Top Banner
1 Instructor: Kai Sun Fall 2018 ECE 325 – Electric Energy System Components 2‐ Fundamentals of Electrical Circuits
16

ECE 325 –Electric Energy System Components 2‐Fundamentals ...

Apr 14, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

1

Instructor: Kai SunFall 2018

ECE 325 – Electric Energy System Components2‐ Fundamentals of Electrical Circuits

Page 2: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

2

Content

• Fundamentals of electrical circuits (Ch. 2.0-2.15, 2.32-2.39)

• Active power, reactive power and apparent power (Ch. 7)

• Three-phase AC systems (Ch. 8)

Page 3: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

3

Notations: Current and Alternating Current

• Arbitrarily determine a positive direction, e.g. 12– If a current of 2A flows from 1 to 2, I=+2A– If a current of 2A flows from 2 to 1, I= -2A

G

2

1

I

I >0 I <0

Page 4: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

4

Notations: Voltage

1. Double-subscript notation:E21= +100V (the voltage between 2 and 1 is 100V, and 2 is positive w.r.t 1) E12 = -100V

2. Sign notation: Arbitrarily mark a terminal with (+); E>0 if and only if that marked terminal is positive w.r.t the other.E.g. if E21=+100V, E=E21=+100V.

100V

+

-

2

1

G

2

1

+

E

Both the double-subscript notation and sign notation apply to alternating voltage

Page 5: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

5

Notations: Alternating Voltage

Page 6: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

6

Notations: Sources and Loads

• Definition: given the instantaneous, actual polarity of voltage and actual direction of current– Actual Source: whenever current flows out of the terminal (+) – Actual Load: whenever current flows into the terminal (+)

• How about these?– Resistor, battery cell, electric motor, capacitor and inductor

Page 7: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

7

i(t)+v(t)

Resistor

Inductor Capacitor

load  source source load

Page 8: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

8

1‐Phase AC System with Sinusoidal Voltage and Current

• e , i: instantaneous voltage (V) and current (A)• Em , Im : peak values of the sinusoidal voltage (V) and current (A)• = 2f (rad/s): angular frequency, which is assumed constant here• e , i : constant phase angles (rad. or deg.) of voltage and current• Em/ 2, Im/ 2: RMS (root-mean-square, effective) values

( ) co s( )m ee t E t

( ) cos( )m ii t I t

Load

+

22 2[ ( )] =

2t m

dct T

I RTi t Rdt I RT

Equal heating effects

RMS value2m

dcII

Page 9: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

9

Phasor Representation 

• E and I are called RMS phasors of e(t) and i(t); E leads I by = e- i or in other words, I leads E by 2-

• Phasor:– mapping a time-domain sinusoidal waveform (infinitely long in

time) to a single complex number– carries the amplitude and phase angle information of a sinusoidal

signal of a common frequency () w.r.t. a chosen reference signal.

( ) cos( )( ) cos( )

m e

m i

e t ti

EIt t

Constant 2

2

me

mi

EE

II

2 cos( )| |

|2 c s( )| oe

i

E

I

t

t

| | | |

| | | |

e

i

je

ij

E E e

I I e

Page 10: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

10

Impedance

• Impedance is a complex number (in ) defined as

• Purely resistive:

• Purely inductive:

• Purely capacitive:

| | eE E

| | iI I +

def12 | | | | ( )

| |e

e ii

EE EZ Z R jXI I I

| |Z Z R

| | 90 LZ Z jX jX j L

1

2

12E

1| | 90 CZ Z jX jX jC

Z

def

e i (Impedance angle)

Impedance of branch 1-2 =Voltage drop on 1-2Current flow into 1

Page 11: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

11

Example 2‐5

• Draw the phasor diagram of the voltage and current at a frequency of 60Hz. Calculate the time interval t between the positive peaks of E and I

Solution:=2f=377 (rad/s)=21600 (deg/s)|E|=339/2=240 (V)|I|=14.1/2=10 (A)Choose an arbitrary reference to draw phasors E and It=/=30/21600=0.00139 (s)

E240V

I10A

30o

( ) 339cos(21600 90 )( ) 14.1cos(21600 120 )

e t ti t t

,t

Page 12: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

12

Kirchhoff’s Voltage Law (KVL)

• The algebraic sum of the voltages around a closed loop (CW/CCW) is zero ( voltage rises = voltage drops)– Applied to both instantaneous

voltages or voltage phasors• Loop 24312 (BCDA, CW):

E24+E43+E31+E12=0 ore24+e43+e31+e12=0

• Loop 2342 (ECF, CCW): E23+E34+E42=0 ore23+e34+e42=0

E12

E43

E31

E24

E23

4 2

13

E34

E42

Page 13: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

13

Kirchhoff’s Current Law (KCL)

• The algebraic sum of the currents arriving at a node is equal to 0.( currents in = currents out)

• Node A: I1+I3=I2+I4+I5

or i1+i3=i2+i4+i5

I1+I3+(-I2)+(-I4)+(-I5)=0 or i1+i3+(-i2)+(-i4)+(-i5)=0

A

Page 14: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

14

• KVL– Loop 24312, CW:

E24 +E43 +E31 +E12 =0I2Z2 -I3Z3 +Eb -I1Z1 =0

– Loop 2342, CCW: E23 +E34 +E42 =0 I4Z4 +I3Z3 -I2Z2 =0

– Loop 242, CW:E24 + E42 =0Ea - I2Z2 =0

+

+

Kirchhoff’s Laws and AC Circuits

• KCL– Node 2:

I5 -I2 -I4 -I1=0– Node 3:

I4 +I1 – I3=0

Ea

Eb

Page 15: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

15

Examples 2‐14 to 2‐16

Page 16: ECE 325 –Electric Energy System Components 2‐Fundamentals ...

16

Impedance angle: >0 for inductive load and <0 for capacitive load

( ) ( ) ( ) cos( )cos( )1 cos( ) cos(2 )21 cos( ) cos[2( ) ( )]21 cos cos[2( ) ]21 cos cos cos 2( ) sin sin 2( )2

m m e i

m m e i e i

m m e i e e i

m m e

m m e e

p t e t i t E I

E I

E I

E I

E I

| | / 2

| | / 2m

m

E E

I I

e i

( ) cos [1 cos 2( )] sin sin 2( )R X

e e

p p

p E I E I

Using trigonometric identity1

cos cos cos( - ) cos( )2

A B A B A B

Instantaneous Power

( ) cos( )m ee t E t

( ) cos( )m ii t I t Load

Z

+

t