Top Banner
Klimeck – ECE606 Fall 2012 – notes adopted from Alam ECE606: Solid State Devices Lecture 8 Temperature Dependent Carrier Density Concepts of Recombination Gerhard Klimeck [email protected]
41

ECE606: Solid State Devices Lecture 8 Temperature

Mar 19, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

ECE606: Solid State Devices Lecture 8

Temperature Dependent Carrier Density Concepts of Recombination

Gerhard Klimeck [email protected]

Page 2: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 4

Presentation Outline

•Reminder: »Basic concepts of donors and acceptors »Statistics of donors and acceptor levels »Intrinsic carrier concentration

•Temperature dependence of carrier concentration

•Multiple doping, co-doping, and heavy-doping •Conclusion

Page 3: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Donor Atoms in H2-analogy

= + r0

= r0

3

Page 4: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Donor Atoms in Real and Energy Space

( ) 20

20

40

202 4

13

1

16

πε= −

= − ×

*host

s ,hos

*host

s ,host

tm

mm K

q mK

m

.

r0

ET=E1

( )4

1 202 4πε

= −

*host

s ,host

qK

E m

~10s meV

1/β~kBT~25meV at T=300K 4

Page 5: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

How to Read the Table …

Page 6: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Summary …

0ADNp n dVN −+ − + + = ∫

0AD Nn Np + −− + + =

10

12 4F V B C F B

F D A F BB

( E E ) / k T ( E E ) / k T A( E E ) /V A

D( E E ) k/ k TTNe e

eN N N

e− − −

−−

−+ +− + − =

A bulk material must be charge neutral over all …

Further if the material is spatially homogenous

Page 7: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 4

Presentation Outline

•Reminder »Basic concepts of donors and acceptors »Statistics of donors and acceptor levels »Intrinsic carrier concentration

•Temperature dependence of carrier concentration

•Multiple doping, co-doping, and heavy-doping •Conclusion

Page 8: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Carrier-density with Uniform Doping

0D Ap n N N dV+ − − + + = ∫

0D Ap n N N+ −− + + =

01 2 1 4

− − − −− −− + − =

+ +V B C B

D B A

F F

F BF

( E ) / k T ( E ) / k TV A ( E ) / k T ( E

E EE E )

D/ k T

AN e N ee e

N N

A bulk material must be charge neutral over all …

Further if the doping is spatially homogenous

Once you know EF, you can calculate n, p, ND+, NA

-.

( ) ( )1 2 1 22 2 0

1 2 1 4β ββ βπ π − − − − − + − = + +F FD AF F E EV V A C ( E )

D)

A( E

NN F E E NN Fe e

E E

(approx.)

FD integral vs. FD function ?

Page 9: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Intrinsic Concentration

0D Ap n N N+ −− + + =

01 2 1 4

− − − −− −− + − =

+ +F V B C F B

F D B A F B

( E E ) / k T ( E E ) / k T( E E ) / k T ( E E )V C

Ak T

D/

Ne

NN e Nee

( ) ( )0 β β− − + −− = ⇒ =c F v FE E EV

ECn p e eN N

12 2β

≡ = + VGF i

C

EE E l NN

n

Page 10: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 4

Presentation Outline

•Reminder »Basic concepts of donors and acceptors »Statistics of donors and acceptor levels »Intrinsic carrier concentration

•Temperature dependence of carrier concentration

•Multiple doping, co-doping, and heavy-doping •Conclusion

Page 11: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Carrier Density with Donors

0D Ap n N N+ −− + + =

01 2 1 4

− − − −− −− + − =

+ +F V B C F B

F D B A F B

( E E ) / k T ( E E ) / k T A( E E ) / k T ( E E ) / k T

DCVN Ne e

e eN N

In spatially homogenous field-free region …

Assume N-type doping …

n (will plot in next slide)

Page 12: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Temperature-dependent Concentration

D

nN

Temperature

1

Freeze out Extrinsic

Intrinsic

i

D

nN

Page 13: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Physical Interpretation

D

nN

Temperature

1

Freeze out Extrinsic

Intrinsic

i

D

nN

Page 14: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Electron Concentration with Donors

1 2 β+

−=+ DFD E

D( E )N

eN

β β β− −= ⇒ =FC FC( E )E E

C

EC

nN

n e e eN

1 2 β −

=

+

c D

D

( E E )

C

eN

Nn 1

ξ

≡+

DNn

N

Page 15: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Electron concentration with Donors

0+− + =Dp n N

01 2

F V B C F B

F D B

( E E ) / k T ( E E ) / k T DV C ( E E ) / k T

NN e N ee

− − − −−− + =

+

2

01

ξ

− + =+

i Dnn

N

N

nn

No approximation so far ….

2× = ip n n

Page 16: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

High Donor density/Freeze out T

2

01

ξ

− + =+

i Dnn

N

N

nn

D iN n

2

01

ξ ξ

⇒ − + ≈+

⇒ + − =

D

D

N

N

N N

n

N

n

n n1 2

41 12ξ

ξ

= + −

DNn N

N

D

nN

Temperature

1

Freeze out Extrinsic

Intrinsic

i

D

nN

( )

2ξβ− −≡ C DE ECNN e

Page 17: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Extrinsic T

( )

2C DE E / kTC

DNN e Nξ

− −≡

1 241 1

ξ

= + −

DNn

NN

Electron concentration equals donor density hole concentration by nxp=ni

2

D

nN

Temperature

1

Freeze out Extrinsic

Intrinsic

i

D

nN

412

1 12ξ

ξ

≈ + −

DNNN

≈ DN

Page 18: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Intrinsic T

2

01

ξ

− + =+

i Dnn

N

Nnn

12

22

2 4

= + +

iD D nn N N

2 for

1+

−= ≈ <+ F D B( E E ) /

DDk TD F D

N N Ee

N E

D

nN

Temperature

1

Freeze out Extrinsic

Intrinsic

i

D

nN

0

2

0− + ≈iD

n n Nn

2 2 0⇒ − + − =i Dn n N n

Page 19: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Extrinsic/Intrinsic T

For i Dn N

1 222

2 4

= + + ≈

i iD Dn nN N n

2 1 22

2 4

= + + ≈

iD D

Dn nN N N

For D iN n

D

nN

Temperature

1

Freeze out Extrinsic

Intrinsic

i

D

nN

What will happen if you use silicon circuits at very high temperatures ? Bandgap determines the intrinsic carrier density.

Page 20: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Determination of Fermi-level

( ) 1β

β− −

= ⇒ = +

FcEC C

EF

C

N e ENnlnn E

0Dp n N +− + =

01 2

− − − −−− + =

+F FV B C B

D BF

( E ) / k T ( E ) / k T DV

E E( kEC E ) / T

NN e N ee

Page 21: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Reference: Vol. 6, Ch. 4

Presentation Outline

•Reminder »Basic concepts of donors and acceptors »Statistics of donors and acceptor levels »Intrinsic carrier concentration

•Temperature dependence of carrier concentration

•Multiple doping, co-doping, and heavy-doping •Conclusion

Page 22: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Multiple Donor Levels

210

1 2 1 2 1 4− − −− + + − =+ + +DF B F B A F BD

D D A( E ) / k T ( E ) / k T ( E EE kE ) / T

N N Np ne e e

Multiple levels of same donor …

1 2

1 2 01 2 1 2 1 4− − −− + + − =+ + +DF B F B AD F B

D A( E ) / k T ( E ) / k T ( E

DE E ) / k TE

N Np ne e

Ne

Codoping…

Page 23: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Heavy Doping Effects: Bandtail States

E

k

k ?

E

Page 24: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Heavy Doping Effects: Hopping Conduction

E

k

Bandgap narrowing

β−× =*

GC V

Ep n N N e

Band transport vs.

hopping-transport

e.g. Base of HBTs K?

E

e.g. a-silicon, OLED

Page 25: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Arrangement of Atoms

Poly-crystalline Thin Film Transistors

Crystalline

Amorphous Oxides

Page 26: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Poly-crystalline material

Isotropic bandgap and increase in scattering

Page 27: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Band-structure and Periodicity

Periodicity is sufficient, but not necessary for bandgap. Many amorphous material show full isotropic bandgap

PR

B, 4

, 250

8, 1

971

Eda

gaw

a, P

RL,

100

,013

901,

200

8

Page 28: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Conclusions

1. Charge neutrality condition and law of mass-action allows calculation of Fermi-level and all carrier concentration.

2. For semiconductors with field, charge neutrality will not hold and we will need to use Poisson equation.

3. Heaving doping effects play an important role in carrier transport.

Page 29: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

29

1) Non-equilibrium systems

2) Recombination generation events

3) Steady-state and transient response

4) Derivation of R-G formula

5) Conclusion

Ref. Chapter 5, pp. 134-146

Page 30: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Current Flow Through Semiconductors

30

I

V

Depends on chemical composition, crystal structure, temperature, doping, etc.

Carrier Density

velocity

I G Vq n Av

= ×= × × ×

Transport with scattering, non-equilibrium Statistical Mechanics Encapsulated into drift-diffusion equation with recombination-generation (Ch. 5 & 6)

Quantum Mechanics + Equilibrium Statistical Mechanics Encapsulated into concepts of effective masses and occupation factors (Ch. 1-4)

Page 31: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Non-equilibrium Systems

31

vs.

Chapter 6 Chapter 5

I

V

How does the system go BACK to equilibrium?

Page 32: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Direct Band-to-band Recombination

32

Photon

GaAs, InP, InSb (3D)

Lasers, LEDs, etc.

In real space … In energy space …

Photon Direct transistion – direct gap material

e and h must have same wavelength

1 in 1,000,000 encounters

Page 33: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Direct Excitonic Recombination

33

Photon (wavelength reduced from bulk)

CNT, InP, ID-systems Transistors, Lasers, Solar cells, etc.

In energy space …

In real space …

Mostly in 1D systems Requires strong coulomb interactions

Page 34: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Indirect Recombination (Trap-assisted)

34

Phonon

Ge, Si, …. Transistors, Solar cells, etc.

Trap needs to be mid-gap to be effective. Cu or Au in Si

Page 35: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Auger Recombination

35

Phonon (heat)

InP, GaAs, … Lasers, etc.

1 2

3

1 2

4

3

4

Requires very high electron density

Page 36: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Impact Ionization – A Generation Mechanism

36

Si, Ge, InP Lasers, Transistors, etc.

4 3

1

2

Page 37: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Indirect vs. Direct Bandgap

37

The top & bottom of bands do not align at same wavevector k for indirect bandgap material

Page 38: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Photon Energy and Wavevector

38

21 21 in eV

π=

photonE. / 4

2 25 10 m

π πµ−<< =

×a

photon

photonkE

=

=

+

+ V

V phot

photon

n C

C

o

k kE E

kE

Photon has large energy for excitation through bandgap, but its wavevector is negligible compared to size of BZ

2πa

2 in mπ

λ µ=photonk

Page 39: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Phonon Energy and Wavevector

39

2 2

phonphon

souo

nn

d on

kE/

= =

π πλ υ

=

=

+

+ V

V phon

phonon

n C

C

o

k kE E

kE

4

2 25 10 m

π πµ−≈ =

×a

Phonon has large wavevector comparable to BZ, but negligible energy compared to bandgap

vsound ~ 103 m/s << vlight=c ~ 106m/s λsound >> λlight

Page 40: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Localized Traps and Wavevector

40

4

2 25 10trap ~k

a mπ π

µ−≈×

Trap provides the wavevector necessary for indirect transition

a

Page 41: ECE606: Solid State Devices Lecture 8 Temperature

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

41

1) Non-equilibrium systems

2) Recombination generation events

3) Steady-state and transient response

4) Derivation of R-G formula

5) Conclusion

Ref. Chapter 5, pp. 134-146