Top Banner
Design Example Sample final exam Problem 2 with solution (posted on D2L) ECEN5817 Lecture 43 C leg = 400 pF 250 V < V g < 350 V V = 42 V Obtain ZVS for 300 W < P load < 1 kW f s = 400 kHz Design the converter, i.e., specify n, L c , find minimum and maximum of the control input Minimize the wors-case value of the transformer primary RMS current ECEN 5817 1
14

ECEN5817 Design Example Lecture 43ecee.colorado.edu/~ecen5817/lectures/L43_ECEN5817_out1.pdf · 1 ECEN 5817. correction V nV g V nV g V nV g 2 ECEN 5817. 3 ECEN 5817. Corrected Pzvt(J)

Oct 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Design ExampleSample final exam Problem 2 with solution (posted on D2L)

    ECEN5817 Lecture 43

    Cleg = 400 pF

    250 V < Vg < 350 V

    V = 42 V

    Obtain ZVS for 300 W < Pload < 1 kWfs = 400 kHz

    Design the converter, i.e., specify n, Lc, find minimum and maximum of the control input Minimize the wors-case value of the transformer primary RMS current

    ECEN 58171

  • correction

    VnVg

    VnVg

    VnVg

    ECEN 58172

  • ECEN 58173

  • Corrected Pzvt(J) calculation on the next page

    ECEN 58174

  • ZVT analysis and design example

    S ifi i i h iSpecifications Design choicesVgmin 250 n 0.5Vgmax 350 Jmin 1.01V 42Pmax 1000Pmin 300Pmin 300Cleg 4.00E‐10fs 4.00E+05Imax 23.81Imin 7.14

    CalculationsRo 98.98Lc 7.84E‐06f0 2.01E+06F 0.199F 0.199

    Operating point 1 2 3 4Vg 250 350 250 350I 7.14 7.14 23.81 23.81J 1.41 1.01 4.71 3.37M 0.336 0.240 0.336 0.240Pzvt(J) ‐0.906 ‐0.664 ‐3.001 ‐2.144max M 0.820 0.868 0.403 0.573phi 0.516 0.372 0.933 0.667Ic rms (approx) 3.57 3.57 11.90 11.90

    Corrected Pzvt(J)

    ECEN 58175

    Ic rms (exact) 3.50 3.48 11.83 11.79

  • Corrected Pzvt(J) calculation on the

    ECEN 58176

    next page

  • ZVT analysis and design example

    Specifications Design choicesSpecifications Design choicesVgmin 250 n 0.33Vgmax 350 Jmin 1.01V 42Pmax 1000Pmin 300 Design improvement:g pCleg 4.00E‐10 Reduction of switching frequency by 50%fs 2.00E+05 Same MOSFETImax 23.81 Allows reduction of turns ratio to 1/3Imin 7.14 Reduced RMS currents

    CalculationsRo 149.9697Lc 1.80E‐05f0 1.33E+06F 0.151

    Operating point 1 2 3 4Vg 250 350 250 350I 7.14 7.14 23.81 23.81J 1.41 1.01 4.71 3.37M 0.509 0.364 0.509 0.364Pzvt(J) ‐0.906 ‐0.664 ‐3.001 ‐2.144max M 0.863 0.900 0.548 0.677phi 0.646 0.464 0.961 0.687Ic rms (approx) 2.36 2.36 7.86 7.86I ( t) 2 32 2 31 7 82 7 80

    Corrected Pzvt(J)

    ECEN 58177

    Ic rms (exact) 2.32 2.31 7.82 7.80

  • Corrected Pzvt(J) calculation on the next page

    ECEN 58178

  • ZVT analysis and design example

    Specifications Design choicesVgmin 250 n 0.25Vgmax 350 Jmin 1.01V 42Pmax 1000Pmin 300 Design improvement:Cleg 1.00E‐10 Original swithcing frequencyfs 4.00E+05 Better MOSFET having reduced Cds: 100 pFImax 23.81 Allows reduction of turns ratio to 1/4Imin 7.14 Reduced RMS currents

    CalculationsRo 197.96Lc 7.84E‐06f0 4.02E+06F 0 100F 0.100

    Operating point 1 2 3 4Vg 250 350 250 350I 7.14 7.14 23.81 23.81J 1 41 1 01 4 71 3 37J 1.41 1.01 4.71 3.37M 0.672 0.480 0.672 0.480Pzvt(J) ‐0.906 ‐0.664 ‐3.001 ‐2.144max M 0.910 0.934 0.701 0.787phi 0.762 0.546 0.971 0.693Ic rms (approx) 1 79 1 79 5 95 5 95

    Corrected Pzvt(J)

    ECEN 58179

    Ic rms (approx) 1.79 1.79 5.95 5.95Ic rms (exact) 1.77 1.76 5.93 5.92

  • “DC Transformer” DCX

    Ultimate switched-mode power converter:

    • Minimum possible voltage and current stresses on all components

    • Zero-voltage switching of all semiconductor devices

    It is possible to approach the above by restricting the conversion ratio to a single value, V/Vg = const., which leads to the “DC transformer” or “DCX” or , g ,“unregulated DC-DC” concept

    DCX realizations

    • Any hard switched or soft switched converter (e g ZVT) operated at constant• Any hard-switched or soft-switched converter (e.g. ZVT) operated at constant control (duty ratio or phase shift), optimized for a single conversion ratio

    • Single-ratio converters by design

    Outline:

    • Introduction to DCX, dual-active-bridge DCX realization example

    • Application examples

    ECEN 581710

    • Application examples

  • DCX derivation: basic idea

    +

    Vg V+–

    _

    ECEN 581711

  • DCX derivation: dual-active-bridge converter*

    Q1 Q3 Q5 Q7 +

    Vg V+–

    v2 v4 v6 v81:n

    Q2 Q4 Q6 Q8

    _

    ECEN 581712

    * R.W.A.A. De Doncker, D.M. Divan, M.H. Kheraluwala, "A Three-phase Soft-Switched High-Power-Density DC-DC Converter for High-Power Applications," IEEE Tran. on Industry Applications, Jan/Feb 1991, Vol. 27, No. 1, pp. 63-73.

  • DCX (V/nVg = 1) waveforms neglecting resonant transitions

    V V+

    Q1

    v2

    Q3

    v4

    Q5

    v6

    Q7

    v8

    +

    1:nLl

    + +

    io

    il

    Vg V–

    Q2 Q4 Q6 Q8

    _

    vp_

    vs_

    dTs/20 < d < 1Phase

    shift

    vp pko IdnI )1( 2

    2 sg TdV

    Ivs/n

    22 s

    l

    gpk dL

    I

    sg dTVI

    il2

    s

    l

    gpk L

    I

    )1( ddTV

    I sg

    nioIpk

    nIo

    )1(2

    ddnL

    Il

    o

    Note how phase shift d controls the

    ECEN 581713

    o

    Ts/2 Ts

    shift d controls the DCX power flow

  • Dual Active Bridge (DAB) DC-DC Converter

    Cp Cp Cs Cs

    Q1 Q3 Q5 Q7

    Ll 1:nt

    io

    +

    +

    +

    –VoutCout

    Q Q Q Q

    ilt

    Vg vp vs Rout

    150-to-12 V, 100 W

    Cp Cp Cs Cs

    Q2 Q4 Q6 Q8

    i• Zero-voltage switching of all

    1 MHzEfficiency: 97.5%

    ilvds6

    vds2 vds4

    transistors• Relatively low peak and RMS

    current stressesvds2 vds4 • Circuit design trade-offs driven

    by primary-side device Cp, and secondary-side device Ron

    ECEN 581714

    [1] D. Costinett, H. Nguyen, R. Zane, D. Maksimovic, “GaN-FET based dual active bridge DC-DC converter,” IEEE APEC 2011. [2] D. Costinett, R. Zane, D. Maksimovic, "Automatic voltage and dead time control for efficiency optimization in a dual active bridge

    converter," IEEE APEC 2012.