Top Banner
ECE 342 – Jose SchuttAine 1 ECE 442 SolidState Devices & Circuits 10. Frequency Response of Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] 1
75

ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

Mar 11, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 1

ECE 442Solid‐State Devices & Circuits

10. Frequency Response of Amplifiers

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

1

Page 2: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 2

Low-Pass Circuit

In frequency domain:1

1i

oVV

j CRj C

ωω

= ⋅+

11 1

i oo v

i

V VV Aj RC V j RCω ω

= ⇒ = =+ +

2

1 11 1 /vA

j RC jf fω= =

+ +

2

Page 3: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 3

21 1

2 2f

RCπ πτ= =

2 time constantRCτ π= =

Low-Pass Circuit

3

Page 4: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 4

High-Pass Circuit

1 11i i

oV R VV

Rj C j RCω ω

= =+ + 2

1 11 1 /1

2

ov

i

VAV jf fj

fRCπ

= = =−−

21

2f

RC=

π

4

Page 5: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 5

If f2 = 2f1, then f2 is one octave above f1

If f2 = 10f1, then f2 is one decade above f1

2 22 10

1 1

# log 3.32logf fof octavesf f

= =

210

1

# log fof decadesf

=

2 GHz is one octave above 1 GHz

10 GHz is one decade above 1 GHz

Octave & Decade

5

Page 6: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 6

3dB points are points at which the magnitude is1/ 2

20log(1.414) 3dBA dB= =

1 2o oV V

j=

+

that at midband frequencies.

3 dB Definition

From which

Power is halved. Voltage is scaled as:

6

Page 7: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 7

Amplifier has intrinsic gain Ao

11 / hijf f+

Low-pass characteristics is:

High-pass characteristics is:

Overall gain A(f) is:

/1 /

lo

lo

jf fjf f+

/ 1( )1 / 1 /

loo

lo hi

jf fA f Ajf f jf f

= ⋅ ⋅+ +

Gain

7

Page 8: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 8

At very high frequencies, STC goes as

220log 1 ( / )oG ω ω= − +

20log( / ) 20 log( / )o oG X where Xω ω ω ω− = − =

Slope of curve is –20; so if X=1 (ω=10ωo), decrease is –20 dB -20 dB/decade

Gain

8

Page 9: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 9

Three Frequency Bands

Page 10: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 10

Model for general Amplifying Element

Cc1 and Cc2 are coupling capacitors (large) μF

Cin and Cout are parasitic capacitors (small) pF

10

Page 11: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 11

Midband Frequencies- Coupling capacitors are short circuits

- Parasitic capacitors are open circuits

out in LMB

in g in out L

v R RA Av R R R R

= =+ +

11

Page 12: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 12

Low Frequency Model- Coupling capacitors are present- Parasitic capacitors are open circuits

1

1

1

1 1 ( )in in in c in

abc g in

g inc

v R v j C Rvj C R RR R

j C

ωω

ω

= =+ ++ +

1

1

( )1 ( )

c g ininab in

g in c g in

j C R RRv vR R j C R R

ωω

+= ⋅

+ ⎡ ⎤+ +⎣ ⎦

12

Page 13: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 13

Low Frequency Model

( ) ( )1 221

1 122l l

L out cg in c

define f and fR R CR R C ππ

= =++

1

1

/1 /

in lab in

g in l

R jf fv vR R jf f

= ⋅+ +

2

2

/,1 /

lLout ab

L out l

jf fRSimilarly v AvR R jf f

= ⋅+ +

13

Page 14: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 14

1 2

1 2

/ /1 / 1 /

out in l lL

in g in L out l l

v R jf f jf fROverall gain Av R R R R jf f jf f

= = ⋅ ⋅ ⋅ ⋅+ + + +

1 2

1 2

/ /1 / 1 /

out l lMB

in l l

v jf f jf fAv jf f jf f

= ⋅ ⋅+ +

Low Frequency Model

14

Page 15: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 15

Rout = 3 kΩ, Rg=200 Ω, Rin=12 kΩ, RL=10 kΩCc1=5 μF and Cc2=1 μF

1 6

1 2.612 (12,200 5 10 )lf Hzπ −= =

× ×

Example

2 6

1 12.22 (13,000 10 )lf Hzπ −= =

×

15

Page 16: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 16

High Frequency Model- Assume coupling capacitors are short- Account for parasitic capacitors

1th g inR R R=

1in in

thg in

v RVR R

=+

Potential Thevenin equivalent for input as seen by Cin

16

Page 17: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 17

1

11

in inab

g in in th

v RvR R j C Rω

= ⋅+ +

11 1

1 11 / 2

in inab h

g in h th in

v Rv where fR R jf f R Cπ

= ⋅ =+ +

2

11

ab Lout

out L out th

Av RLikewise vR R j C Rω

= ⋅+ +

2th out Lwith R R R=

22 2

1 11 / 2

ab Lout h

L out h th out

Av Rv where fR R jf f R Cπ

= ⋅ =+ +

High Frequency Model

17

Page 18: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 18

1 2

1 11 / 1 /

o in L

i in g L out h h

v R RAv R R R R jf f jf f

= ⋅ ⋅ ⋅ ⋅+ + + +

1 2

1 11 / 1 /

oMB

i h h

v Av jf f jf f

= ⋅ ⋅+ +

Overall gain is:

or

High Frequency

18

Page 19: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 19

Example: Rout = 3 kΩ, Rg=200 Ω, Rin=12 kΩ, RL=10 kΩCin=200 pF and Cout=40 pF

1 10

1 4.052 2 10 (12,200 200)hf MHzπ −= =

× × ×

2 12

1 1.722 40 10 (10,000 3,000)hf MHzπ −= =

× × ×

64.05 10log 5.52 512.2

decades⎛ ⎞×

=⎜ ⎟⎝ ⎠

Summary: low-frequency <12.2 Hz, High frequency > 1.72 MHz

Example

19

Page 20: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 20

Triode region:

Saturation region:

Cutoff:

12gs gd oxC C WLC= =

23gs oxC WLC= 0gdC =

0gd gsC C= =

gb oxC WLC=

MOSFET - Gate Capacitance Effect

20

Page 21: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 21

ov ov oxC WL C=Overlap capacitance (gate-to-source):

1

sbosb

SB

o

CCVV

=+

1

dbodb

DB

o

CCVV

=+ Body

CSB

CGS CGD CGB

CDB

RG

Gate

DrainSourceRS

MOSFET – Junction Capacitances

21

Page 22: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 22

22 Dm n ox eff n ox D

eff

W W Ig C V C IL L V

μ μ= = =

MOSFET High-Frequency Model

2 2mb m mF sb

g g gV

γχφ

= =+

1/ds A DD

r V IIλ

= =

23gs ox ov oxC WLC WL C= +

gd ov oxC WL C=

1

sbosb

SB

o

CCVV

=+

1

dbodb

DB

o

CCVV

=+

22

Page 23: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 23

CS - Three Frequency Bands

Page 24: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 24

o m gs gd gsI g V sC V= −

Unity-Gain Frequency fTfT is defined as the frequency at which the short-circuit current gain of the common source configuration becomes unity

(neglect sCgdVgs since Cgd is small)

o m gsI g V ( )i

gsgs gd

IVs C C

=+

( )o m

i gs gd

I gI s C C

=+

s jω=Define:

24

Page 25: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 25

For s=jω, magnitude of current gain becomes unity at

( )2m m

T Tgs gd gs gd

g gfC C C C

ωπ

= ⇒ =+ +

fT ~ 100 MHz for 5-μm CMOS, fT ~ several GHz for 0.13μm CMOS

Calculating fT

25

Page 26: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 26

CS - High-Frequency Response

26

Page 27: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 27

1 2=GR R R

CS - High-Frequency Response

27

Page 28: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 28

'sig sig GR R R=

( ) ( )'gd gd gs o gd gs m L gsI sC V V sC V g R V⎡ ⎤= − = − −⎣ ⎦

( )'1gd gd m L gsI sC g R V= +

CS - High-Frequency Response

' =L ds D LR r R R

28

Page 29: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 29

( )'1= +eq gs gd m L gssC V sC g R V

( )'1 Miller Capacitance= + =eq gd m LC C g R

g sigin

g sig

R Vv

R R=

+

'= −o m L gsV g R V

Define Ceq such thatCS – Miller Effect

29

Page 30: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 30

11 /

⎛ ⎞= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

G siggs

G sig o

R VV

R R jf f

fo is the corner frequency of the STC circuit

'

12π

=oin sig

fC R

( )'1= + = + +

Miller

in gs eq gs gd m LC C C C C g R

CS – Miller Effect

30

Page 31: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 31

' 11 /

⎛ ⎞= −⎜ ⎟⎜ ⎟+ +⎝ ⎠

o Gm L

sig G sig o

V R g RV R R jf f

1 /=

+o M

sig H

V AV jf f

'

12π

= =H oin sig

f fC R

CS – Miller Effect

31

Page 32: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 32

Rsig = 100 kΩ, RG=4.7 MΩ, RD =15 kΩ, gm=1mA/V, rds=150 kΩ, RL=10 kΩ, Cgs=1 pF and Cgd=0.4 pF

' 4.7 1 7.14 74.7 0.1

= − = − × × = −+ +

GM m L

G sig

RA g RR R

( )': 1eq M m L gdMiller Cap C C g R C= = +

Example

' 150 15 15 7.14= = = ΩL ds D LR r R R k

( )0.4 1 7.14 3.26MC pF= × + =

32

Page 33: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 33

( )1

2Hin sig G

fC R Rπ

=

Upper 3 dB frequency is at:

1.0 3.26 4.26= + =inC pF

( )12 6

1 3.822 4.26 10 0.1 4.7 10Hf kHzπ −= =

× × × ×

3.82Hf kHz=

Example (cont’)

33

Page 34: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 34

≡ nde

BE

dQCdv

BJT Capacitances

Base: Diffusion Capacitance: Cde (small signal)

where Qn is minority carrier charge in base

ττ τ= = =C Fde F F m

BE T

diC gdv V

where τF is the forward transit time (time spent crossing base)

34

Page 35: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 35

Base-emitter junction capacitance:

1

jeoje m

BE

oe

CC

VV

=⎛ ⎞

−⎜ ⎟⎝ ⎠

Cjeo is Cje at 0 V. Voe is EBJ built in voltage ~ 0.9 V

BJT Capacitances

35

Page 36: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 36

BJT CapacitancesIn hybrid pi model, Cde+Cje=Cπ

Collector-base junction capacitance

1

om

CB

oe

CC

VV

μμ =

⎛ ⎞+⎜ ⎟

⎝ ⎠Cμo is Cμ at 0 V. Voc is CBJ built in voltage ~ 0.9 V

Cπ is around a few tens of pFCμ is around a few pF

36

Page 37: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 37

High-Frequency Hybrid-π Model

, ,ACm o

T C m

VIg r rV I gπ

β= = =

, ,2

mde je de F m

T

gC C C C C C gfπ μ π τ

π+ = = + =

, 0.3 0.5

1

jcom

CB

oe

CC m

VV

μ = = −⎛ ⎞

+⎜ ⎟⎝ ⎠

( )2m

Tgf

C Cπ μπ=

+

37

Page 38: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 38

CE - Three Frequency Bands

Page 39: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 39

CE High-Frequency Model

39

Page 40: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 40

CE High-Frequency Model

1 2BR R R=

40

Page 41: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 41

( )' B

sig sigB sig x sig B

rRV VR R r r R R

π

π

= ⋅ ⋅+ + +

CE High-Frequency Model

41

Page 42: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 42

'L o C LR r R R=

'o m LV g v Rπ−

( )'sig x sig BR r r R Rπ

⎡ ⎤= +⎣ ⎦

CE High-Frequency Model

42

Page 43: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 43

The left hand side of the circuit at XX’ knows the existence of Cμ only through the current Iμ replace Cμ with Ceq from base to ground

Bipolar Miller Effect

43

Page 44: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 44

( ) ( )'o m LI sC v v sC v g R vμ μ π μ π π

⎡ ⎤= − = − −⎣ ⎦

( )'1 m LI sC g R vμ μ π= +

Bipolar Miller Effect

( )'1eq m LsC v I sC g R vπ μ μ π= = +

( )'1 , Miller capacitance for BJTeq m LC C g Rμ= +

44

Page 45: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 45

Bipolar Miller Effect

' 11 /sig

o

v vjf fπ =

+

'

12o

in sig

fC Rπ

=

45

Page 46: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 46

( )'1in eq m Lwhere C C C C C g Rπ π μ= + = + +

( )' 1

1 /o m LB

sig B sig ox sig B

V r g RRV R R jf fr r R R

π

π

⎡ ⎤ ⎡ ⎤= ⋅⎢ ⎥ ⎢ ⎥+ ++ +⎢ ⎥ ⎣ ⎦⎣ ⎦

Bipolar Miller Effect (cont’)

11 /

oM

sig o

V AV jf f

=+

'

12H o

in sig

f fC Rπ

= =

46

Page 47: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 47

( )C mI g sC vμ π= −

Short-Circuit Current Gain

1BIv

sC sCr

π

μ ππ

=+ +

47

Page 48: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 48

Define hfe as short-circuit current gain

( )1mC

feB

g sCIhI s C C

r

μ

π μπ

−= =

+ +

( )1C m

feB

I g rhI s C C r

π

π μ π

= =+ +

at freq. of interestmg sCμ

Short-Circuit Current Gain (Cont’)

48

Page 49: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 49

Short-Circuit Current Gain (con’t)

( )1o

fehs C C rπ μ π

β=

+ +

Define hfe has a single pole (or STC) response. Unity gain bandwidth is for:

( ) ( )1 11 2

m mfe

T

g r gh ors C C r f C C

π

π μ π π μπ= = =

+ + +

In some cases, if Cμ is known, then

49

Page 50: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 50

( )2m

Tgf

C Cπ μπ=

+

From which we get

2m m

T T

g gC Cfπ μ π ω

+ = =

, m m

T T

g gThus C C C Cπ μ π μω ω+ = ⇒ = −

Short-Circuit Current Gain (con’t)

50

Page 51: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 51

CS – Miller Effect – Exact Analysis

51

Page 52: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 52

ii

1GR

= =DD

1GR

=gg

1GR

=dsds

1gr

( )'i D m gdo

' ' 2 'i i g gs gd gd D i g gd m D gd gs D

G R g sCvv G G s C C sC R G G sC g R s C C R

−= −

⎡ ⎤ ⎡ ⎤+ + + + + + +⎣ ⎦ ⎣ ⎦

CS – Miller Effect – Exact Analysis

'D D ds

D ds

1R R rG g

= =+

52

Page 53: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 53

2 ' 'gd gs D gd m D gs ms C C R sC g R or sC g

We neglect the terms in s2 since

( )( ) ( )'

i D m gdo' '

i i g gs gd m D gd D i g

G R g sCvv G G s C C 1 g R C R G G

−= −

⎡ ⎤+ + + + + +⎣ ⎦

ii

1RG

=If we multiply through by

CS – Miller Effect – Exact Analysis

53

Page 54: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 54

( )( ) ( ){ }

'D m gdo

' 'i i g i gs gd m D gd D s g

R g sCvv 1 R G s R C C 1 g R C R 1 R G

−= −

⎡ ⎤+ + + + + +⎣ ⎦

( ) ( ){ }i g

H ' 'i gs gd m D gd D i g

1 R Gf

2 R C C 1 g R C R 1 R G

+=

⎡ ⎤+ + + +⎣ ⎦π

From which we extract the 3-dB frequency point

CS – Miller Effect – Exact Analysis

54

Page 55: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 55

( ){ }H ' 'i gs gd m D gd D

1f2 R C C 1 g R C R⎡ ⎤+ + +⎣ ⎦π

H 'gd D

1f2 C Rπ

If Gg is negligible

If Ri =0

CS – Miller Effect – Exact Analysis

55

Page 56: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 56

ii

1GR

= CC

1GR

=

1gr

=ππ

oo

1gr

=

BJT-CE – Miller Effect – Exact Analysis

'C C o

C o

1R R rG g

= =+

56

Page 57: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 57

( )[ ]

's C mo

' ' 2 'i i C i m C C

G R g sCvv G g s C C sC R G g sC g R s C C R

−= −

⎡ ⎤+ + + + + + +⎣ ⎦

μ

π π μ μ π μ μ π

BJT-CE – Miller Effect – Exact Analysis

57

Page 58: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 58

2 ' 'C m C ms C C R sC g R or sC gμ π μ π

( )( ) ( )

'i C mo

' 'i i m C C i

G R g sCvv G g s C C 1 g R C R G g

−= −

⎡ ⎤+ + + + + +⎣ ⎦

μ

π π μ μ π

( )( ) ( ){ }

'C mo

' 'i i i m D C i

R g sCvv 1 R g s R C C 1 g R C R 1 R g

−= −

⎡ ⎤+ + + + + +⎣ ⎦

μ

π π μ μ π

BJT-CE – Miller Effect – Exact Analysis

We neglect the terms in s2 since

If we multiply through by ii

1RG

=

58

Page 59: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 59

( ) ( ){ }i

H ' 'i m C C i

1 R gf2 R C C 1 g R C R 1 R g

+=

⎡ ⎤+ + + +⎣ ⎦

π

π μ μ ππ

H 'C

1f2 C Rμπ

If Ri = 0

BJT-CE – Miller Effect – Exact Analysis

59

Page 60: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 60

Example For the discrete common-source MOSFET amplifier shown, the transistor has VT= 1V, mCox(W/L) = 0.25 mA/V2, λ = 0, Cgs = 3 pF, Cgd = 2.7 pF and VA = 20 V. Assume that the coupling capacitors are short circuits at midband and high frequencies.

(a)Find the 3dB bandwidth if Ri=0

(b) Find the 3dB bandwidth if Ri= 100 Ω

60

Page 61: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 61

If Ri =0,3 '

12dB

gd D

fC R

20 131.516

Ads

D

Vr k

I= = = Ω

' 13 2 1.736D D dsR R r k= = = Ω

3 12 3

1 33.952 2.7 10 1.736 10dBf MHz−= =

× × ×π

Example – Part (a)

61

Page 62: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 62

If Ri =100 Ω,

Example Part (b)

'm Dg R 0.870 1.736 1.51= × =

( ){ }H ' 'i gs gd m D gd D

1f2 R C C 1 g R C R⎡ ⎤+ + +⎣ ⎦π

( ){ }H1f 28 MHz

2 0.1 3 2.7 1 1.51 2.7 1.736=

+ + + ×⎡ ⎤⎣ ⎦π

62

Page 63: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 63

Common Base (CB) Amplifier

Page 64: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 64

High-Frequency Analysis of CB Amplifier

in 3dBx

S E

1r rC R R

1 1π

π

ω

β β

− =⎡ ⎤ ⎡ ⎤

+⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

out 3dBL

1C Rμ

ω − =

The amplifier’s upper cutoff frequency will be the lower of these two poles. 

Exact analysis is too tedious  approximate

From current gain analysis

Page 65: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 65

Emitter Follower

Page 66: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 66

Emitter Follower High-Frequency Exact analysis is too tedious  approximate

( )

' m L mv

Em L

m E

sC1g R gA ( s ) sC R1 g R 1

1 g R

π

π

+=

+ ++

m E m3dB T

E

1 g R gR C C Cπ π μ

ω ω+= =

+

Page 67: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 67

CE Cascade Amplifier

Exact analysis too tedious  use computerCE cascade has low upper‐cutoff frequency

Page 68: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 68

( )( ) ( )( )( ) ( )

1 2

1 2

...( )

...m

v mm

s Z s Z s ZA s a

s P s P s P− − −

=− − −

Transfer Function Representation

Z1, Z2,…Zm are the zeros of the transfer function

P1, P2,…Pm are the poles of the transfer function

In general, the gain of an amplifier can be expressed as

68

s is a complex number s = σ + jω

Page 69: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 69

• The poles of a multistage amplifier are difficult to obtain analytically

• An approximate value for the 3dB upper frequency point ω3dB can be obtained by assigning an open circuit time constant τio to each capacitor Ci

Bandwidth of Multistage Amplifier

Page 70: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 70

• The time constant τio is the product of the capacitance and the resistance seen across its terminals with:All other internal capacitors open circuitedAll independent voltage sources short circuitedAll independent current sources opened

• The upper 3dB frequency point ω3dB is then found by using :

31

dBio

ωτ

=∑

Bandwidth of Multistage Amplifier

Page 71: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 71

Cascode Amplifier

First stage is CE and second stage is CB

1 2v m LA g Rα= −

If Rs << rπ1, the voltage gain can be approximated by

Page 72: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 72

Cascode Amplifier – High Frequency

High‐frequency incremental model

Page 73: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 73

( )' 's i s 1 1 1 a 1 bG V G g s C C V sC Vπ π μ μ⎡ ⎤= + + + −⎣ ⎦

( ) ( ) ( )m1 1 a 2 m2 2 1 b 2 m2 2 d0 g sC V g g s C C V g g sC Vμ π π μ π π⎡ ⎤= − + + + + − + −⎣ ⎦

( ) ( )2 2 b x2 2 2 2 d 2 o0 g sC V g g s C C V sC Vπ π π π μ μ⎡ ⎤= − − + + + + −⎣ ⎦

( ) ( )m2 b m2 2 d L 2 o0 g V g sC V G sC Vμ μ= − + − + +

Applying Kirchoff’s current law to each node:

Find solution using a computer

Cascode Amplifier – High Frequency

Page 74: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 74

gm=0.4 mhos               β=100rπ=250 ohms                rx=20 ohmsCπ=100 pF                    Cμ=5 pfGL=5 mmhos               GS’=4.5 mmhos

sa=8.0                               sd=‐0.0806sb=‐2.02 + j5.99               se=‐0.644sc=‐2.02 – j5.99                sf=‐4.05

sg=‐16.45

POLES (nsec‐1)ZEROS (nsec‐1)

As an example use:Cascode Amplifier – High Frequency

Page 75: ECE 342 – Jose Schutt‐Aine ECE 442 Solid‐State Devices & Circuits 10. Frequency Response of Amplifiers

ECE 342 – Jose Schutt‐Aine 75

If one pole is at a much lower frequency than the zeros and the other poles, (dominant pole) we can approximate ω3dB

93dB 0.0806 10 rad / secω ×

3dBf 12.9 MHz

For the same gain, a single stage amplifier would yield:

93dB 0.0169 10 rad / secω ×

3dBf 2.7 MHz

Second stage in cascode increases bandwidth 

Cascode Amplifier – High Frequency