

    pM 3c3c ,

    slipstreamtriple point

    01θ

    p / p

    1

    directnormalinverted

    slipstream

    mechanicalequilibrium

    Polar IIPolar I

    θcr

    148 宇宙航空 13 011

    This document is provided by JAXA.

  • 9 (b) 2

    9 (a)

    11)

    (a) 10

    (b) 12

    10 B8 12

    Δ L / L full = 0.34

    (a) 6

    (b) 4

    11 A8 4

    Δ L / L full = 0.33

    8

    Busemann

    66%

    AB

    66%

    87%A

    A B

    12 4

    DECRA (DE120102277) Discovery (RGPIN/298232- 2009)Research Council National Science and Engineering Research Council

    149第 45 回流体力学講演会 /航空宇宙数値シミュレーション技術シンポジウム 2013 論文集

    This document is provided by JAXA.

  • 1) Boyce R. R., Tirtey S. C., Brown, L., Creagh, M., and Ogawa, H., “SCRAMSPACE : Scramjet-based Access-to-Space Systems”, AIAA Paper 2011-2297, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, CA, 2011.

    2) Timofeev, E., Tahir, R., and Mölder, S., “On Recent Developments Related to Flow Starting in Hypersonic Air Intakes”, AIAA Paper 2008-2512, 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, 2008.

    3) Ogawa, H., Grainger, A. L., and Boyce, R. R., “Inlet Starting of High-Contraction Axisymmetric Scramjets”, Journal of Propulsion and Power, Vol. 26, No. 6, 2010, pp. 1247-1258.

    4) Busemann, A., Die achsensymmetrische kegelige Überschallströmung Luftfahrtforschung, Vol. 19, 1942, pp. 137-144.

    5) Mölder, S. and Szpiro, E. J., “Busemann Inlet for Hypersonic Speeds”, Journal of Spacecraft, Vol. 3, No. 8, 1966, pp. 1303-1304.

    6) Ogawa, H., Mölder, S., and Boyce, R. R., “Effects of Leading-Edge Truncation and Stunting on Drag and Efficiency of Busemann Intakes for Axisymmetric Scramjet Engines”, JSME Journal of Fluid Science Technology, in press (accepted on 7th May 2013).

    7) CFD++, Software Package, Ver. 8.11, Metacomp Technologies, Inc., CA, 2009.

    8) Ogawa, H., Boyce, R. R., “Physical Insight into Scramjet Inlet Behavior via Multi-Objective Design Optimization”, AIAA Journal, Vol. 50, No. 8, 2012, pp. 1773-1783.

    9) Rylov, A. I., “On the impossibility of regular reflection of a steady-state shock wave from the axis of symmetry”, Prikl Mat Mekh, Vol. 54, 1990, pp. 200-203.

    10) DeBonis, J. R., Trefny, C. J., and Steffen, Jr., C. J., “Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics”, AIAA Paper 99-2239, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Los Angeles, CA, Jun 1999.

    11) Henderson, L. F., “Structure of the Flow Associated with a Two-Dimensional Supersonic Intake”, The Aeronautical Quarterly, Vol. 16, 1965, pp. 123-138.

    150 宇宙航空 13 011

    This document is provided by JAXA.