Top Banner
Anne Bowers ECE/MAE 535 July 14, 2014 Helion Dhrimaj Summer 2014 NORTH CAROLINA STATE UNIVERSITY Design of Electromechanical Systems Semester Design Project ElectroPermanent Magnet Clamp ABSTRACT Manufacturing processes that involve ‘material removal’ (such as milling, drilling, etc.) depend upon a secure attachment of the work piece to the machine table in order for the work to be completed safely and with the desired precision. Traditionally a mechanical clamp would be used to secure the work piece, but this process can become tedious and time consuming. In an effort to improve upon these two issues, an electromagnetic solution was developed. An electromagnet would be turned on to secure the work piece to the table, due to reluctance forces, and then would be switched off when the process was finished. This solution was able to provide the desired faster and easier set up, but now had the additional risk of catastrophic failure during a power interruption, and was expensive to operate due to high power consumption. The electropermanent magnet clamp is a new design that strives to maintain the fast and easy setup provided by the electromagnetic clamp, while making use of rare earth magnets to minimize power consumption. INTRODUCTION This project will focus on the development of an optimized design for an electro permanent magnet clamp. The basic design for the electropermanent magnet clamp is to have two different kinds of rare earth magnets distributed within the workbench. NdFeB magnets are used to provide a strong flux density that is undisturbed regardless of being in the on or off state. AlNiCo magnets, which have a lower coercivity, are then used to direct the flux to either stay within the workbench, or through the work piece. The different states of the clamp, ‘on’ or ‘off’, are manipulated by placing the AlNiCo magnets within a wire coil that can reverse the polarity of the AlNiCo by pulsing current through the coil in either direction. This results in a clamp that is either ‘on’ or ‘off’ without the need to constantly run electricity to sustain an electromagnet. Figure 1 shows the arrangement and polarity of the permanent magnets within the workbench when the clamp is in the ‘off’ state. There are three NdFeB magnets that are arranged so that their polarities are oriented horizontally. There are two AlNiCo magnets placed within coils of wire with their polarities oriented vertically. The arrows in the figure indicate the path of magnetic flux, and show how all flux is ideally contained within the workbench. This leaves the work piece free to move around for easy adjustment. Figure 2 shows that when the AlNiCo magnets are pulsed with sufficient current through their surrounding coils, a strong enough magnetic field can be generated to reverse their polarity. This reversal in polarity now directs flux through the work piece, creating a reluctance force that holds the work piece in place for processing. This is the
9
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Anne  Bowers   ECE/MAE  535   July  14,  2014  Helion  Dhrimaj   Summer  2014  

NORTH  CAROLINA  STATE  UNIVERSITY  Design  of  Electromechanical  Systems  

Semester  Design  Project    

Electro-­‐Permanent  Magnet  Clamp        

ABSTRACT     Manufacturing  processes  that  involve  ‘material  removal’  (such  as  milling,  drilling,  etc.)  depend  upon  a  secure  attachment  of  the  work  piece  to  the  machine  table  in  order  for  the  work  to  be  completed  safely  and  with  the  desired  precision.    Traditionally  a  mechanical  clamp  would  be  used  to  secure  the  work  piece,  but  this  process  can  become  tedious  and  time  consuming.    In  an  effort  to  improve  upon  these  two  issues,  an  electro-­‐magnetic  solution  was  developed.    An  electromagnet  would  be  turned  on  to  secure  the  work  piece  to  the  table,  due  to  reluctance  forces,  and  then  would  be  switched  off  when  the  process  was  finished.    This  solution  was  able  to  provide  the  desired  faster  and  easier  set  up,  but  now  had  the  additional  risk  of  catastrophic  failure  during  a  power  interruption,  and  was  expensive  to  operate  due  to  high  power  consumption.    The  electro-­‐permanent  magnet  clamp  is  a  new  design  that  strives  to  maintain  the  fast  and  easy  setup  provided  by  the  electromagnetic  clamp,  while  making  use  of  rare  earth  magnets  to  minimize  power  consumption.    INTRODUCTION     This  project  will  focus  on  the  development  of  an  optimized  design  for  an  electro-­‐permanent  magnet  clamp.    The  basic  design  for  the  electro-­‐permanent  magnet  clamp  is  to  have  two  different  kinds  of  rare  earth  magnets  distributed  within  the  workbench.    NdFeB  magnets  are  used  to  provide  a  strong  flux  density  that  is  undisturbed  regardless  of  being  in  the  on  or  off  state.    AlNiCo  magnets,  which  have  a  lower  coercivity,  are  then  used  to  direct  the  flux  to  either  stay  within  the  workbench,  or  through  the  work  piece.    The  different  states  of  the  clamp,  ‘on’  or  ‘off’,  are  manipulated  by  placing  the  AlNiCo  magnets  within  a  wire  coil  that  can  reverse  the  polarity  of  the  AlNiCo  by  pulsing  current  through  the  coil  in  either  direction.    This  results  in  a  clamp  that  is  either  ‘on’  or  ‘off’  without  the  need  to  constantly  run  electricity  to  sustain  an  electro-­‐magnet.     Figure  1  shows  the  arrangement  and  polarity  of  the  permanent  magnets  within  the  workbench  when  the  clamp  is  in  the  ‘off’  state.    There  are  three  NdFeB  magnets  that  are  arranged  so  that  their  polarities  are  oriented  horizontally.    There  are  two  AlNiCo  magnets  placed  within  coils  of  wire  with  their  polarities  oriented  vertically.    The  arrows  in  the  figure  indicate  the  path  of  magnetic  flux,  and  show  how  all  flux  is  ideally  contained  within  the  workbench.    This  leaves  the  work  piece  free  to  move  around  for  easy  adjustment.         Figure  2  shows  that  when  the  AlNiCo  magnets  are  pulsed  with  sufficient  current  through  their  surrounding  coils,  a  strong  enough  magnetic  field  can  be  generated  to  reverse  their  polarity.    This  reversal  in  polarity  now  directs  flux  through  the  work  piece,  creating  a  reluctance  force  that  holds  the  work  piece  in  place  for  processing.    This  is  the  

Page 2: ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Anne  Bowers   ECE/MAE  535   July  14,  2014  Helion  Dhrimaj   Summer  2014  

clamp  ‘on’  state,  and  it  does  not  require  sustained  electrical  power  to  maintain  the  clamping  force,  making  it  both  safer  and  more  efficient  than  the  electromagnet  clamp.    

 Figure  1.  Cutaway  of  Electro-­‐Permanent  Magnet  Clamp  in  the  ‘Off”  State  

     

 Figure  2.  Cutaway  of  Electro-­‐Permanent  Magnet  Clamp  in  the  ‘On’  State  

    The  design  optimizations  for  this  clamp  will  focus  on  minimization  of  the  overall  size  and  weight  of  the  electro-­‐permanent  magnet  clamp  (EMPC)  and  required  permanent  magnetic  materials,  NdFeB  and  AlNiCo,  while  still  maintaining  a  minimum  of  500lbs  of  vertical  reluctance  force  while  in  the  ‘on’  state.    Minimization  of  these  two  parameters  will  reduce  the  overall  cost  to  produce  the  clamps.    The  design  will  also  seek  to  maximize  the  vertical  reluctance  force  as  a  secondary  goal  to  minimizing  the  material  costs.    METHODS  AND  MATERIALS     The  materials  that  will  be  used  for  this  clamp  are  AlNiCo  permanent  magnets,  NdFeB  permanent  magnets,  1025  steel,  magnet  wire,  and  a  230V  source.    The  grades  and  volume  of  the  permanent  magnets  will  be  part  of  the  design  optimization.    The  size  of  magnet  wire  to  be  used  will  need  to  be  determined  based  on  the  number  of  turns  required  to  generate  the  magnetic  pulse  that  flips  the  AlNiCo  polarization,  and  the  amount  of  current  

Page 3: ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Anne  Bowers   ECE/MAE  535   July  14,  2014  Helion  Dhrimaj   Summer  2014  

that  can  be  sustained  within  the  wire.    Tables  1-­‐3  summarize  the  material  properties  for  the  available  permanent  magnet  materials  and  1020  Steel.    1020  steel  is  being  considered  because  it  is  the  closest  grade  to  1025  that  is  available  for  simulation.        

Table  1.  Summary  of  Properties  of  Available  NdFeB  Materials  Available  NdFeB  Materials  

Grade   Remanence  Flux  Density   Coercive   Max.  Energy  Density  Br   HcB   HcJ   (BH)max  

mT   G   kA/m   Oe   kA/m   mT   G   kA/m  N10[3]   690   6,900   424   5,300   760   9,500   90-­‐100   7.3-­‐8.1  N38[1]   1,220   12,200   899   11,300   955   12,000   287   36  N40[1]   1,250   12,500   907   11,400   955   12,000   302   38  N42[1]   1,280   12,800   915   11,500   955   12,000   318   40  N52[1]   1,430   14,300   796   10,000   876   11,000   398   50    

Table  2.  Summary  of  Properties  of  Available  AlNiCo  Materials  Available  AlNiCo  Materials[4]  

Grade   Remanence  Flux  Density  

Coercive   Max.  Energy  Density  

Operating  Temp  

MMPA  

Br   HcB   HcJ   (BH)max   Tw  Max  kGs   mT   kOe   kA/m   kOe   kA/m   MGOe   kJ/m3   C  

LNG34   11   1100   0.63   50   0.65   52   4.25   34   525   AlNiCo5  LNG37   11.8   1180   0.61   49   0.64   51   4.63   37   525   AlNiCo5  LNG40   12   1200   0.63   50   0.65   52   5   40   525   AlNiCo5  LNG44   12.5   1250   0.65   52   0.68   54   5.5   44   525   AlNiCo5  LNG52   13   1300   0.7   56   0.73   58   6.5   52   525   AlNiCo  

5DG  LNG60   13.5   1350   0.73   58   0.75   60   7.5   60   525   AlNiCo  

5-­‐7    

Table  3.  Summary  of  Properties  of  1020  Steel  AISI  1020  Steel  Characteristics  

Density   0.2839  lb/in3  Tensile  Strength   63800  psi  Relative  Permeability  (0.3440  T)[2]   1496  Relative  Permeability  (0.9600  T)[2]   444  Relative  Permeability    (1.4700  T)[2]   97  Relative  Permeability  (1.6150  T)[2]   55  

    The  data  in  Table  1  shows  that  the  increase  in  grade  for  NdFeB  corresponds  to  an  increase  in  BHmax,  the  maximum  energy  product.    It  is  expected  that  higher  grades  of  NdFeB  will  require  less  material  to  make  a  clamp  with  sufficient  holding  force,  but  depending  on  

Page 4: ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Anne  Bowers   ECE/MAE  535   July  14,  2014  Helion  Dhrimaj   Summer  2014  

the  market  value  for  different  grades,  the  highest  and  lowest  grade  may  not  prove  to  be  the  most  economical  choice.    The  data  in  Table  2  indicates  that  the  lower  grades  of  AlNiCo  have  a  lower  coercivity,  and  so  it  should  take  less  current  in  the  coils  to  flip  the  magnet  poles  making  it  a  more  efficient  clamp  to  operate.    The  lower  grades  will  also  require  more  material  because  their  maximum  energy  density  is  lower.         The  magnetic  flux  that  is  responsible  for  generating  the  holding  force  while  the  clamp  is  in  the  ‘on’  state  must  also  be  fully  contained  in  the  clamp  during  the  ‘off’  state  in  order  to  make  it  easy  to  position  and  adjust  the  work  piece  before  clamping  it  down  for  work.    In  order  to  prevent  any  flux  from  travelling  through  the  work  piece  while  the  clamp  is  in  the  ‘off’  state,  the  flux  supplied  by  the  AlNiCos  must  equal  the  flux  supplied  by  NdFeBs.    This  can  be  calculated  using  equation  1,  and  confirmed  by  simulation  using  FEMM.    

𝐵!"#$%& ∗ 𝐴!"#$%& = 𝐵!"#$% ∗ 𝐴!"#$%                 Eq.  (1)       The  data  in  Table  3  includes  the  relative  permittivity  values  for  steel  at  different  flux  density  values.    This  is  important  because  it  indicates  when  the  steel  in  the  clamp  and  work  piece  are  reaching  their  saturation  point.    If  the  steel  becomes  saturated  then  energy  is  being  wasted,  and  a  lower  grade  of  magnet  that  supplies  less  flux  density  will  be  able  to  achieve  the  same  holding  force,  presumably  for  less  cost.  Table  3  shows  that  steel  becomes  saturated  between  1.4  T  and  1.6  T.    Any  designs  that  result  in  points  of  flux  density  greater  than  this  range  should  not  be  considered.      The  last  parameter  is  the  ability  to  switch  the  clamp  ‘on’  and  ‘off’  using  the  coil  bobbins.    The  minimum  current  pulse  required  in  the  coil  bobbins  can  be  predicted  using  Ampere’s  Law.    Ampere’s  Law  relates  the  current  enclosed  by  a  closed  contour  integral  to  the  magnetic  field.    Equations  2,  3,  and  4  show  Ampere’s  Law  and  how  it  will  be  used  to  determine  the  minimum  current  for  turning  the  clamp  on  and  off.    

𝐻�𝑑𝑙!! = 𝐼!"#!           Eq.  (2)  

 𝐻 ∗ 𝐿 = 𝑁 ∗ 𝐼               Eq.  (3)  

 !∗!!= 𝑁𝐼 → 𝐼 = !∗!

!∗!             Eq.  (4)  

      Given  Equation  4  we  can  determine  the  necessary  current  to  turn  the  clamp  on  and  off.    This  relationship  shows  that  the  necessary  current  is  directly  related  to  the  strength  of  the  magnetic  flux  of  the  AlNiCo  magnets,  and  inversely  proportional  to  the  number  of  turns  wire.    The  length  of  wire  will  be  limited  by  the  coil  bobbin  dimensions  and  available  space,  and  the  permeability  will  be  determined  by  the  grade  of  AlNiCo  chosen  in  the  final  design.    The  resistance  of  the  wire  is  also  a  factor  in  determining  how  much  current  can  be  pulsed  with  a  230V  source.    The  physical  properties  of  several  common  gauges  of  magnet  wire  are  summarized  in  Table  4.              

Page 5: ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Anne  Bowers   ECE/MAE  535   July  14,  2014  Helion  Dhrimaj   Summer  2014  

Table  4.  Physical  Properties  of  Different  Magnet  Wire  Sizes  Magnet  Wire  Specifications  Wire  Gauge  (AWG)  

Resistance  (Ω/1000ft)  

Total  Resistance  for  97  Turns  (Ω)  

Maximum  Current    w/  230  V  Source  

Cross-­‐sectional  Area  for  97  Turns  (in2)  

24   25.67   2.27   101.3   0.031  22   16.14   1.43   160.8   0.049  20   10.15   0.897   256.4   0.078  18   6.385   0.565   407.1   0.124  16   4.016   0.355   647.9   0.197       Using  the  FEMM  software  introduced  in  the  course,  and  the  provided  general  layout,  a  model  was  constructed.  Figure  3  shows  this  layout,  including  the  materials  that  were  used  in  the  simulation.    1020  steel  was  used  for  the  simulation  because  it  was  the  closest  available  material  in  the  material  library.    The  air  gap  is  0.1  mm  wide,  and  the  model  shown  has  a  depth  of  2.6cm,  which  is  midway  through  the  clamp.    All  forces  calculated  by  FEMM  will  need  to  be  doubled  to  account  for  the  other  half  of  the  clamp.      

 Figure  3.  Cross-­‐sectional  layout  of  Electro-­‐Permanent  Magnet  Clamp  

 RESULTS     The  initial  magnetics  simulation  results,  using  NdFeB  37  and  AlNiCo  5  were  able  to  achieve  an  attractive  force  between  the  work  piece  and  the  body  of  6034  N,  which  is  roughly  1356  lbs.    This  design  meets  the  minimum  force  specifications,  but  can  be  improved.    The  magnetic  flux  was  concentrated  in  the  two  poles  of  the  workbench  at  nearly  2  Tesla.    Given  that  steel  reaches  saturation  between  1.4  and  1.6  Tesla[2],  energy  was  being  wasted  in  this  saturated  condition.           The  clamp  was  redesigned  to  help  minimize  this  inefficiency  in  each  different  magnet  grade  combination,  which  is  summarized  in  Table  6.    The  minimum  clamp  dimensions  that  were  found  to  ensure  a  reasonable  path  for  flux  without  unnecessary  bulk  are  summarized  in  Table  5.    While  the  overall  size  of  the  clamp  is  not  large  in  dimensions,  it  is  ultimately  a  heavy  piece  of  equipment,  totaling  around  62  pounds.    The  varying  height  of  the  AlNiCo  magnets  for  each  design  made  it  difficult  to  predict  exactly  how  much  steel  would  be  in  the  pole  without  knowing  the  final  client  design  choice,  so  the  total  weight  is  a  conservative  maximum  based  on  the  presence  of  no  AlNiCo.    Any  final  clamp  will  have  slightly  less  steel.  

Page 6: ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Anne  Bowers   ECE/MAE  535   July  14,  2014  Helion  Dhrimaj   Summer  2014  

 Table  5.  Clamp  Steel  Weight  

Clamp  Steel  Weight  Based  1025  Steel  Density  Clamp  Piece   Volume  (mm3)   Volume  (in3)   Density  (lb/in3)    Weight  (lb)  Pole*   245000   14.951   0.2839   4.24  Base   1485000   90.620   0.2839   25.73  Sides   1862000   113.63   0.2839   32.26  Total   3592000   219.201   -­‐   62.23  

 Table  6.  Summary  of  Minimum  Required  Dimensions  and  Cost  for  Different  Magnet  Grade  

Combinations  Magnet  Combination    

Force  in  ON  (N)/(lbs)  

Force  in    OFF  (N)/(lbs)  

Max.  Satu-­‐  ration  (T)  

NdFeB  Dimensions  (mm)  

AlNiCo  Dimensions  (mm)  

NdFeB    Price  ($)  

AlNiCo  Price  ($)  

I  (A)  

NdFeB10[8-­‐11]/  AlNiCo  5[6]  

4552.99/1023    

~0/0   1.41   (60  x  50  x  36)    

(47  x  46  x  17)    

324   103.21   66.6  

NdFeB10[8-­‐11]/  AlNiCo  5[6]  

6432.22/1446    

~0/0   1.71   (60  x  50  x  44)    

(47  x  46  x  45)  

396   274.99   188.9  

NdFeB37[8]/  AlNiCo6[5][6][7]  

2422.7/  544  

34/7.6   1.293   (60  x  50  x  17)  

(47  x  46  x  10)  

699.50   80.57   10  

NdFeB37[8]/  AlNiCo6[5][6][7]  

6773.06/1522  

34/7.6   1.747   (60  x  50  x  17)  

(47  x  46  x  30)  

699.50   241.72   100  

NdFeB40[9]/  AlNiCo6[5][6][7]  

2676.94/601  

36.38/  8.1  

1.36   (60  x  50  x  17)  

(47  x  46  x  10)  

141.984   80.57   10  

NdFeB40[9]/  AlNiCo6[5][6][7]  

6853.24/1540  

36.37/  8.1  

1.814   (60  x  50  x  17)  

(47  x  46  x  30)  

141.98   241.72   100  

NdFeB52[10]/  AlNiCo6[5][6][7]  

2488.2/  559  

32.157/7.2  

1.374   (60  x  50  x  17)  

(47  x  46  x  10)  

199.18   80.57   10  

NdFeB52[10]/  AlNiCo6[5][6][7]  

6712/  1508  

36.637/8.2  

1.84   (60  x  50  x  17)  

(47  x  46  x  30)  

199.18   241.72   100  

NdFeB37[8]/  AlNiCo8[5]  

2378.9/  535  

47.178/10.6  

1.351   (60  x  50  x  17)  

(47  x  46  x  12.5)  

690.50   75.72   24  

NdFeB37[8]/  AlNiCo8[5]  

6669.97/1500  

44.62/  10.0  

1.813   (60  x  50  x  17)  

(47  x  46  x  32.5)  

690.50   196.89   150  

NdFeB40[9]/  AlNiCo8[5]  

2463.62/  554  

57.72/  13.0  

1.366   (60  x  50  x  17)  

(47  x  46  x  12.5)  

141.984   75.72   24  

NdFeB40[9]/  AlNiCo8[5]  

6756.47/1519  

54.659/12.3  

1.837   (60  x  50  x  17)  

(47  x  46  x  32.5)  

141.984   196.89   150  

NdFeB52[10]/  AlNiCo8[5]  

2565.4/  577  

127/  28.6  

1.307   (60  x  50  x  17)  

(47  x  46  x  12.5)  

199.18   75.72   22  

NdFeB52[10]/  AlNiCo8[5]  

6794.49/1527  

124.4/28.0  

1.839   (60  x  50  x  17)  

(47  x  46  x  35)  

199.18   212.04   150  

Page 7: ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Anne  Bowers   ECE/MAE  535   July  14,  2014  Helion  Dhrimaj   Summer  2014  

  Figures  4-­‐6  show  results  of  simulations  made  with  NdFeB  10  and  AlNiCo  5  magnets.    Simulations  of  all  other  magnet  combinations  yielded  similar  results.    Figure  4  shows  the  clamp  in  the  ‘on’  position.    The  maximum  flux  density  is  concentrated  in  the  poles  and  the  work  piece  but  does  not  exceed  1.41T  so  minimal  amounts  of  energy  are  being  wasted.    Figure  5  shows  the  same  clamp  in  the  off  state  with  a  measured  0.05lbs  of  off  force.    That  amount  of  force  should  be  unnoticeable  to  anyone  responsible  for  positioning  the  work  piece.    The  last  figure,  figure  6,  shows  the  clamp  in  the  midst  of  switching.    The  lack  of  flux  lines  through  the  AlNiCo  magnets  and  coils  shows  that  the  current  in  the  coil  is  at  least  strong  enough  to  balance  the  AlNiCo  flux.    Any  current  increase  past  that  point  will  cause  the  AlNiCo  magnet  poles  to  flip.    

 Figure  4.  Clamp  with  Minimum  PM  Materials  N10  and  AlNiCo  5  in  On  Position  with  2046lbs  

of  holding  force    

 Figure  5.  Clamp  with  Minimum  PM  Materials  N10  and  AlNiCo  5  in  Off  Position  with  -­‐0.05lbs  

of  Holding  Force    

Page 8: ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Anne  Bowers   ECE/MAE  535   July  14,  2014  Helion  Dhrimaj   Summer  2014  

 Figure  6.  Clamp  with  66.6  A  of  Current  During  Switching  from  On  to  Off  

 CONCLUSIONS       The  NdFeb10/AlNiCo5  combination  achieved  the  required  force  with  a  force  of  nearly  zero  in  the  “OFF”  state.  For  our  clamp  design,  this  proved  unobtainable  with  the  higher-­‐grade  magnets.  As  evident  in  the  table  above,  all  of  the  higher  grade  magnetic  combinations  experienced  some  force  in  the  air  gap  during  the  “OFF”  state.     With  the  NdFeB37,  40,  and  50,  the  ideal  dimensions  ranged  from  (60  mm  x  50mm  x  15mm)  to  (60  mm  x  50mm  x  22.5  mm).  This  NdFeB37/40/50  dimensional  range  supplied  enough  magnetic  flux  density  to  achieve  500  lbs.  and  1500  lbs.  of  force.  At  the  same  time  it  minimized  the  magnetic  saturation  as  well  as  the  force  in  the  OFF  state.  For  the  sake  of  time,  we  chose  to  leave  the  NdFeB  magnets  at  a  constant  (60mm  x  50mm  x  17mm).  The  only  variable  left  to  modify  was  the  AlNiCo  dimension.  According  to  the  reluctance  force  in  the  “ON”  state,  the  AlNiCo5  length  ranged  from  (17  mm  -­‐  45  mm),  the  AlNiCo6  length  ranged  from  (10  mm-­‐  30  mm),  and  the  AlNiCo8  length  ranged  from  (12.5mm  to  35  mm).  Combinations  of  higher  magnetic  grades,  NdFeB37  and  above,  as  well  as  AlNiCo6  and  above,  provided  sufficient  force  for  the  clamp.  On  the  negative  side,  these  aforementioned  magnets  experienced  high  levels  of  saturation  when  designed  for  the  1500  lbs.  of  force.  Furthermore,  an  air  gap  force  was  measured  in  the  FEMM  analysis  even  in  the  OFF  state.  This  is  more  substantial  in  the  NdFeB52/AlNiCo8  combination,  where  we  measured  a  force  close  to  130  N  in  “OFF”  state.     The  maximum  cross-­‐sectional  area  that  is  available  for  the  coil  is  0.558in2  so  the  clamp  dimensions  would  accommodate  any  of  the  wire  sizes  in  table  4.    The  larger  size  wire  would  be  more  desirable  for  the  final  product  because  it  is  better  able  to  handle  the  higher  current  pulses  and  the  heat  that  is  generated  during  the  pulse.       Overall  it  would  be  difficult  to  choose  an  ideal  magnet  design.  The  NdFeB10/AlNiCo5  combination  has  a  high  price  due  to  the  amount  of  material  being  used.  At  the  same  time  it  experiences  almost  no  force  in  the  “Off”  state  and  relatively  low  saturation  levels,  even  for  the  1500  lbs.  force  requirement.  Alternatively,  the  higher  grades  of  magnet  tend  to  require  less  overall  material.  This  equates  to  slightly  lower  costs  but  at  the  same  time  higher  levels  of  saturation  result,  and  a  force  is  present  in  the  “Off”  state.  Considering  the  alternatives  we  were  able  to  develop,  and  our  ability  to    apply  FEMM  as  a  tool  in  the  design  process,  this  project  has  been  a  good  opportunity  to  demonstrate  the  material  we  have  learned  throughout  the  semester.  

Page 9: ECE535_DesignProj_Report_ABowers&HDhrimaj (1)

Anne  Bowers   ECE/MAE  535   July  14,  2014  Helion  Dhrimaj   Summer  2014  

REFERENCES    [1]  NdFeB  Specialists  E-­‐Magnets,  Berkhamsted,  Herdforshire,  UK  (2014).  “Grades  of  Neodymium”  (Online)  Accessed  29  July,  2014.  http://www.ndfeb-­‐info.com/neodymium_grades.aspx    [2]  Field  Precision  LLC.,  Albuquerque,  New  Mexico,  USA  (2014).  “Saturation  Curves  for  Soft  Magnetic  Materials”  (Online)  Accessed  29  July,  2014.  http://www.fieldp.com/magneticproperties.html    [3]  Magnetic  Materials  &  Components,  Hauppage,  New  York,  USA  (2014).  “Compression  Bonded  Magnets”  (Online)  Accessed  29  July,  2014.  http://www.mmcmagnetics.com/ourproducts/Bonded/Compression_Bonded.htm    [4]  X-­‐Mag,  Inc.,  Hangzhou,  Zhejiang,  China.  (2014).  "Magnetic  Characteristics  of  AlNiCo  Magnets".      [5]  Arnold  Magnetic  Technologies  Corporation,  Rochester,  New  York,  USA  (2014).  “Alnico  8  Magnets”  (Online)  Accessed  29  July,  2014.  http://buyonline.arnoldmagnetics.com/p-­‐11-­‐alnico-­‐8-­‐magnets.aspx    [6]  Arnold  Magnetic  Technologies  Corporation,  Rochester,  New  York,  USA  (2014).  “Alnico  5  Magnets”  (Online)  Accessed  29  July,  2014.  http://buyonline.arnoldmagnetics.com/p-­‐12-­‐alnico-­‐4-­‐5-­‐magnets.aspx    [7]  Total  Magnetic  Solutions,  Culver  City,  California,  USA  (2014).  “Properties  of  Alnico  Magnets”  (Online)  Accessed  29  July,  2014.  http://www.magnetsales.com/alnico/Alprops.htm    [8]  Magnet  Shop,  Culver  City,  California,  USA  (2014).  “Neodymium  Block  Magnets”  (Online)  Accessed  29  July,  2014.    http://magnetsales.thomasnet.com/viewitems/block-­‐magnets/large-­‐neodymium-­‐rectangle-­‐magnets?&forward=1    [9]  CMS  Magnetics,  Garland,  Texas,  USA  (2014).  “Neodymium  Magnets”  (Online)  Accessed  29  July,  2014.    http://www.magnet4sale.com/10-­‐pc-­‐n40-­‐neodymium-­‐magnets-­‐4-­‐10x2-­‐10x1-­‐10-­‐ndfeb-­‐rare-­‐earth-­‐magnets/    [10]  K  &  J  Magnetics,  Inc.,  Pipersville,  Pennsylvania,  USA  (2014).  “Neodymium  Block  Magnets”  (Online)  Accessed  29  July,  2014.  http://www.kjmagnetics.com/products.asp?cat=11    [11]  Integrated  Magnetics,  Culver  City,  California,  USA  (2014).  “Neodymium  Iron  Boron  Magnets-­‐  General  Information”  (Online)  Accessed  29  July,  2014  http://www.intemag.com/NdFeB.html