Top Banner
– 1 – Advanced Analog IC Design Oversampling ADC Professor Y. Chiu ECE 581 Fall 2009 Oversampling ADC
24
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ECE 581

– 1 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Oversampling ADC

Page 2: ECE 581

– 2 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Nyquist-Rate ADC

• The “black box” version of the quantization process

• Digitizes the input signal up to the Nyquist frequency (fs/2)

• Minimum sampling frequency (fs) for a given input bandwidth

• Each sample is digitized to the maximum resolution of the converter

A/Dbn

Digital outputAnalog input

b1...

Vref

fs

Page 3: ECE 581

– 3 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Anti-Aliasing Filter (AAF)

• Input signal must be band-limited prior to sampling

• Nyquist sampling places stringent requirement on the roll-off characteristic of AAF

• Often some oversampling is employed to relax the AAF design (better phase response too)

• Decimation filter (digital) can be linear-phase

Mfs

PSD

PSD

f

ffm

fm

PSD

ffm=fs/2

fs

AAF

AAFDF

Page 4: ECE 581

– 4 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Oversampling ADC

• Sample rate is well beyond the signal bandwidth

• Coarse quantization is combined with feedback to provide an accurate estimate of the input signal on an “average” sense

• Quantization error in the coarse digital output can be removed by the digital decimation filter

• The resolution/accuracy of oversampling converters is achieved in a sequence of samples (“average” sense) rather than a single sample; the usual concept of DNL and INL of Nyquist converters are not applicable

OSR

Decimation filter

bn

b1

...A/D

Digital outputAnalog input

d1

Vref

fs

Page 5: ECE 581

– 5 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Relaxed AAF Requirement

• Nyquist-rate converters

• Oversampling converters

|X(jf)|

f2fs 3fsfm=fs/2 fs/2

|X(jf)|

ffm

|X(jf)|

f2fs 3fs

Sub-sampling Band-pass oversampling

fs/2

|X(jf)|

f

OSR = fs/2fm

Page 6: ECE 581

– 6 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Oversampling ADC

• Predictive type

– Delta modulation

• Noise-shaping type

– Sigma-delta modulation

– Multi-level (quantization) sigma-delta modulation

– Multi-stage (cascaded) sigma-delta modulation (MASH)

Page 7: ECE 581

– 7 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

PSD

f-fs/2

A/Dbn

b1

... M

Decimation filter

bn

b1

...

fs

A/D

Mfs

fs/2

Δ2/12PSD

f-Mfs/2 Mfs/2

Δ2/12

-fs/2 fs/2

OversamplingNyquist Oversampled

Sample rate Noise power Power

Nyquist fs Δ2/12 P

Oversampled M*fs (Δ2/12)/M M*P

OSR = M

Page 8: ECE 581

– 8 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Noise ShapingPSD

f-Mfs/2 Mfs/2-fs/2 fs/2

Push noise out of signal band

Large gain @ LF, low gain @ HF

→ Integrator?

A/DH(f)

Mfs

Vi

e

Vi

1 2H(f)

1 2

e e

― H(f)

fMfs/2fs/2

1― H-1(f)

Page 9: ECE 581

– 9 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

A/D∫Vi

D/A

Do

Δ

Sigma-Delta (ΣΔ) Modulator

• Noise shaping obtained with an integrator

• Output subtracted from input to avoid integrator saturation

First-orderΣΔ modulator

z-1Σ

A/D∫Vi

D/A

Do

Δ

Page 10: ECE 581

– 10 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Linearized Discrete-Time Model

H(z)X(z) Y(z)

E(z)

1

1

z1

zH(z)

zEz1zXzzY

zEzH1

1zX

zH1

zHzY

zEzYzXzHzY

11

DelayzzX

zYSTF

:Function Transfer Signal

1

HPz1zE

zYNTF

:Function Transfer Noise

1

Caveat: E(z) may be correlated with X(z) – not “white”!

Page 11: ECE 581

– 11 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

PSD

ffs/2fm

First-Order Noise Shaping

3

π

f

2f

12

Δ

dff

f2π

2f

1

12

Δ

dff

fπ2sin

2f

1

12

Δ

dfNTF2f

1

12

ΔN

23

s

m2

2f

0 ss

2

2f

0 ss

2

2f

0 s

22e

m

m

m

2 2

2e 3

In - band quantization noise :

Δ πN

12 3M

Doubling OSR (M) increases SQNR by 9 dB (1.5 bit/oct)

2

sf

fπ2sin

Page 12: ECE 581

– 12 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

SC Implementation

• SC integrator

• 1-bit ADC → simple, ZX detector

• 1-bit feedback DAC → simple, inherently linear

CI

Ф2Ф1

Ф1Ф2

Vi

Do

+VR 1-b DAC-VR

CS

Page 13: ECE 581

– 13 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Second-Order ΣΔ ModulatorINT1 INT2

A/D

D/A

Doz-1Vi

2

z-1

2zSTF

:Function Transfer Signal

21z1NTF

:Function Transfer Noise

5

422e 5M

π

12

ΔN

:noise onquantizati band-In

Doubling OSR (M) increases SQNR by 15 dB (2.5 bit/oct)

Page 14: ECE 581

– 14 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

2nd-Order ΣΔ Modulator (1-Bit Quantizer)

• Simple, stable, highly-linear

• Insensitive to component mismatch

• Less correlation b/t E(z) and X(z)

1-bitA/D

1-bitD/A

Doz-1Vi z-1 βα

2

zE1αz

1zzX

1αz

αzY

2

2

2

jy

z-plane

0 1x

(2) (2)

Page 15: ECE 581

– 15 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Generalization (Lth-Order Noise Shaping)

12L

2L22e M12L

π

12

ΔN

:noise onquantizati band-In

zEz1zXzzY

:function transfer ModulatorL1n

• Doubling OSR (M) increases SQNR by (6L+3) dB, or (L+0.5) bit

• Potential instability for 3rd- and higher-order single-loop ΣΔ modulators

2L 1

2L

2L 1 M

π

Page 16: ECE 581

– 16 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

ΣΔ vs. Nyquist ADC’s

ΣΔ ADC output (1-bit) Nyquist ADC output

• ΣΔ ADC behaves quite differently from Nyquist converters

• Digital codes only display an “average” impression of the input

• INL, DNL, monotonicity, missing code, etc. do not directly apply in ΣΔ converters → use SNR, SNDR, SFDR instead

+1

-1

Page 17: ECE 581

– 17 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Tones

...

...

Vi = 0

Vi = 0.001

T

2000*T

• The output spectrum corresponding to Vi = 0 results in a tone at fs/2, and will get eliminated by the decimation filter

• The 2nd output not only has a tone at fs/2, but also a low-frequency tone – fs/2000 – that cannot be eliminated by the decimation filter

Page 18: ECE 581

– 18 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Tones

• Origin – the quantization error spectrum of the low-resolution ADC (1-bit in the previous example) in a ΣΔ modulator is NOT white, but correlated with the input signal, especially for idle (DC) inputs.

(R. Gray, “Spectral analysis of sigma-delta quantization noise”)

• Approaches to “whitening” the error spectrum

– Dither – high-frequency noise added in the loop to randomize the quantization error. Drawback is that large dither consumes the input dynamic range.

– Multi-level quantization. Needs linear multi-level DAC.

– High-order single-loop ΣΔ modulator. Potentially unstable.

– Cascaded (MASH) ΣΔ modulator. Sensitive to mismatch.

Page 19: ECE 581

– 19 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Cascaded (MASH) ΣΔ Modulator

H(z)X(z) Y(z)

E(z)

D/A

A/D DNTFE(z)

• Idea: to further quantize E(z) and later subtract out in digital domain

• The 2nd quantizer can be a ΣΔ modulator as well

Page 20: ECE 581

– 20 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

2-1 Cascaded Modulator

INT1 INT2

z-1X(z)

2

z-1

INT3

z-1 (1-z-1)2

D/A

D/A

E1(z)

E2(z)

z-1 Y(z)

E1(z)

Y1(z)

Y2(z)

DNTF

Page 21: ECE 581

– 21 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

2-1 Cascaded Modulator

11

2121 zzEz1zXzzY

zEz1zXz

zEz1zEz1zzEz1zzXz

zYzYzY

2

313

2

311

2111

2113

21

212

11

12 z1zEz1zEzzY

• E1(z) completely cancelled assuming perfect matching between the modulator NTF (analog domain) and the DNTF (digital domain)

• A 3rd-order noise shaping on E2(z) obtained

• No potential instability problem

Page 22: ECE 581

– 22 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

Integrator Noise

2

311

213

212

11 Ez1Ez1δNz1Nz1NXY

INT1 INT2

H(z)X(z)

2

H(z)

INT3

H(z)

D/A

D/A

E1

E2

Y1(z)

Y2(z)

N1 N2

N3

Delay ignored

INT1 dominatesthe overall noise

Performance!

Page 23: ECE 581

– 23 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

References

1. B. E. Boser and B. A. Wooley, JSSC, pp. 1298-1308, issue 6, 1988.

2. B. H. Leung et al., JSSC, pp. 1351-1357, issue 6, 1988.

3. T. C. Leslie and B. Singh, ISCAS, 1990, pp. 372-375.

4. B. P. Brandt and B. A. Wooley, JSSC, pp. 1746-1756, issue 12, 1991.

5. F. Chen and B. H. Leung, JSSC, pp. 453-460, issue 4, 1995.

6. R. T. Baird and T. S. Fiez, TCAS2, pp. 753-762, issue 12, 1995.

7. T. L. Brooks et al., JSSC, pp. 1896-1906, issue 12, 1997.

8. A. K. Ong and B. A. Wooley, JSSC, pp. 1920-1934, issue 12, 1997.

9. S. A. Jantzi, K. W. Martin, and A.S. Sedra, JSSC, pp. 1935-1950, issue 12, 1997.

10. A. Yasuda, H. Tanimoto, and T. Iida, JSSC, pp. 1879-1886, issue 12, 1998.

11. A. R. Feldman, B. E. Boser, and P. R. Gray, JSSC, pp. 1462-1469, issue 10, 1998.

12. H. Tao and J. M. Khoury, JSSC, pp. 1741-1752, issue 12, 1999.

13. E. J. van der Zwan et al., JSSC, pp. 1810-1819, issue 12, 2000.

14. I. Fujimori et al., JSSC, pp. 1820-1828, issue 12, 2000.

15. Y. Geerts, M.S.J. Steyaert, W. Sansen, JSSC, pp. 1829-1840, issue 12, 2000.

Page 24: ECE 581

– 24 –

Advanced Analog IC Design Oversampling ADC Professor Y. ChiuECE 581 Fall 2009

References

16. T. Burger and Q. Huang, JSSC, pp. 1868-1878, issue 12, 2001.

17. K. Vleugels, S. Rabii, and B. A. Wooley, JSSC, pp. 1887-1899, issue 12, 2001.

18. S. K. Gupta and V. Fong, JSSC, pp. 1653-1661, issue 12, 2002.

19. R. Schreier et al., JSSC, pp. 1636-1644, issue 12, 2002.

20. J. Silva et al., CICC, 2002, pp. 183-190.

21. Y.-I. Park et al., CICC, 2003, pp. 115-118.

22. L. J. Breems et al., JSSC, pp. 2152-2160, issue 12, 2004.

23. R. Jiang and T. S. Fiez, JSSC, pp. 63-74, issue 12, 2004.

24. P. Balmelli and Q. Huang, JSSC, pp. 2161-2169, issue 12, 2004.

25. K. Y. Nam et al., CICC, 2004, pp. 515-518.

26. X. Wang et al., CICC, 2004, pp. 523-526.

27. A. Bosi et al., ISSCC, 2005, pp. 174-175.

28. N. Yaghini and D. Johns, ISSCC, 2005, pp. 502-503.

29. G. Mitteregger et al., JSSC, pp. 2641-2649, issue 12, 2006.

30. R. Schreier et al., JSSC, pp. 2632-2640, issue 12, 2006.