Top Banner
Dynamics Technology, Inc. Any opinfGfls,findingsfconclusiOns or recommendations expressed in this publication are those of the author(s) and. do not necessarily reflect the views of the National Science foundation. DT-7814-2 EARTHQUAKE RESPONSE OF SEA-BASED STORAGE TANKS BY A HYBRID ELEMENT METHOD- THEORY AND COMPUTER ANALYSIS By: SHIH-CHI LEE MARCH 1981 PREPARED FOR: EARTHQUAKE HAZARD MITIGATION PROGRAM DIVISION OF PROBLEM-FoCUSED RESEARCH ApPLICATIONS NATIONAL SCIENCE FOUNDATION REPIlODUC EO BY NAnONAl TECHNICAL INFORMATION SERVICE O.S. DEPARTMENT OF COMMERCE SPRltlllflElD, VA 22161 DYNAMICS TECHNOLOGY) INC. 22939 HAWTHORNE BLVD,) SUITE 200 TORRANCE) CALI FORNIA 90505 (213) 373-0666
216

Dynamics Technology, Inc.

Feb 18, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dynamics Technology, Inc.

Dynamics Technology, Inc.

Any opinfGfls,findingsfconclusiOnsor recommendations expressed in thispublication are those of the author(s)and. do not necessarily reflect the viewsof the National Science foundation.

DT-7814-2

EARTHQUAKE RESPONSE OF SEA-BASED

STORAGE TANKS BY AHYBRID ELEMENT METHOD-

THEORY AND COMPUTER ANALYSIS

By: SHIH-CHI LEE

MARCH 1981

PREPARED FOR: EARTHQUAKE HAZARD MITIGATION PROGRAMDIVISION OF PROBLEM-FoCUSED RESEARCH

ApPLICATIONSNATIONAL SCIENCE FOUNDATION

REPIlODUC EO BYNAnONAl TECHNICALINFORMATION SERVICE

O.S. DEPARTMENT OF COMMERCESPRltlllflElD, VA 22161

DYNAMICS TECHNOLOGY) INC.22939 HAWTHORNE BLVD,) SUITE 200TORRANCE) CALI FORNIA 90505(213) 373-0666

Page 2: Dynamics Technology, Inc.
Page 3: Dynamics Technology, Inc.

This report has undergone an extensive internal review

before publication, both for technical and non-technical

content, by the Project Manager, the President, and an

independent internal review committee.

Project Manager:

President:

Internal Review:

, i

Ii

Page 4: Dynamics Technology, Inc.
Page 5: Dynamics Technology, Inc.

FOREWORD

This work was supported by the Earthquake Hazard Mitigation Program ofthe Nati onal Sci ence Foundati on, Washi ngton, D.C. under grant PFR 79­19949, which is a continuation of PFR 78-09866.

This study addresses the problem of dynamic response of submergedstorage tanks subject to earthquake excitations, in an attempt to for­mulate a general evaluation procedure using the hybrid-finite elementmethod and to synthesize a comprehensive and predictive computer codefor engineering applications. This technical report presents the formu­lation and encoding of the research findings.

The author would like to acknowledge the stimulating discussions andinvaluable technical assistance provided by Professor C.C. Tung of North

CarolinA State University, Dr. C. Y. Liaw of EG &G, Professor P. Liu ofCornell University, Mr. K. C. Chang and Mr. B. P. Richman throughout thecourse of this investigation.

. "

11/

Page 6: Dynamics Technology, Inc.

ABSTRACT

An effective method for the linear analysis of dynamic response of sub­

merged underwater oi 1 storage tanks to 1oadi ngs of earthquake exci ta­

tions is presented. The tank is axisymmetric in shape, has a flexible

wall/roof. A general hybrid-finite element solution procedure has been

formulated, wherein the tank structure, the interior fluids, as well as

the near field of the exterior water region are discretized into a

toroi da1 mesh network. The tank di sp1acement is expressed as a super­

position of the first few modes of the structure's free vibration.

Contribution from the hydrodynbamic interaction to the coupled motion is

obtained by solving the Laplace equation with the appropriate boundary

conditions, which includes a matching to the exterior far-field pressure

(analyti c) representati on to simpl Hy the computati onal process. The

effects of fluids surrounding and inside the tank are studied. It is

demonstrated that these effects are, in general, significant on the tank

earthquake response analysis •

.. A comprehensive and predictive computer program for use in such tank

response analysis is developed for design engineering applications.

f

IY

Page 7: Dynamics Technology, Inc.

TABLE OF CONTENTS

PAGE

FOREYJORD. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • il;

ABSTRACT. • • • • • • • • • • • • • • • • •.• • • • • • • • • • • • • • •.• • • • • • • • • • • • • • • • • • • • • • • • • • • ..i v

TABLE OF CONTENTS ••••••••••••••••••••••••••••••••••••••••••••••••••• .:i;I:IitV

1.

2.

3.

4.

5.

INTRODUCTION ....•. ·..•.•...•.••.•.......••.•••••.•.•••••.•.••..••

RELATED PAST WORK •••••••••••••••••••••••••••••••••••••••••••••••

FORfvlJLATION •••••••••••••••••••••••••••••••••••••••••••••••••••••

NUMERICAL RESULTS/VALIDATION ••••••••••••••••••••••••••••••••••••

SUMMARY AND FUTURE WORK •••••••••••••••••••••••••••••••••••••••••

1

3

5

35

41

REFERENCES ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

FIGURES •••.••••••••••••.•••••••••••••••••••••••••••••••••••••••••.••

43

46

APPENDIX A:

APPENDIX B:

ERST User's Guide ..•••••••..•••.••.•••••.••..••••••••••

Program Listing .

v

66

84

Page 8: Dynamics Technology, Inc.
Page 9: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

INTRODUCTION

In recent years, exploration and production of oil offshore have

increased tremendously. Many of the new fields are far into the ocean

and the adjacent land area is often desolate and uninhabited, rendering

the conventional method of using pipelines and onshore tenninals more

and more costly. For countries in scarcity of land space (such as

Japan), util ization of the sea may become necessary for the purpose of

10ng-tenn petroleum storage. The alternative of storing crude at the

producing sites to be shipped via tankers to harbors is thus becoming

more and more economical, both in terms of capital investment and in

operating cost.

The first submerged underwater oil storage tank was placed in service in

December of 1969. Referred to as the Khazzan Dubai #1, the tank is

located in 150 feet of water, 60 mi 1es off the shore of the Truci a1

Coast in the Arabian Gulf (Chamberin, 1970). It weighs 15,000 ton and

holds 500,000 barrels of oil. It has the appearance (.Figures 1 and 2)

of an inverted funnel with a 270-foot-diameter base and a roof which is

a portion of a 180-foot-radius hemisphere. A conical transition con­

nects the roof to a 30-foot-diameter shaft that extends above the ocean

surface. The "bottomless" tank rests on the ocean floor and operates on

the water displacement principle; it is always filled with either water

or oil or a combination of the two. Filling is accomplished by placing

oil through the shaft, the additional weight of the oil on the water

creates a pressure imbal ance whi cn forces the water out of the tank

through openings in the wall. Deep-well pumps are used for discharging

oil. As oil is withdrawn, inflow of water takes place, replacing the

removed oil.

-1-

Page 10: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

New concepts and designs of oil storage tanks have since been developedfor all areas of the world. Some of the tanks rest on ocean floors andare either completely sUbmerged or partially submerged with part of thetank protruding above water; other designs take the form of floating,bottomless tanks, moored to the ocean floors.

The primary forcing function these storage tanks must be designed to

resi st is that due to waves in the heavi est storm; and for bottom­supported tanks located in earthquake-prone areas, seismic-inducedhydrodynamic forces must, of course, also be considered. Because of theexorbitant cost incurred in the construction of these huge structures,

and the environmental hazards associated with the failure of such struc­tures, an accurate evaluation of the hydrodynamic forces is vital. Inorder to predict the response of an underwater tank to waves and earth­quakes, the development of a reliable computation method is a pressing

need for the construction of storage tanks in seismic areas. This pre­sent study is specifically aimed at the earthquake-induced response fora completely sUbmerged tank filled with oil and water.

Earthquake analysis of such cantilever structures requires special con­siderations which do not arise in land-based structures; any procedurefor analysis must recognize the additional dynamic forces and modifica­tions in the dynamic properties caused by the surrounding water and thefluids inside. If the tank is perfectly rigid, the motions of thefluids inside and outside the structure may be treated independently.However, to accommodate for the more stable structures made of flexibleresilient materials, extra care needs to be exercised in studying theirdynamic behavior, by virtue of the fact that the structure and fluidmoti ons are coupl ed. The effect of the tank structural deformati on onthe dynamic response is the emphasis of this investigation.

-2-

Page 11: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

2. RELATED PAST WORK

There have been few works that directly address the problem intended in

the present study. The ones bearing the closest relationship appear tobe that of Takayama (1976) and Helou (1981). Takayama treated transientwaves inside a vibrated oil storage; the tank is a rigid rectangular orcylindrical structure, submerged undersea. However, no attention wasgiven to the effect of surrounding water, and no numerical results arefurnished. Helou extended the problem wherein the tank wall is flex­ible. However, he was only concerned with cylindrical tanks whereanalytic solution can be found; no numerical scheme was developed for

general applications.

A wealth of research papers do exist which provide valuable sources ofpertinent information, most having to do with the hydrodynamic pressure

distribution of structures under earthquake excitations. For land-basedtanks of simple geometries under the assumption of iriviscid, compres­sible or incompressible fluid, and irrotational motion of small ampli­tudes, many sol uti on procedures have been formul ated. Fi rst, Jacobsen(1949) evaluated the dynamic mass effect of fluid inside a cylindricaltank and outside a cylindrical pier, when the base experiences an impul­sive seismic load. Then, Housner (1956) set the foundation of generalearthquake-proof design analysis by introducing a simple approximationmethod which avoids partial differential equations and infinite series.Thereafter. many works appear which deal with the deformation of tankstructure. Notable among them are Baron and Skal ak (1962). Arya,Thakkar and Goyal (1972), and Yang (1976). who use the Rayl eigh-Ritzmethod; and Edwards (1969) and Shaaban and Nash (1975). who employ thefinite-element method. In all cases, fluid is treated as a continuumand appropriate shell theories are selected for the development(Sanders, 1959; Flugge, 1960; Basu and Gould, 1975; Ghosh and Wilson,1975). In Yang's work, the nature of the impul sive and convectiveeffects is carefully identified, and he based his dynamic analysis on

-3-

Page 12: Dynamics Technology, Inc.

uynamlcs lecnnology, lnc.DT-7814-2

assumed mode shapes of the tanks free vibration. Wu et ale (1975)

developed a computer program to calculate the natural frequencies of the

f1 ui d-tank system. Earthquake analysis of the resonant osci 11 ati on

(sloshing) phenomena in elastic shells can be found in Chester (1968),

Faltinsen (1974), Aslam, Godden and Scalise (1979) and ~i, Foda and

Tong (1979).

So far we have been quoting only works concerning ground tanks. The

problem associated with motion of water surrounding sUbmerged tanks is

more difficult to solve. For objects of simple geometries, attempts

were made usi ng the SChwi nger vari ati ona1 techni que (Bl ack and ~i,

1970), the Galerkin method (Garrett, 1971), and the integral equation

method (Garrison and Seetharama Rao, 1971). Tung (1979) also pursued

the problem of sUbmerged bodies subject to harmonic ground excitation,

using a semi-analytical method to obtain the hydrodynamic forces and

confirmed the insignificance of the gravity effect, as long as the exci­

tation frequencies are moderately high. For objects of more complicated

shapes, numerical methods must be employed. The finite-element method,

known for its versatility, was used by Chakrabarti and Chopra (1972) and

Liaw and Chopra (1973) in studies of seismic response of gravity dams

and intake towers. This approach is further enhanced by the adoption of

an analytic super-element, thereby reducing the mesh requirement in the

far field (ordinarily it is required that the outer truncation boundary

must be far enough away from the longest waves). The so-called "hybri d ll

finite-element method, which combines judiciously finite-element solu­

tion for fluid motion near the object and an analytic representation for

the far field, has been proven to be highly efficient. Among the pion­

eers are Berkhoff (1972), Bai and Yeung (1974), Chen and ~i (1974) and

Vue, Chen and ~i (1976).

-4-

Page 13: Dynamics Technology, Inc.

Dynamlcs lecnnology, lnc.DT-7814-2

3. FORMULATION

Al though the subject of sei smi c response of sUbmerged storage tanks is

relatively new and unexplored, as we have pointed out in the previous

chapter, much of the pertinent analysis tools have been developed. It

is the purpose of this research to utilize these tools in formulating a

general hybri d-fi ni te el ement sol uti on procedure, for the hydrodynamic

response of flexible underwater storage tanks subject to earthquake

motions; and to synthesize this procedure into a comprehensive predic­

tive computer code which can be used for engineering applications.

The tank structure in question is of general axisymmetric shape, has a

flexible wall and/or roof, and is rigidly attached to the ocean floor.

Thi s assumpti on that the support foundati on does not move rel ative to

the ground reduces the scope somewhat, since the effect of marine soil­

structure i nteracti on can have si gnifi cant consequence on the hydro­

dynamic analysis. However, it is expected that this variation can be

accommodated by our hybrid-finite element procedure, and will be dealt

with in a future study. The tank will be completely filled with oil

and/or water and sealed (this last restriction can be lifted by simply

changing the input format). Finally, in the following presentation, we

simplify matters by ignoring irregular bottom topography and depletion

of i nteri or compartments. Thei r presence can be handl ed strai ghtfor­

wardly by carefully discretizing these components into finite elements.

The equation of motion of the tank structure can be written in terms of

the structure discretization as

.. .[M]{x} + [C]{x} + [K]{x} = - {F} (3.0)

where [M], [C] and [K] are the mass, damping and stiffness matrices of

the system, respectively. {~}, {x} and {x} are the acceleration, velo-

city and displacement vector of the structure relative to its base,

-5-

Page 14: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

*{F} is the load vector of the external forces, which includes the

hydrodynamic pressure {Ps} due to the presence of fluids inside and out­

side of the system. For nodal circles on the inner shell interfacing

with the interior oil and water, {Ps} is sought from the equation of

motion governing the dynamic interaction between the shell and the

interior fluids; the same goes for {Ps} at nodal circles on the outer

tank surface. Thus, before attacking (3.0), we need to solve two bound­

ary val ue prob1 em suitably formul ated based on the two appropri ate

Laplace equations. The flexibility of the tank shell is entered into

both radi al boundary condi tions inf1 uenced by the ground acce1 eration,..consequently {Ps} intertwines with {x}.

Both boundary val ue prob1 em are sol ved usi ng the vari ati anal princi pl e

of finite element theory. In the "far awai' exterior region, a matching

of analytic representation of {Ps} is invoked (this region is to have

been rid of all geometrical irregularities). Once {Ps} is obtained (in.. ..

terms of {x} and the earthquake ground acceleration {fh}, (3.0) can be

solved by transformation into modal coordinates wherein the displacement

is expressed in terms of the fi rst few modes of the tank force vibra­

ti on. The resul tant 1i near second-order differenti a1 equati on in the

generalized displacement amplitude can be solved by the ordinary step­

by-step integration schemes.

* Vectors enclosed in braces { } are associated with the appropriate(interior fluids domain, structure, or exterior water region dis­cretizations) nodal coordinates. Thus, if NO is the number ofnodal-circles in the oil domain, {P } is the column vector of nodalpressure distribution of dimension ~JO, ordered in the global nodalnumber sequence. However, in the case of structure discretization,the vector is represented by the (r,z,e) coordinates at each nodal­circle, making {P} a vector of dimension 3N, if N is the number ofnodal-circles in the structure assemblage. The symbol "-+" will bereserved for the ordi nary three-di mens,; ana1 conti nuum vectors.

-6-

Page 15: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

3.1 Dynamic Behavior of Fluids

3.1.1 Interior Fluids

A. Problem Formulation

Consi der a axi symmetri c tank sUbmerged underwater whi ch is fill ed wi th

oil on top of water (more generally, two fluids of densities Po and Pw'where pw > po) with respective heights of ho and hw as shown in Figure 3

(ho depends on the radial distance from the axis). Choose the coordi­nate system as depicted in Figure 3 with the axis of tank symmetry being

the z-axis and the direction of earthquake ground motion being the(positive) x-axis, and the origin at the center of oil-water interface.We will also need the usual (r,z,e) cylindrical coordinate system.

-l-Let v(x,y,z;t) denote the velocity vector of the fluid particle at(x,y,z;t). Then, based on the usual assumptions of inviscid and incom­pressible fluids, irrotationa1 motion and small amplitude waves, thelinearized momentum equations of fluid motion read

-l-

oVo _ 1""M- - - V'PPo 0

(3.1)

We use the suffi xes 0 and w to represent quanti ti es perta i ni ng to oi 1and water, respectively.

Take the curl of (3.1) and apply the continuity equations

-7-

Page 16: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

? a'i/ • v =0

? a'i/ • v =w

we obtain

'i/2p = ao

(3.2)

(3.3)

'i/2p = aw

~

Let fh(t) denote the horizontal ground acceleration induced by an earth-

quake, th~n since the translatory velocity in the x-direction should be•equal to f h , we have

CPo ? ?

[(fh + ~) • n] across aVowfuI- - Po

aPw? ?

(3.4)

an-- - Pw [(fh + ~) • n] across oVww

In (3A), ~ = n· 'ii, and nis the unit outward normal to the tank

boundary. x is the accelerati~n of the tank structure relative to the

ground. The presence of the x term is di ctated by the fl exibil i ty of

the tank shell. Now if the tank had a roof whi ch is ri gi d, we woul d

have

along aVot •

However, to allow for the general case where the II roof ll is also flexible

(and more likely, inseparable from the wall as in the case of a half­

dome tank), we will use the same boundary condition as in (3.4). Conse­

quently, we include cVot as part of cVoW" The assumption of a rigid

floor support implies that

-8-

Page 17: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

(3.5)

Now, if we let C(x,Y,z;t) stand for the displacement of the oil-waterinterface from its equilibrium position, the (linearized) dynamic inter­

facial condition affirms the continuity of the total pressure such that

along z = 0 • (3.6)

And the (linearized) kinematic condition maintains fluid particles on

interface to stay on the interface (continuity of vertical velocity) so

that

along z = l; • (3.7)

Under the small amplitude assumption, only minor error is incurred by

evaluating equation (3.7) along z = O. If we assume that the gravita­tional effects are small compared to the forced oscillation so that

Equation (3.6) is then reduced to

(3.8)

along z = 0 , (3.9)

so that sloshing waves at the oil and water interface are ignored.

Here, Land T are the characteristic scales of length and time, respec­tively. This assumption can be justified because earthquake excitationsare generally of high frequencies. In our validation of the computer

results (§ 4), we included such surface wave effects and found that the

calculated response was practically frequency independent for moderately

high frequency values.

-9-

Page 18: Dynamics Technology, Inc.

UJII\oA"11VJ 1~"1111VIV':JJ'

DT-7814-2

B. Solution via Variational Principle

Since the tanks under consideration are of general shape except foraxisymmetry, no closed form analytic solution is readily available. Wenow present as a prelude to the finite element solution scheme, a varia­tional functional in Po and Pw whose stationarity is equivalent to thesystem of equations of §A being satisfied. It is well-known that ingeneral, the less restrictive Galerkin method produces results identicalto those one would obtain from any variational principle. We choose touse the variational method to illuminate the process, demonstrating thematrix assembly along the way. The Galerkin method will be employed inthe exterior problem to simplify our presentation.

Consider the functional

+1_1_ (VP ) 2 dV + 1 pw w wV 2pw oV

W ww

1 1 oP- (P -p ) ~ dA.2 W 0 uZ 1

oV. Po1

-10-

~ ~

[( fn+ ~) • n] d,\w

(3.10)

Page 19: Dynamics Technology, Inc.

UYIIClllll~::> I~~IIIIUIU!:JY, J.II~.

DT-7814-2

where we have used (VP) 2 to denote V'P • V'P. Cl early if Po and Pwsatisfy the system of equations of §A, then of(Po'Pw) = O. We now showthat, conversely, if of(Po'Pw} = 0 then the system of §A is solved. Forsimplicity, we will drop all the differential symbol in the integralsprovided that there is no chance of confusion.

Now,

1 1 ooP 1 1 OPw_ "7l:"""" (p -P ) __w - ~ _ 6PLP

Ww 0 oz LP

Woz w

oV i oV i

1 oP+ 1 ~ oP

2pw OZ 0oV.

1

1- Vp • VoP +Pw w w L. ww

1 1 MPo 1- "7l:"""" (p - p ) - - -.r:-

LPO

W 0 oz LPOOV

i

+ 1~L

1

-11-

(3.11)

Page 20: Dynamics Technology, Inc.

DT-7814-2

From Green's identity, we have

(3.12)

oP0 oPo. ~ .Note that along oV i we have art = - az- S1nce n 15 pointing downward.

oPw oPwAnd from ail =az- we deduce

Ivw

1- VP • voP =Pw w w 1 1 oPw

--- oPp woV w OZ

wb

L oPw oP + 1 _1 _oP_w oPPw OZ w P on w

oV www

(3.13)

Substituting (3.12) and (3.13) into (3.14) we obtain

-12-

Page 21: Dynamics Technology, Inc.

DT-7814-2

i 1 (lOPw 1 oP0)+ . "2" P az - p ~ 6P0

oV. w 01

1 1 (1 oPw 1 oP0)+ "7} - -- - - -- 6P. c. P QZ P OZ Wov. W 0

1

1 1 o6Pw~ (P -P ) --c.Pw W 0 OZ

oV.1

J1.- V<P oP + 1 1 apw-~6PwPw W W PwV oVwbw

L 1.-epw+ * * ·in)+ Pw [(fn+ x) 6Pw • (3.14)

Pw onww

If we observe now that each 6-differential quantity can be variedindependently, for 6F(Po 'Pw} to be zero, each of the integrals in (3.14)must be identically zero. We thus have the system of equations of §A,and our statement is verified.

-13-

Page 22: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

c. Finite-Element Approximation

By util izing the axisymmetry of the tank, the interior fluid domain

composed of Vo and Vw may be discretized into a finite-element system

comprising of toroidal elements with quadrilateral (vertical) cross­

section (cylindrical elements at the axis of symmetry). If we use the

cylindrical coordinates (r,z,e) to define the global coordinate system,

and the natural coordinates (s,t,e) within each element as the local

coordinate system (see Figure 4, -1 ~ s ~ 1, -1 ~ t ~ 1) we can write

the coordinate transformation on element e as

r = ~ e e {Ne}T{re},L..J Nk(s,t) r k =k=l

(3.15)

where

N~ = (1-s)(1-t)/4

Ne = (1+s)(1+t)/43

Ne = (1+s)(1-t)/42

Ne = (1-s)(1+t)/44

(3.16)

are the bilinear interpolation functions, and (r~, z~, e), k = 1, ••• 4

are the global coordinates for the four nodes of the quadrilateral

cross-section. Within each element e, the hydrodynamic pressure is then

expressed as

(3.17)

-14-

Page 23: Dynamics Technology, Inc.

DT-7814-2

From §B. the system of equations of §A can be solved by imposing

of(Po'Pw) = O. We now do this at the element level, assembling theelement stiffness matrices and solve the unknowns {pe}.

We first rewrite (3.10) as

+ f 1 (V'P)2 dV2pw w wVw

I 1 oPw- 7"P Pw""5Z dAi

oV. w1

1 1 oPw+ -.r::- P -~- dA.c.p 0 vZ 1oV . W

1

1 1 oPo- "2P Pw~ dAi

oV. 01 -15-

I I

1

I I

2

I I

- 3

I I

4

Page 24: Dynamics Technology, Inc.

DT-7814-2

and then evaluate each of these integrals numerically based on thefinite-element scheme in the following sections. Due to the similaritybetween each Ik and Ik, only the details of Ik will be presented.

Cl. Integral 11

If we assume that the domain Vo is divided into Eo number of elements,we can approximate 11 by

Denote the integral in the above formula by [K eJ, then sinceVo

1dVoe =121tI rdrdz de ,V e 0 A eo 0

Aoe being the area of the finite-element (vertical) cross-section, and

since

-16-

Page 25: Dynamics Technology, Inc.

DT-7814-2

o __ cosS ~ _ si n8 0ax - or rae'(3.18)

o _ s; nS ~ + cose ~oy - - or r 08

We can rewrite [K e] asVo

tl e 2~o (H~e}TU~e}Cos2e +HnTg~e}cos2e +{Ner{Ne}s~~2e)rdrdZde.a Ao

Thus the (;,j)-th entry of [K e] is. V

o

'Jt J~ONi e aNjeoN; e oNj e[K ]'0 =. -- -- + ---- +

V e , J ~ e or or . OZ OZo 'Ao

NoeNoe)

, J rdrdz, i ,j=1,2,3 ,4.r 2

To facilitate the evaluation of [K ] it is convenient to transforme i j'Va

the integral into the local coordinates of e. Thus,

1 1

Iedrdz = 1 f IJ Idsdt ,A -1 -1o

where IJI is the determinant of the Jacobian

(

e

( ~~ ~~) f ~s1 e T ~~e[J] = = l {N } r e

or oz 0 3

ot at ot r4e

-17-

Page 26: Dynamics Technology, Inc.

DT-7814-2

The last relation is obtained from (3.16). Now (K ] .. can be evalua­V e 1J

ted over element e using the natural coordinates. 0

We can write 11 in terms of matrices and vectors relating to all nodesif we extend the {poe}·s to {Po} by placing zeros at the appropriatecomponents. Recall that the components of {Po} is ordered according tothe global nodal-circle number sequencing. Then

{3.19}

where [KV ] is the global matrix whose (i ,j)-th entry iso

L [K e]Vo e(i)e(j)

The sum is taken over all el ements e where nodes i and j belong tosimultaneously (e(i) denotes the local node number of i). Sinceeach [K e] is symmetric, so is [KV ].

Vo 0

C2. Integral 12

Assuming that Vo has Eow elements in contact with aVow' we can approxi­mate 12 by

(3.20)

Under the structural finite-element discretization, we introduce thenodal acceleration vector {X} (cf. Figure 5):

.. T .. .. .. .. .

{X} = (Xlr,Xlz,X1e'~r'x2z,X2e'···· ,XNr'xNZ'XNe)·

-18-

(3.21)

Page 27: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

And if for each ~, the local angl e between the normal ~n and the XY-

plane, we defi ne the Nx3N transformation matrix [G] by

cos~, si n~, 0 0 0 0 0 0 0 0 0

0 0 0 cos 13, si n~, 0 0 0 0 0 0

[G](~} = 0 0 0 0 0 0 cos~, si n~, 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 cos~, si n~, 0

(3.22)

We can then write

(3.23)

along the A~w surface. Where we have used the same bilinearinterpolation functions of (3.16), now acting on the inner fluid­structure interfacial nodes.

Now we can write

(3.24)

where z~ and z~ delimit the vertical extent of element e on Vow' and the

global matrix [0] is assembled from the element matrices

e=l, ••• ,Eow

-19-

(3.25)

Page 28: Dynamics Technology, Inc.

and

Dynamics Technology, Inc.DT-7814-2

..(1,0,-1,1,0,-1, ••• ,1,0,-1) f h (3.26)

{L} is the vector which translates ground motion to loads on the nodal-

ci rcl es.

C3. Integral 13

EiI = L:3 e=1

cos 2e dA. e1

Ei=L:

e=l

where r/ and rue delimit the radial extent of element e. Also note

that Ne and its derivatives are to be evaluated at z = 0.

Again, we can write 13 in global form as

-20-

(3.27)

Page 29: Dynamics Technology, Inc.

Ei=L:

e=1

Dynamics Technology, Inc.DT-7814-2

C4. Integral 14

ioN e T

_1_ ({N e}T {p e}{_w_ l {p en cos 2e dA. ee 2p 0 0 oz (w 1

ov. W1

e

lr u oN e T

{p e}T 1t {N e} {_W_}o e 2Pw 0 oz

rJ!.

Note that we have added subscri pts 0 and w to Ne here because thi sintegral involves both the upper and the lower layers. In terms of thelocal coordinates, it is remarked that for {No

e }, we have t = -1 andoN e T

for { o~ } we have t = 1.

In the global form we have

(3.28)

D. Total Global Matrix

"Summarizing and treating {Po} and {Pw} as unknowns, the functional(3.10) becomes

F({Po}'{Pw}) = {po}T[KV ]{Po} + {pw}T[KV ]{Pw}o w

+ {po}T[O] ({fh}+{~}) + {pw}T[W] ({fh}~{~})

(3.29)

-21-

Page 30: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

For F to be stationary, we require

of 0---oP ok

~= 0oPwk

k = 1, ••• ,NO

k = 1, .•• ,NW. (3.30)

Since Po = Pw at the interface, we have a set of NO + NW - (number ofinterfacial nodes) equations, which gives

and

(3.31)

If we define {Pow} to be the vector of interior nodal pressure distribu­tions, ordered according to the global nodal number sequence (thus norepetition on interface), we can combine the matrix equations of (3.31)

to assemble

(3.32)

To solve for the inner pressure distribution (at least in the case of a

rigid tank, when {x} = 0), we can solve (3.32) by Gaussian eliminationroutines serving this purpose are readily available. However, as {x} is

still unknown in the general flexible case, (3.32) will be used as inputto the general structural equation of motion to solve for the earthquake

response later.

-22-

Page 31: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

3.1.2 Exterior Water Region

A. Problem Formulation

Consider the same axisymmetric tank of §3.1.1 now sUbmerged in water ofdepth H as depicted in Figure 3. We use the same coordinate system as

before, extended to the exteri or water regi on, i ntroduci ng only the

additional boundary surfaces.

Again, under the assumptions of water being inviscid and incompressible,

undergoing motion which is irrotational, and that wave amplitudes aresmall, the governing field equation is

v2p = 0W

in V (3.33)

where Pw is the water hydrodynami c pressure. $i nce water is the only

fluid of concern here, we will henceforth omit the subscript w.

The rigid floor support implies the homogeneous boundary condition at

the sea bottom since we only consider horizontal ground motion:

oP - 0oz - z = -hw (3.34)

Along the laternal surface of the tank, we have as before

* 7:oP - [( f ) ~n]1frI - - Pw h+x • across $i ' (3.35)

7:X enters because of the flexibility of the tank shell.

For the free surface boundary condition, generally one combines the

dynamic condition P = pwg(rrz) with the kinematic condition

02.... = 1 oP . 02p oP" - - - to obtal n - = - 9 - at z = o.ot2 Pw oz ot 2 aZ

-23-

Page 32: Dynamics Technology, Inc.

UI-/O.L't-~

However, as demonstrated by Liaw and Chopra (1973), the surface waveshave negligible effects on the hydrodynamic response of the fluid-tanksystem except at very low frequenci es. Si nce most of the earthquakeexcitati on energy is contai ned in hi gher frequency components, we cansafely assume that the gravity effects are of little consequence. Con­sequently, we use

P = 0 at z = H-hw (3.36)

as the free surface boundary condition.

Finally, since we are dealing with an infinite domain, in order to havea bounded solution, we further require that

P ~ 0 as r ~ ex> • (3.37)

These condi ti ons are duly adjusted, if necessary, to account for any

bottom irregularities.

B. Solution via Galerkin1s Method/Hybrid Element Approximation

Since the exterior water region is an infinite domain, the size of thefininte-element discretization is an important issue. A straightforwardapplication of the finite-element method, even with a domain truncationadjusted to the convergence rate, may be potenti ally cumbersome andcostly, due to the conflicting requirements that the size of theelements be a fraction of the shortest wavelength, and that the outertruncation boundary be far enough away from the longest waves. Instead,we adopt the hybrid approach of using the available analytic solutionfor P at a few wavelengths away from the tank, as soon as most of the

-24-

Page 33: Dynamics Technology, Inc.

significant geometrical irregularities are passed. We introduce afictitious (cylindrical) surface Sf here and use the analytic P to gobackward to match the finite-element solution.

Again using a finite-element discretization of the exterior regionbetween Si and Sf composing of ring-shaped elements having quadrilateral(vertical) cross-sections, we have, as in (3.17) of §3.1.1

4pe = ~ N ecose • p

ke ,

~1 k

(3.38)

{Ne} is as defined in (3.16), but note that it now acts on the exteriornodal-circles. Let us denote Nkecose, the finite-element interpolationfunctions, by Tk

e• The Galerkin criterion requires that

j( ~k(V2P)dV =0 • k =1,2,3,4.

From Green's theorem we have

(3.39)k = 1,2,3,4,-Iv (VTk 'VP) dV + L\ ~~ dS = 0 ,

where S is the union of all the surface of the discretized domain.

Now

Iv(V\. vP)dV

4 f (OT e oT e oT e oT e 1 oT e oT e)LL: k.R. k.R. k.R. ee= Ve .R.=1 V C5r~ + 15Z ---az- + -;2 5e 5"e P.R. dV

e

-25-

Page 34: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

The similarity between the last expression under the intergral signs and

that of [K e] in Section Cl of §3.1.1 is quite apparent. By letting kVo

run from 1 through 4, we can assemble the element matrix [HVe], and itis then a trivial matter to assemble this into the global form of

(3.41)

Recall that {P} is a vector of dimension NE, NE being the number of

exterior water nodal-circles.

The second term of (3.39) can be expressed as

(3.42)

By (3.34) and (3.36), the first and third terms on the right-hand-side

of (3.42) vanish. Since P = 0 on SSt the corresponding rows and columnsin the matrix [HV] also vanish. Th-e solution procedure is thereforesimpl ified by removing all equations associated with nodes at the sur­face. From (3.35) we have

If we use the same {Nse } as defined in (3.16) of §3.1.1 C, acting now on

the exterior water-tank interfacial nodes, based on (3.23), we can

rewrite21t Z e

r \ ~~ dS i=2:11 u - pw\e{Nse}T[GJ({fh}+{~}) case rdzdeJS

ise a Zj.e

-PwTtl" Nke {NSe}T[GJ( {fh}+{~})dZ

-26-

(3.43)

Page 35: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

If we let k run from 1 through 4, we can then assemble the followingglobal form

(3.44)

To evaluate the last term of (3.42) we need to know the pressure distri­

bution on Sf' which is obtained from the analytic representation for Poutside of Sf'

CD

PE = L: (lmK1(kmr) cos km(Z+hw) cose •m=l

(3.45)

where k = (2m-l) 1t, and K1 is the modifi ed Bessel function of them 2H

second kind of order 1. <lm is to be determined. Consequently, along Sfwe have

(3.46)

where rf is the radial coordinate of Sf.leave with ~ terms, we can write (3.45) as

MoP - L- - - d exon m m 'm=l

with

If we truncate the series to

(3.47)

Therefore,

-27-

Page 36: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

(3.48)

Now the <Xm's are determined (in terms of p) from the continuity require­

ment of pressure across the fictitious surface Sf:

(3.49)

Using dm as the weighting function, we get

[ dmPdS f =1dlEdS f (3.50)

Sf Sf

4Substituting the expression pe = L Tkepke and the expression (3.45)

k=lfor PE at Sf (truncated to Mterms) into (3.50), we have

4 M

L L q e p e = 2: 0:. a . •k=l e mk k j=l J mJ

Sf

where

-28-

(3.51)

Page 37: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

=

o if m '" j

(3.52)

Substituting (3.51) into (3.48) we get

(3.53)

Define the Mx4 element matrix [Qe] as having qm~ as the (m,k)-th entry,and the MxM diagonal matrix [A]-l of entries l/amm , we can fonn the

global equivalent

(3.54)

Consequently, we can write (3.39) in the equivalent global form

(3.55)

As in §3.1.1 D, (3.55) will be input to the equation of motion to solve

for the earth quake response in the following section.

-29-

Page 38: Dynamics Technology, Inc.

3.2 Dynamic Behavior of Fluid-Structure System

The equation of motion of the tank structure under consideration can be

written in terms of our finite-element discretization as

.. .[M]{x} + [C]{x} + [K]{x} = - {E} - {PS}' (3.56)

with {x} the vector of nodal displacements relative to the tank support,expressed in the nodal r, z and e components. [M] is the mass matrix

(3.57)

with Mk the mass of the tank materialwhich is lumped at the k-th node.stiffness matrices.

between neighboring nodal-circles,[C] and [K] are the dampi ng and

(3.58)

Finally, {Ps} is the vector of nodal loads associated with the hydro­

dynami c pressures. As these pressures act only on the inner and outersurfaces of the tank, the elements in {Ps} corresponding to non-inter­faci al nodes are zero. Indeed, {Ps} has many zero entri es, si nce thepressures act in the direction of the surface normal, thus all e­components (circumferential) vanish, and if a section of the interface(i nner or outer) is cyl; ndri cal, the correspond; ng z-components al sovanish.

Since the materials used in the construction of the tank is assumed tobe flexible, the structural deformation entails the coupling of the freevibration with the hydrodynamic interaction. Generally based on thealgorithm selected, the coupling of this sort can be categorized into aweak and a strong one. In weak coupling, the fluid pressure is firstused to "drive" the structure into a new shape, and a new pressure field

-30-

Page 39: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

in turn is evaluated using this new configuration. Strong couplingavoi ds these cycl es, forces acti n9 on the structural nodes and on thefluids are determined simultaneously. We use the latter.

If we now stri p off all non-i nterfaci al nodal components from {Pow}((3.32) of §3.1.1) and {P} ((3.55) of §3.1.2), rewrite them in terms ofthe r,z,e components, and extend them to {Ps}; at the same time pickingout the accompanying terms from [K INT] and [HV] + [Q]T[Q] to reassemblethe coefficient matrix for {Ps}' we can combine (3.32) and (3.55) into

(3.59)

Here [F] also incorporates the contributions from [OW] and [BJ.

Assuming that inversion of [HJ can be done efficiently, we can then sub­stitute (3.59) into (3.56) to get

([MJ - [Hr1[FJ){~} + [c]{x} + [KJ{x} = - ([MJ - [Hr1[FJ){fh }

(3.60)

This equation has the standard form of a second-order linear ordinarydifferential equation, which can be solved straightforwardly by a numberof conventional time-integration schemes. However, it is quite obviousthat inverting [HJ should not be recommended. The alternative is to

utilize the nodal superposition method commonly used in structural.. .analysis. Therein the structural response x,x and x are expressed bythe eigenvectors (mode shapes {~}) of the undamped structural vibrations(without fluids). The {~}IS are obtained from the following eigenvalue

problem

(3.61)

-31-

Page 40: Dynamics Technology, Inc.

where Wj denotes the j-th eigenvalue (natural vibration frequency) of

the structure. It should be pointed out here that. in general. the mode

shapes and natural frequencies of our entire coupled fluid-tank system

are di fferent from the {~j} and Wj here. For the enti re system. no

precise physical meanings can be imparted to {$j} and wj ' except

that {$j} is a set of linearly independent vectors out of which struc-

, tural response can be composed of. For that matter. just about any set

of linear independent vectors can be used in this approach. were it not

for the advantage of our particular set {4>} that it diagonizes the

matrices [M]. [C] and [K]:

{4>j}T[MHq>j} = [M;]

{$.}T[C]{q>.} = [C~] =J J J

*21;;. w. [M.]J J J

2 *w. [M.]J J

(3.62)

(3.63)

* * *[MjJ. [Cj ] and [K j ] are diagonal matrices referred to as the general-

ized mass. generalized damping and generalized stiffness matrices. I;;j

is the j-th mode damping ratio (assumed to be small).

Using {$j}' any arbitrary displacment {x} can be expressed as a linear

combination of them:

J

{x} = L {q>.} y .•j=l J J

The above expansi on is exact if J is equal to the total number of

degrees of freedom, 3N, of the structure fi nite-el ement system because

the {~j}IS form a basis of a space of dimension 3N. Usually. for earth­

quake type of excitati ons, the responses can be approximated by the

first few modes fairly well.

-32-

Page 41: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

Now (3.59) can be written as

J

[H]{PS

} = - [F]{fh

} - L: [F]{4>.} V.•j=l J J

If we rewrite {P s } as

J

{Ps} = ~ {PSj} Yj{ J=l

where {P Sj } is the solution of

and {P so } the solution of

[H]{PSO

} = - [F]{L} •

(3.64)

(3.65)

(3.66)

(3.67)

Note that (3.66) and (3.67) can be solved without inverting [H]. And

since in the numerical process, the solution is gotten in a piecemeal

fashion, one need not worry about the possible singular behavior of [H]

during its construction.

{P so} can be vi ewed as the pressure response due to the ri gi d body

motion of the tank, and {P sj } is the pressure response due to the j-th

mode of tank free vibration. Substituting the expressions for {x} and

{P s } into (3.56), multiplying on the left by {4>j}T and using the ortho­

gonality property of the mode shapes, we obtain

* T .. * • *([M.] + {4>.} {P .})Y. + [C.]Y. + [K.]Y.J J SJ J J J J J

-33-

j = 1, •.• ,J (3.68)

Page 42: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

The term {<I>j}T{PSj } can be interpreted as the modal added mass matrix,

and {<pj}T{pso} the generalized hydrodynamic force due to tank rigid-bodymotion. To solve (3.68), commonly used time-integration can be applied.

It shoul d be poi nted out that the added-mass matri x in (3.68) is notdi agonal. Consequently, the system is coupl ed. Thi s system caul d, ofcourse, be transformed into an uncoupled set by usingtlie mode shapes ofthe coupled fluid-tank system, which are eigenvectors of

We choose to solve (3.68) more straightforwardly.

The use of normal modes of the structural free vibration to reduce thenumber of unknown coordi nates may be vi ewed as an appl i cati on of theRitz method.

-34-

Page 43: Dynamics Technology, Inc.

Dynamics Technology, Inc.OT-7814-2

4. NUMERICAL RESULTS/VALIDATION

A computer program named ERST, for Earthquake Response of Sea-Based

Storage Tanks, has been developed to implement the formulation of §3 to

evaluate the elasto-hydrodynamic response of axisymmetric storage tankssubmerged underwater induced by earthquake ground moti ons. A detailed

discussion of ERST is given in Appendix A and the full program listing

is furnished in Appendix B. In this section, we document some results

obtained from the computer codes which were used to validate the

program.

The simplest test is to see whether we can reproduce the well-known

series solutions for cases where the tank structure is a rigid circularcylinder submerged underwater. Due to rigidity, the inner fluid motion

and the outer water motion are uncoupled from the tank vibration. Con­sequently, we can test the interior response and the exterior response

separately.

.Si nce many of the avail abl e resul ts are obtai ned with gravity effectincluded, we modified our program accordingly (we used the variationalprinciple in the new coding to aid in our validation; the results werecompared to be within 2% of ERST which uses the Galerldn scheme). We

first compared the work of Tung (1979) studying (exterior) hydrodynamic

forces on submerged cylindrical tanks under ground excitation. Con­

sidering a tank of relative dimensions H: (H-hw) = 2 and R: H = 1, underthe assumed earthquake ground acceleration of e- iwt with w= 10 rad/sec,

we found excellent agreement with the (analytic) data presented inFigure 4 of Tung's paper. We reproduced the relevant portion of the

curves in our Figure 6. The pressures are evaluated on the tank wall at

e = 00•

-35-

Page 44: Dynamics Technology, Inc.

(4.2)

Dynamics Technology, Inc.DT-7814-2

For the pressure response due to the interior fluid motion, we comparedwith the results of Takayama (1976) and Helou (1981). Again, the tank

is a hollow circular cylinder with a flat top. Here, R=10 ft, ho=hw=5ft, po=0.86 and Pw=1 in g/cm3• He selected a finite-element idealiza­tion of 20 elements distributed symmetrically relative to the oil-waterinterface. In Figure 7, the x-z plane section of the assemblage ispresented. From the sources quoted above, we have, for the analyti crepresentation hydrodynamic pressure of oil and water,

ex>

p = -p R cose e-iwt_po L }- G~ cosh km(Z-ho) cose e- iwt ,o 0 m=l m

(4.1)

- < z < ho '

. t ex> 1 sinh k h _i wtP = -p R cose e-1 w+p.2: Gil m 0 cosh km{z+hw) cose ew w w m=l ~ m sinh. kmhw

-h < z < 0 ,w

if the ~stem undergoes a ground velocity (n.B., not acceleration) e- iwt;

In the above formula,

kmCmJ1(kmR)

K -M w2m m

and

-36-

Page 45: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

(4.3)

(4.4)

(4.5)

km for m= 1,2, •.• are the roots of Ji(kmR} = O.

Pressures for a range of frequencies are calculated using the aboveformulae and our computer program. As can be seen from the results pre­sented in Figures 8 through 11, the comparisons are quite satisfactory.Pressure distribution normalized by the excitation frequency are plottedagainst the nodes at the inner tank wall (€FOO). The figures are for w

= 0.5 rad/sec, 1.1 rad/sec, 6 rad/sec and 10 rad/sec. Notice that sincegravi ty effects are consi dered here, Po does not equal to Pw exactly.Also, note that the curves are for hydrodynamic pressures only, onewould need to add on the hydrostatic pressures to extrapolate thelocation of equal pressures (where z = C).

Close exami nati on of Fi gures 8 through 11 reveals that, whil e there islittle change of the pressure curves from w = 0.5 rad/sec to w = 1.1

rad/sec, there is significant (trend-reversal) difference from there onto w = 6 rad/sec. Eventually, the curves "stabil ized" and becomepractically frequency independent (this is confirmed from calculation ofa number of frequencies ranging from 3.7 rad/sec, 4.8 rad/sec to 60rad/sec). Now, with the gravitational effects included, one couldexpect the fluid-structure system to exhibit sloshing phenomena at thenatural frequencies ~ where

-37-

Page 46: Dynamics Technology, Inc.

Dynaml cs Tecnno lOgy, Inc.DT-7814-2

(4.6)

For the data used in our test, these frequencies are

Since the density difference between oil and water is small (0.14 g/cm3)

the sloshing amplitudes will be small. Within the frequency spectrum of

importance due to earthquake excitations, only high modes of sloshing

waves are expected. These are short-length waves of minor importance.

Since the pressure distribution is independent of frequencies in this

spectrum, this reinforces our belief that as far as our system configu­

ration is concerned, the gravitational effects can be safely ignored, as

we did in our analysis.

To ascertain that our 20-element finite-element scheme has converged

enough to be believed, we increased the assemblage to 100 elements,

whose layout is basically the same as that of the 20-element case,

except that 10 columns are used. We present the results in Tables 1 and

2 (for w = 1.1 rad/sec and 10 rad/sec). As one can see, although the

results are certainly more accurate for the finer mesh, the results of

the 20-element discretization is very respectable, and from the

computational stand-point, by far more cost-efficient.

Although we know of no analytical results for the response problem of an

axisymmetric tank with inclined wall, we made several calculations using

a 20-element discretization on a slant tank similar to the one we used

above, except that an inclination (from vertical axis of 0°, 15° and.

30°) is imposed on the si de wall. R = 10 feet at the tank base.

Figures 12 and 13 show that pressure distribution along the side wall

(e = 0°) for w = 1 rad/sec and w = 6 rad/sec, respectively. For

~ = 15°, it is calculated that resonance occurs at w '" 2.5, 4.5, ••• (see

Figure 14). Again, for earthquake bound frequencies, the sloshing

phenomena will be negligible.

-38-

Page 47: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

ERST has been implemented on the CDC Cyber 176 Computer of the Uni ted

Computing Systems at Dallas, Texas, under the NOS/BE operating system.

For the simple rigid circular cylindrical structure with a 20-element

symmetri c fi ni te-el ement di scretizati on as described above, undergoing

harmonic ground acceleration, a typical run requires less than 2 seconds

CPU time.

Our last series of tests involve a simple flexible (circular) cylindri­

cal tank under a ground acceleration of sinwt, for various values of

w. The results are presented in Figures 15 through 17. Here R = 10 m,

ho = hw = 5m and H = 20 m. A uniformly positi oned 20-el ement fi ni te­

element system is selected for the interior fluid domain, which is then

extended naturally to form a 45-element mesh for the exterior water and

a 12-element one for the tank structure. In Figure 15, w = 1 Hz, the

hydrodynamic pressure di stributi on for the fi rst two modes of response

is pl ottedfor t = .25 sec and .75 sec (1/4 and 3/4 cycl es after the

initial excitation). In Figures 16 and 17, w = 10 Hz, and we show

response of the fi rst mode as well as the fi rst two modes for t = .025. .

sec and .075 sec. Notice that the interior pressure forces are approx-

imately 1.5 to 2 times in o'fPlue to that of the exterior pressure. Also

notice that in Figure 15, ozo is close to zero even though the II roof ll is

not assumed to be rigid; but in Figures 16 and 17, larger displacements

step in and change the pressure distribution now that frequency is

bigger. The tank's natural vibration frequencies are ~ ::< 16.7 Hz,

U2 ::< 33.7 Hz.

We were unable to make a comparison of our results to that of Helou's

(1981) presented in his Figure 4.3 for, unfortunately, his results areoP

incorrect as evi denced by the fact that ozw ;/; 0 at the ocean floor,

violating the rigid boundary condition there.

-39-

Page 48: Dynamics Technology, Inc.

Dynamics Technology, Inc.OT-7814-2

Table 1. Pressure distribution at wall (9 = 0°)under different finite element discretizations.

P/w at Wall

z 20-element 100-element Analytical

5.0 -8.438 -8.432 -8.4312.0 -8.410 -8.404 -8.4031.0 -8.386 -8.381 -8.3810.66 -8.376 -8.372 -8.3720.33 -8.366 -8.361 -8.3610 -8.354 -8.349 -8.349

0 -10.286 -10.292 -10.292-0.33 -10.272 -10.278 -10.276-0.66 -10.260 -10.265 -10.266-1.0 -10.248 -10.254 -10.255-2.0 -10.221 -10.228 -10.228-5.0 -10.188 -10.195 -10.196

w = 1.1 rad/sec

Table 2. Pressure distribution at wall (9 = 0°)under different finite element discretizations.

P/w at Wall

z 20-element 100-element Analytical

5.0 -8.999 -8.996 -8.9962.0 -9.088 -9.078 -9.0751.0 -9.168 -9.159 -9.1530.66 -9.203 -9.198 -9.2010.33 -9.244 -9.247 -9.2500 -9.293 -9.322 -9.342

0 -9.194 -9.162 -9.137-0.33 -9.251 -9.247 -9.241-0.66 -9.298 -9.304 -9.309-1.0 -9.339 -9.350 -9.357-2.0 -9.432 -9.444 -9.446-5.0 -9.536 -9.539 -9.539

w = 10 rad/sec

-40-

Page 49: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

5. SUMMARY AND FUTURES WORK

A rational and effective method to assess the effects of fluid-structureinteraction, on the dynamic response of submerged underwater oil storagetanks under earthquake excitations, has been developed. Our approach isthe hybrid-finite element method, discretizing the tank structure, theinterior fluids, as well as the near field of the exterior water regioninto a ring-shaped mesh network. Solution for the hydrodynamic pressuredistribution is substituted into the structural equation of motion inmodal coordinates to obtain the system displacement information. A com­prehensive and predictive computer code is developed for design engi­neering applications. The program is described in the Appendices. Ourprogram has ben validated against known analytical solutions and shownto be effective an<t accurate with the added flexibility for arbitraryaXisymmetric tank shapes.

Duri ng thi s invest; gati on, we al so reconfi rmed the fact that gravi tyeffects can be safely neglected in evaluating the hydrodynamic pressure

induced at the wall of a submerged tank, such as the one under study.It is also observed that due to the unappreci ab1e difference of Po and

Pw' changes in tne ratio ho/hw above do not significantly influence thefluid-structure response.

From (3.68), it can be seen that the hydrodynamic interaction caused bythe fluids inside and outside the tank contributes to the structuralequation of motion in the forms of additional terms which can be viewedas added mass and added exci tati ons. The added i nerti a of waterincreases the natural period of the tank free oscillation, and decreases

(depends on the deflected shape) the modal damping ratios. However, thepresence of water does not influence the stiffness matrix [K].

-41-

Page 50: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

Finally, the incorporation of analyltic representation of Pw in the

hybrid approach proves to be a useful cost-saver especially for tanks of

odd shape and wi th i rregul ar bottom topography. It isantici pated that

this super-element should play an even bigger role in the treatment of

sail-structure interactions.

The computer program developed in this study can be used, with appro­

priate modifications, for the following studies:

1. Tanks of open bottoms.

2. Tanks which are floating or moored.

3. Tanks which are non-axisymmetric.

4. Effects of non-rigid tank support and marine soil-structureinteraction.

Understanding the nonlinear behavior of the kind of systems we have been

i nvesti gati ng shaul d, of course, be the ultimate study goal, but the

numerical details it involves are very complicated. An in-depth analy­

si s may al so be needed to rel ax our assumptions that verti cal ground

motion and fluid incompressibility can be neglected. For the former,

other modes of shell vibration, such as the breathing mode may need to

be considered. Compressibility may become important for high values of

excitation frequencies (for large-scale earthquakes). Indeed, with

sound speed in water in the vicinity of 4720 ft/sec such high frequency

excitations give rise to sound waves of lengths comparable to the tank

dimension and the water depth. For squatty tanks, the compressibility

effect may not be ignored.

-42-

Page 51: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

REFERENCES

1. Arya, A.S., Thakkar, S.K. and Goyal, A.C., "Vibr>ation Ana1-ysis ofThin CyUnd:Y'iea1- Container>s~" Journal of the Engineering MechanicsDivision, Proceedings of the ASCE, Vol. 97, No. EM2, April 1971.

2. Aslam, M., Godden, \!J.G. and Scalise, D.T., "Ear>thquake SLoshing inAnnu1-ar> and CyUndr>iea1- Tanks~" Journal of the Engineering Divi­sion, Proceedings of the ASCE, Vol. 105, No. EM3, June 1979.

3. Bai, K.J. and Yeung, R., 'Wumer>iea1- S01-utions of Fr>ee-SUr>faee F1-0~

'Pr>ob1-ems~" Proceedi ngs of the 10th Symposi um on Naval Hydrodynam­ics, Cambridge, Mass., 1974.

4. Baron, M.L. and Skalak, R., "Fr>ee Vibr>ation of F1-uid-Fi1-1-ed Cy1-in­d'Y'iea1- SheUs~" Journal of the Engineering Mechanics Division,Proceedings of the ASCE, Vol. 88, No. EM3, June 1962.

5. Basu, P.K. and Gould, P.L., "SHORE-II~ SheU of Revo1-ution FiniteE1-ement Pr>ogr>am - Statie Case~ Theor'etiea1- Manua1-~" StructuralDivision, Department of Civil Engineering, Washington University,St. Louis, Missouri, March 1975.

6. Berkhoff, J. C. W., "Computation of Combined Refr>aetion-Diffr>aetion~"

Proceedings of the 13th Coastal Engineering Conference, Vancouver,1972.

7. Black, J.L. and Mei, C.C., "Seatter>ing and Radiation of Water>Waves~ " Ral ph M. Parsons Laboratory for Water Resources and Hydro­dynami cs Report No. 121, Massachusetts Insti tute of Technology,Cambridge, Mass., April 1970.

8. Chak rabarti, P. and, Chopra, A. K., "Ear>thquake Response of Gr>avityDams Ine1-uding Reser>voir> Inter>aetion Effeets~ " EarthquakeEngi neeri ng Research Center Report No. EERC 72-6, Uni versity ofCalifornia, Berkeley, Calif., December 1972.

9. Chamberl in, R. S. , "Khazzan Dubai 1: Design~ Constr>uetion andIn8taUation~" Proceedings of the Second Annual Offshore Tech­nology Conference, Paper No. OTC 1192, Houston, Texas, April 1970.

10. Chen, H.S. and r~i, C.C., '~8ei1-1-ations and Wave For>ees in an Off­shor>e Har>bor> (AppUeations of Hybr>id Finite E1-ement Method toWater>-Wave Seatter>ingJ ~" Ral ph M. Parsons Laboratory for WaterResources and Hydrodynamics Report No. 19, Massachusetts Instituteof Technology, Cambridge, Mass., August 1974.

-43-

Page 52: Dynamics Technology, Inc.

uynamlcs lechnology, Inc.DT-7814-2

REFERENCES (Continued)

H. Chester, W., "Resonant OsaiUation of Watero Waves,," Proceedi ngs ofRoyal Society of London, Vol. 306, 1968.

12. Edwards, N.W., ,~ Prooaeduroe foro the Dynamia Analysis of Thin-WalledCylindroiaal Liquid . Sf;oroage Tanks Subjeated to Lateroal GrooundMotions,," Ph.D. Dissertation, University of Michigan, Ann Arbor,Mich., 1969.

13. Faltinsen, O.M., "A Nonlinearo Theoroy of sLoshing in ReatangularoTanks,," Journal of Ship Research, Vol. 18, No.4, 1974.

14. F1Ugge, W., Stresses in Shells, Springer-Verlag, Berlin, 1960.

15. Garrett, C.J.R., "Wave Foroaes on a Ciroaularo Doak,," Journal of FluidMechanics, i§.., Part 1, 1971.

16. Garrison, C.J. and Seetharama Rao, V., "Interoaation of Waves withSubmeroged Objeats,," Journal of Waterways, Harbors and CoastalEngineering Division, Proceedings of· the ASCE, May 1971.

17 • Ghosh, S. and Wi 1son, E. L., "Dynamia Sf;roess Analysis ofAxisym­metroia Sf;rouaturoes Under' Arobitroaroy Loading,," Earthquake EngineeringResearch Center Report No. EERC 69-10, University of Cal iforni a,Berkeley, California, September 1969. Revised by Lin, C-J.,September 1975. '

18. He lou, A. H., "Seismia Analysis of Submeroged Under'1JJatero Oil Sf;oroageTanks,," Ph.D. Dissertation, North Carolina State University,Raleigh, North Carolina, 1981.

19. Housner, G.W., "Dynamia Proessuro(:Js on Aaaelemted Fluid Container's,,"Bulletin of the Seismological Society of Jlmerica, Vol. 47, No.1,January 1957.

20. Jacobsen, L.S., "Impulsive Hydroodynamias of Fluid Inside Cylin-:droiaal Tanks and of a Fluid Suroroounding a Cylindroiaal Peiro,,"Bulletin of the Seismological Society of Jlmerica, Vol. 39, July1949.

21. Li aw, C. Y. and Chopra, A.K., "Earothquake Response ofAxisyrrunetroiaT~er' S!;r'uatur'es Sur'roounded by Water',," Earthquake EngineeringResearch Center Report No. EERC 73-25, University of California,Berkeley, California, October 1973.

-44-

Page 53: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

REFERENCES (Continued)

22. Mei, C.C., Foda, M.A. and Tong, P., "Exa~t and Hybpid-Etement SOlu­.. tion fop the Vibmtion of Thin Elastic Stpuctupes Seated on the

Sea Floop~" Applied Ocean Research, Vol. 1, No.2, April 1979.

23. Sanders, J.L., Jr., "An Imppoved Fipst-Apppoximation Theory fopThin SheUs~" National Aeronautical and Space Administration Tech­nical Report No. R-24, NASA, Washington, D.C., 1959.

24. Shaaban, S.H. and Nash, W.A., "Response of an Empty CyUndpica'tGpound-suppopted Liquid stomge Tank to Base Excitation~ "Engineering Research Institute Report, Department of CivilEngineering, University of Massachusetts, Amherst, Mass., 1975.

25. Takayama , T., "Theory of Tr>ansient Fluid Waves in a VibpatedStopage Tank~" The Port and Harbor Research Institute, Vol. 15,No.2, Ministry of Transportation, Nagase, Yokosuka, Japan, June1976.

26. Tu ng , C. C• , "Hydpodynamic Fopces on SUbmepged Vepticat CipcuZapCyUndpicaZ Tanks Undep Gpound Excitation~ 1/ Appl i ed OceanResearch, Vol. 1, No.2, April 1979.

27. Wu, C.I., Monzakis, T., Nash, \~.A. and Col one" , J.M., "NatupaZFpequencies of CyZindpicaZ Liquid Stopage Containeps~" EngineeringResearch Institute, University of Massachusetts, Amherst, Mass.,1975.

28. Yang, J. Y., "Dynamic Behaviop of FZuid-Tank Sy8tems~" Ph. D. Di sser­tation, Rice University, Houston, Texas, March 1976.

29. Yue, D.K.P., Chen, H.S. and Mei, C.C., I~ Hybpid Element Method fopCaZcuZating Thpee-DimensionaZ Watep WaVe Scatteping~" Ral ph M.Parsons Laboratory for Water Resources and Hydrodynami cs ReportNo. 215, Massachusetts Institute of Technology, Cambridge, Mass.,August 1976.

-45-

Page 54: Dynamics Technology, Inc.

Fi gure 1. Secti 0 T'n hrough Kh 'azzan Dubai 1

-46-

Page 55: Dynamics Technology, Inc.

f---- _ ..__.- ~

t----..- -- _. ---- . I--\l--l...

rt

!t50.:0·t• . _ .•

------~

Figure 2. Major Dimensions of Khazzan Dubai 1

-47-

Page 56: Dynamics Technology, Inc.

(actuallyfarther away)

H

v

Figure 3. CoordinateSystem for AxisymmetricSubmerged Storage Tank

x

--- - -- --- -- - -- - - - ----

---------- ----

I

I

II

'-5I fI,I-,n,

1--__- II,I

I,I,I

III

--n

-48-

Page 57: Dynamics Technology, Inc.

2

Global Coordinate System

5

2

t

I._+_.I

H,-I,B)

z

(1,-1, B)L------__._ r

Local Coordinate System

Figure 4. Finite Element Coordinate System

-49-

Page 58: Dynamics Technology, Inc.

X~cos8

xnn

x~ cas8

g::~:

.//

I

/ zh\\\

'\.""'­ '-

nTH. NODAL

CIRCLE

FINITE ELEMENTIDEALIZATION

GROUND DISPLACEMENT RELATIVE DISPLACEMENTSOF NODAL-CIRCLE n

Figure 5. Axisymmetric Structure Subjected to Horizontal Ground Motion

-50-

Page 59: Dynamics Technology, Inc.

H

h +zw

~

1.0.;----~-~.

, , , ,\

\\

\

\\

\

\\

\\

\\\,

\\\,I\

\III

II

II\II

I

i

2p/pR (m/s )

0.2 0.3 0.4 0.5

Figure 6. Pressures on wall of cylindrical tank e =0°.

-- H/(H-h ) = 2; ----- H/(H-hw) = 5, R/H = 1'vI

-51-

Page 60: Dynamics Technology, Inc.

3'

/!- --C_

1/1 !1/3 ~f

~t

I1 6

..

2 7

.~ 84 I 9t:; ! 10

11 ! 1612 1711 18

II 14 19

15 20

I~~----------~'-O(:----------~l'15/ 5/

~Interface

Figure 7. Interior Fluid Domain Finite Element Discretization

-52-

Page 61: Dynamics Technology, Inc.

w =0.5 rad/sec.

m FEM

- Analytical

Z FEM Analytical

5.0 -16.639 -16.6372.0 -16.631 -16.629

15' 1.0 -16.623 -16.623

Po 0.66 -16.619 -16.6190.33 -16.616 -16.616

_I0 -16.612 -16.612

Pw51

Z FEM Analytical

0 -19.491 -19.491I ·1I- -0.33 -19.485 -19.485

10 1-0.66 -19.481 -19.481-1.0 -19.478 -19.478-2.0 -19.470 -19.470-5.0 -19.460 -19.460

Z

5.0

Figure 8.

3.0

2.0

1.0

r--j----.........,.:l-.-. P/ w

-1.0

-2.0

-3.0

-4.0

r-5.0

Pressure Distribution at Inner Wall (8 =0°) of aSubmerged Cylindrical Tank

-53-

lb-·secft2

Page 62: Dynamics Technology, Inc.

j ~,ii1~ytical.,

Z FEM

5.0 -16.373 i -]',6.359

2.0 -16.319 -It.3051.0 -16.272 i -1£.2620.66 -16.253 ~ 16.2450.33 -16.233 I 1.6.224 !

0 -16.210 J -16.200 i

iZ FEM Analytical II

0 -19.959 -1'9.970-0.33 -19.932 19.939,-0.66 -19.908 , 19.920-1.0 -19.885 ; -19.899-2.0 -19.833 -19.846-5.0 I -19.769 -19.784z

.. [10'

T5'

__-T-r-T"--r-.,....,-....-.--r-

P-r-W-;--]--r-..,..-r-r-';"" -1 5 '

w =1.1 rad/sec.

lSI FEM- Analytical

..;.20

-16.3 -16.1

5.0

4.0

3.0

2.0

1.0

-1.0

-2.0

-3.0

lbP/w -.secft2

-4.0

-5.0

Figure 9. Pressure Distribution at Inner vIall (e ==0°) of aSubmerged Cylindrical Tank

-54-

Page 63: Dynamics Technology, Inc.

T5't------p-w------I 1"5'

w =6.0 rad/sec.

11 FEM- Analytical

R

iI

-17.5

z

Z FEM Analyti cal

5.0 -17.531 -17.5262.0 -17.743 -17.7311.0 -17.943 -17.9560.66 -18.0300.33 -18.133 ,

0 -18.261 -19.374

Z FEM Analytical

0 -17.574 -17.440-0.33 -17.723-0.66 -17.842-1.0 -17.945 -17.927-2.0 -18.176 -18.191-5.0 -18.422 -18.430

-18.5

Figure 10. Pressure Distribution at Inner l·~al1 (e =0°) of aSubmerged Cylindrical Tank

-55-

Page 64: Dynamics Technology, Inc.

t. FEM Analytical

5.0 -17.462 -17.456

15'

2.0 -17.634 -17.609Po 1.0 -17.789 -17.760

0.66 -17.857 -17 .853

Pw 15'

0.33 -17.937 -17 .9490 -18.032 -18.127

Z FEM Analytical

10 I ~ 0 -17.753 -17.729-0.33 -17.951 . -17.931-0.66 -18.042 -18.063-1.0 -18.121 -18.156

w = 10.0 radjsec-2.0 -18.302 -18.333

Z-5.0 -18.504 -18.509

• FEM- Analytical

Figure 11. Pressure Distribution at Inner Wall (8 =0°) of aSubmerged Cylindrical Tank

-56-

Page 65: Dynamics Technology, Inc.

z

B =Inclination Angle

w = 1.0 rad/sec.

-1.0

-5.0

1.0

5.0

.i--------P/w Jb_. secft2

-7.8

\ !\

11 /1 '

illI ,,I / /iiI..

Fi gure 12. Pressure Di stri bution at Inner ~'Ja11 (e = 0°) of aSubmerged Inclined Tank

-57-

Page 66: Dynamics Technology, Inc.

z

-5.0

8 =0° 8 = 15° 8 = 30°

Y5.0

8 = Incl i nati on Angl e

\ \ w=6.0 rad/sec.

J 1.0;

lb

-19.41 -7.8P/w -oseeft-2

-1.0

Figure 13. Pressure Distribution at Inner to/all (8 =0°) of aSubmerged Inclined Tank

-58-

Page 67: Dynamics Technology, Inc.

10.

9.8.

7.

Incl

inat

ion

Ang

le=

15°

5.

6.

w(r

ad/s

ec)

4.3

.2.

1.

o

11;;1

X10

2

, U"1

\.0 I

10.

20.

ft.

Fig

ure

14.

Oil

-Wat

erIn

terf

ace

Dis

plac

emen

t-F

requ

ency

Cur

veof

aSu

bmer

ged

Incl

ined

Tank

Page 68: Dynamics Technology, Inc.

w=

2rr

rad/

sec

Mod

esth

roug

h2

----

----

Pre

ssur

eon

Inne

rW

all

----

Pre

ssur

eon

Ext

erio

rW

all

t=

.75

sec

15.m

"" ",

,

1\

\\ \

1\

\ \ \ \

1\ \ ,\

\ \ \

IO

..5

I.:]

1.5

\.

L.1

,./

//

//

I/

/ /I I

I I I f , I I Jt

=.7

5se

cI I , I I I , I I I

t=

.25

sec

I I I I I I

-2.

I-1

.5-1

.:-t

II

j;

\T

P(k

sf)

....

1t

III

I I , I \ \ I It=

25se

cI

I \ , I \ , I I I I ,

I O"l o t

Figu

re15

.P

ress

ure

Dis

trib

utio

nat

Tank

Wal

l(s

=0°

)o

fa

Subm

erge

dF

lexi

ble

Tank

Page 69: Dynamics Technology, Inc.

w=

20n

rad/

sec

Mod

esth

roug

h1

----

----

-P

ress

ure

onIn

ner

Wal

l----

Pre

ssur

eon

Ext

erio

rW

all

2.

t=

.075

sec

I I I I I I I I It

=.0

25se

cI I I I I \

"-"-, ,

", ," \ \ \ \ \ \ \ \ \ \ \ \ \ \

.5\1

.o.rm

I I I I I J , I I I It

=.0

75se

cI I I I I

"/

//

/I

II

I I I I J I' I I J I I J-1

./-.

5-1

.5

t=

.02

5se

c

-2.

I O'l ...... ,

Fig

ure

16.

Pre

ssur

eD

istr

ibut

ion

atTa

nkW

all

(8=

0°)

of

aSU

bmer

ged

Fle

xibl

eTa

nk

Page 70: Dynamics Technology, Inc.

w=

2011"

radj

sec

Mod

esth

rou

gh

2

----

----

-P

ress

ure

onIn

ner

Wal

l

----

Pre

ssu

reon

Ex

teri

or

Wall

At

-.5

2.

t=

.075

sec

\

\ \ \ \ \ \ \ \ I I I

1.I

\1.5~

-f1

_--:

:---

:::--

.t-'ll

-I

y-,,-

P(k

sf)

I f I I I I I

t=

.025

sec; I I I f I I I I I

...."-

""-""-

"-.....

'\

" \

.5_

5.m

o. -5.

I I I 1 I· I ( I I )t=

=.0

75se

c, I I I r· I I I J

,/

t'/

/

II

I I r I , , I r I ( I ,-1

.5-1

.I

II

I-2

.--f

t:=

.02

5se

c

f-I

• (1) N I

Fig

ure

17.

Pre

ssu

reD

istr

ibu

tio

nat

Tan

k~Jall

(e=

0°)

of

aS

ubm

erge

dF

lex

ible

Tan

k

Page 71: Dynamics Technology, Inc.

r C'I

W ,

LAYO

UT

Figu

re18

.ER

STPr

ogra

mS

truc

ture

[~~ST

I

-{111

Page 72: Dynamics Technology, Inc.

z

K

L

I J

~-------------------------J--r

Figure 19. Finite Element Nodal Points Ordering Scheme

-64-

Page 73: Dynamics Technology, Inc.

z

r

[]E

xter

ior

Wat

erN

odal

-Cir

cle

()S

tru

ctu

ral

Nod

al-C

ircl

e

Li

Inte

rio

rF

luid

sN

odal

-Cir

cles

o~

y----

----

-crr

-I I I

II

I

-----

----

----0

----

-----

----

[~}

-----

----

----

----

-0-·

----

-----

_.---

---~

J II

II

I

I2

I3

II

1Q

P7"

l~

l7"'

<rn

r-:

.:_

_._._

_.__..~:

_._._._.

_:

:.:~.It:.:.::J.~

I en (J1 I

:::

.-:

:

Fig

ure

20.

Fin

ite

Ele

men

tA

ssem

blag

esSh

own

atC

ross

-Sec

tion

e=

0°.

(Not

eth

atex

teri

or

wat

erno

dese

quen

cest

arts

atst

ruct

ure

inte

rfac

e.)

Page 74: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

Appendix A. USER 1 S GUIDE TO CO/VPUTER PROGRAM IlERST"

The computer program named ERST, for Earthquake Response of Sea-Based

Storage Tanks, is developed and synthesized to evaluate the elasto­

hydrodynamic response of axisymmetric storage tanks sUbmerged underwater

induced by earthquake ground motions.

The tank structure is ri gi dly attached to the ocean floor, has a fl ex­

ible wall. The tank has a vertical axis of symmetry, is submerged

underwater (structures protrudi ng out of ocean surface can al so be

handled with minimum modifications) and filled with two different layers

of fluids. The whole system is discretized into three assemblages of

toroidal finite elements for: the interior fluids domain, the tank

shell, and the near field exterior water region.

Nodal displacements, stresses, as well as hydrodynamic pressures are

output as the response to the input (horizontal) ground acceleration.

Both the dynamic and the static responses are eval uated. A si gnificant

portion of the code pertaining to the dynamic behavior of exterior

water-structure interaction is based on the EATSW program written by

Dr. C. Y. Liaw for earthquake analysis of axisymmetric intake tower

structures surrounded by water, purchased through the NISEE/Computer

Applications Program, and modified to interface with the developed

i nteri or fl ui ds-structure i nteracti on program through the ki nd assi s­

tance of Dr. Liaw.

Figure 18 gives the general code structure with accompanying descrip­

tions of the functions of the subroutines and the tape files employed.

Note that a plotting scheme is built in based on the available sub­

routi nes GRAFl1, PLOT, OPLT, MULPLT (i n subrouti nes LAYOUT, EIGEN and

TSTEP) interfaced to a Calcomp plotter. Users are advised to modify

this portion to suit onels own environment.

-66-

Page 75: Dynamics Technology, Inc.

ERST

LAYOUT

ELEMENT -

TOTAL

STATIC

EIGENEXTSOLEXT

INTBNDWTH

SOLINT

TSTEP

RESPON

TAPElTAPE2

TAPE3TAPE4TAPE6TAPE7TAPE8TAPE9

Dynamics Technology, Inc.DT-7814-2

Driver program

Determines structure characteristics and finite-elementconfigurationsDetermines element stress strain, mass and stiffnessmatrices

Assembles global mass and stiffness matrices; also evalu­ates hydrostatic contribution for static analysisComputes static displacements and stress for staticanalysisDetermines structural free vibration modes and frequencies

Prepares for exterior water finite-element system set-upComputes general i zed force vector and mass matri x contri­buted from exterior water and superelementPrepares for interior fluids finite-element system set-upDetermines interior fluid element matrix bandwidthComputes generalized forces vector and mass matrix contri­buted from interior fluidsSolves for modal equation of motion by time-step integra­tion

Calculates dynamic response by modal superpositions

Stores element mass and stiffness matrices informationStores compacted mass matrix as well as x-displacementresponse informationStores element static response informationStores total stress informationStores plot informationStores Y-displacmeent response informationStores eigenmodes and eigenvalues informationStores hydrodynamic pressure as well as interpolatedearthquake data information

-67-

Page 76: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

In the following, we describe the data deck structure to be used forexecuting the program.

1. TITLE CARD (8AUH

II. STRUCTURE INFORMATION (NAMELIST:TANK)

NUMNP: number of structural nodal-circles

NUMEL: number of structural elements

NUMMAT: number of different structural materials

NfvODE: number of modes of vibration included. If NMODE=0and IGRAV=0, only static responses are evaluated.

WLO: level of water surrounding the structure (in feet)

WLI: level of water in the interior of a hollow structure(i n feet)

NPO: number of structural nodal-circles on the exteriorsurface affected by the surrounding water

NPI: number of structural nodal-circles on the interiorsurface affected by interior fluids

IGRAV=0, perform static analysis only

=1, perform dynamic analysis only

=2, perform static as well as dynamic analysis

READFRQ=.FALSE., compute and write to TAPES frequencies andmode shapes of the structure without the sur­rounding water

READFRQ=.TRUE., skip calculation of frequencies and modeshapes; instead read from TAPE8

PLOTANK=.TRUE., plot structure elements

PLOTfvOO=.TRUE., plot mode shapes

-68-

Page 77: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

I II. MATER-I AL PROPERTY INFORMATION

One set of cards must be suppl i ed for each different material used instructure.

Card 1 (I5,5X,All)

Columns 1 - 5: Material sequence number

11 - 21: Either 'ISOTROPIC' or 'ORTHOTROPIC' to indicatematerial property

Card 21 (3FI0.0): Properties of Isotropic Material

Columns 1 - 10: Modulus of elasticity (in ksf - kips per square foot)

Properties of Orthotropic Materi a1

En· modul us of el asti ci ty (in ksf)

Es • modulus of elasticity (in ksf)

Et • modulus of el asti ci ty (in ksf)

vns ' Poisson's ratio

Vnt' Poisson's ratio

Vst· Poisson's ratio

Properties of Orthotropic Material(continued from Card 20)

11 - 20:

21 - 30:

31 - 40:

41 - 50:

51 - 60:

Card 3 (5F10.0):

Columns 1 - HI:

11 - 20: Poisson's ratio

21 - 30: Mass density (in kip-sec2/ft4)

Card 20 (6F10.0):

Columns 1 - 10:

11 - 20:

21 - 30:

31 - 40:

Gns ' shear modulus (in ksf)

Gnt , shear modulus (in ksf)

Gst • shear modulus (in ksf)

Mass density (in kip-sec2/ft4)

41 - 50: Angl e ~ in degrees measured counter-cl ockwi se fromthe r-axis to the n-axis

The n-s axes are the principal axes for the orthotropic material. and tis the tangential direction of the axisymmetric coordinates.

-69-

Page 78: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

IV. STRUCTURAL NODAL-CIRCLE CARDS (I5,F5.~,2F10.~,2I5,2F1~.0)

Columns 1 - 5: Nodal-circle number

8 - 1~: Boundary condition code"1" in column 8 if r-displacement is restrained

"1" in column 9 if z-displacement is restrained"1" in column 10 if 9-displacment is restrained

11 - 20: r-ordi nate (i n feet)

21 - 30: z-ordinate (in feet)

31 - 40: Used for layer generation, otherwise leave blank.

Nodal-circle cards must be in numerical sequence. If cards are omittedand Columns 31 - 60 are left blank, the omitted nodal-points are gener­ated along a straight line between the defined nodal-points. (See Note1); or if Col umns 31 - 60 are not bl ank, they are generated in 1ayers(see Note 2).

Note 1: Straight line generation

If the (L-1) cards for nodal-circles N+1, N+2, ••• ,N+L-1 are omitted andColumns 31 - 60 of the card for nodal-circle N are left blank, theomitted nodal-circles are generated at equal intervals on the straightline joining nodes Nand (N+L).

Note 2: Layer generation

Layer generation may be used after two rows of nodal-circles are CO!11­pl etely defi ned. If, on the card for node N, the foll O\'Ii ng data isspecified:

Columns 31 - 35: t()D: module, m (> 0)

36 - 40: NLIM: limit of generation (> N)

41 - 50 : FACX: ampl ification factor f r (default f =1)r

51 - 60: FACY: amplification factor f z (default fz=1)

the r-z coordinates of points N+1,N+2, ••• ,NLIM are generated by the for­mulas:

-70-

Page 79: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

for k = N+1, ••• ,NLI M. If NLI M = NUr1NP, no more nodal-cards areneeded. If NLIM < NUMNP, the card for circle (NLIM+1) must follow.

The boundary condition code for generated nodal-circles is set equal tozero, i.e., these nodal-circles are unrestrained in all r, z and e coor­dinates.

v. STRUCTURAL ELEMENT CARDS (615)

Columns 1 - 5: Element number

6 - 10: Nodal-Point I

11 - 15: Nodal-Point J

16 - 20: Nodal-Point K

21 - 25: Nodal-Point L

The maximum difference "b"between these numbers is anindication of the bandwidthof the Stiffness Matrix. "b"may be minimized by a judiciousnumbering of nodal points.

26 - 30: Material identification

Nodal-point numbers I, J, K and L must be in sequence in a counter­clockwise direction around the element (cf. Figure 19). Element cardsmust be in element number sequence. If element cards are omitted, theprogram automatically generates the omitted information by incrementingby one the preceding I, J, K and L. The material identification for thegenerated card is set equal to the corresponding value on the lastcard. The last element card must always be supplied. Triangularelements are also permissible; they are identified by repeating the lastnodal number (i.e., I, J, K, K).

-71-

Page 80: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

VI. WATER PRESSURE CARDS

Card Set 1 (1615): This set of cards are to be omitted, if NPO = 0.

Cplumns 1 - 5: Nodal-circles of the structure affected by the

6 - 10: surrounding water; n1,n2, ••• ,nk = NPO, starting

etc. from roof center.

Card Set 2 (1615): This set of cards are to be omitted, if NPI = O.

Columns 1 - 5: Nodal-circles of the structure affected by the

6 - 10: interior fluids; m1,m2, .•• ,mL' L = NPI, starting

etc. from inner roof center.

VII. EXTERIOR FLUID CARDS

Card 1. FLUID DOMAIN DISCRETIZATION (NAMELIST: EXTFLD)

NUMPEX: number of fluid nodal-circles

NUELEX: number of fluid elements

NUINTEX: number of nodal-circles on the fluid-structure inter­face in the finite element idealization of the fluid

NUFSF: number of nodal circles on the free surface in thefinite element idealization of the fluid and at thez-axis.

NUCOF: number of coefficients of super-element pressurerepresentation.

-72-

Page 81: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

Card 2. FLUID NODAL-CIRCLES (2I5,2Fl~.0,2I5,2F10.~)

Nodal-circles in the finite element idealization of the fluid domainmust be numbered in such a way, that the first NUINTEX nodal-circles arelocated on the structure-fluid interface (cf. Figure 20). The numberingmust start at the top as shown there. In the finite element idealiza­tion for the fluid domain, nodal-circles on the interface must be pro­vided to coincide with the nodal-circle in the structural idealization.Additional nodal-circles can be included in the idealization of thefluid domain, as shown in Figure 20.

One card for each nodal-circle containing the folloWing information mustbe provided.

Columns 1 - 5: Fluid nodal-circle number

6 - 1~: ICOOE: Boundary condition code for fluid nodal­circle. If the fluid nodal-circle is on theinterface and coincides with a structuralnodal-circle, ICOOE = the number of the coin­cident structural nodal circle.

If the fluid nodal-circle is on the interfacebut does not coincide with a structuralnodal-circle, then ICOOE = -1.

If the fluid nodal-circle is on the free sur­face of the fluid domain, ICOOE = -2.

For all other nodal-circles, leave Columns26-30 blank. Special attention must be givento fluid nodal-circle number 1; it must coin­cide with the roof center of the tank.

11 - 20: r-ordinate (in feet)

21 - 30: z-ordinate (in feet)

31 - 60: Used for layer generation; otherwise leave blank.

-73-

Page 82: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

Nodal-circle cards must be in numerical sequence starting from one. Ifcards are omitted and Columns 31-60 are left blank, the omitted nodal­points are generated along a straight ine between the defined nodal­circles (see IV, Note 1); or if columns 31-60 are used, they are gener­ated in layers (see IV, Note 2). The boundary condition code (ICOOE) ofa generated nodal circle is set equal to the value of ICODE on the lastcard.

Card 3. FLUID ELEMENTS (915)

Columns 1 - 5 Element number

6 - 10: Nodal-Circle I

11 - 15: Nodal-Circle J

16 - 20 : Nodal-Circle K

21 - 25: Nodal-Circle L

Fluid Element Surface Code (=2, hybrid surface)

26 - 30: surface IJ

31 - 35: surface JK

36 - 40: surface KL

41 - 45: surface LI

Nodal-circle numbers I, -J, K and L must be in sequence in a counter­clockwise direction around the element (cf. Figure 19). Element cardsmust be in element number sequence. If element cards are omitted, theprogram automati ca lly generates the omitted i nformati on by i ncrementi ngby one the preceding I, J, K and L. The last element card must alwaysbe supplied. Triangular elements are also permissible; they areidentified by repeating the last nodal number (i.e., I, J, K, K)

-74-

Page 83: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

VIII. INTERIOR FLUID CARDS

Card 1. FLUID DOMAIN DISCRETIZATION (NAMELIST: INTFLD)

NUNPIN: number of fluid nodal-circles

NUELIN: number of fluid elements

ROIL: specific gravity of oil

NUINTIN: number of elements at oil/water interface

NUELOIL: number of oil elements; the oil elements must benumbered from 1 to NUELOIL

2. FLUID NODAL-CIRCLES (215,2FI0.0,215,2FI0.0)

One card for each nodal-circle containing the following information mustbe provided.

Columns 1 - 5: Fluid nodal-circle number

6 - 10: ICODE: Boundary condition code for fluid nodal­circle. If the fluid nodal-circle is on thewall and coincides with a structural nodal­circle, ICODE = the number of the coincidentstructural nodal-circle.

If the fluid nodal-circle is both on the walland on the interface and coi nci des with astructural nodal-circle, then ICODE = - (thenumber of the coincident structural nodal­circle).

11 - 20: r-ordinate (in feet)

21 - 30: z-ordinate (in feet)

31 - 60: Used for layer generation; otherwise leave blank.

Nodal-circle cards must be in numerical sequence starting from one. Ifcards are omitted and Columns 31-60 are left blank, the omitted nodal­points are generated along a straight line between the defined nodal­circles (see IV, Note 1), or if Columns 31-60 are used, they aregenerated in layers (see IV, Note 2). The boundary condition code(ICODE) of a generated nodal-circle is set equal to zero.

-75-

Page 84: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

Card 3. FLUID ELEMENTS (SIS)

Columns 1 - 5: Element number

6 - 1~: Nodal-circle I

11 - 15: Nodal-circle J

16 - 2~: Nodal-circle K

21 - 25: Nodal-circle L

Nodal-circle numbers I, J, K and L must be in sequence in a counter­clockwise direction around the element (cf. Figure 19). Element cardsmust be in element number sequence. If element cards are omitted, theprogram automatically generates the omitted information by incrementingby one the preceding I, J, K and L. The last element card must alwaysbe supplied. Triangular elements are also permissible; they areidentified by repeating the last number (i.e., I, J, K, K).

Card 4. OIL/WATER INTERFACIAL ELEMENT (1615)

List of NUINTIN element numbers on the oil-water interface.

IX. RESPONSE CONTROL CARDS (NAMELIST: RESPONS)

NGRD:=l, if only one component of ground motion, al~ng e = ~9,

is to be considered

=2, if two components of ground motion, along e = ~o ande = 9~o, are to be included.

NT: number of integration steps in time

DT: time interval in step-by-step integration

NXFH: number of ordinates describing time history of goundmotion component 1 along e = ~o.

NYFH: number of ordinates describing time history of groundmotion component 2 along e = 9~o.

PLOTALL=.FALSE., ground motion not plotted.

=.TRUE., plot ground motion.

-76-

Page 85: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

X. DAMPING RATIO CARDS (7F10.0)

Columns 1 - 10: Damping ratio for first mode of vibration of thetank.

11 - 20: Damping ratio for second mode of vibration of thetank.

21 - 30: Damping ratio for third mode of vibration of thetank.

etc.

XI. GROUND ACCELERATION CARDS

(i) FIRST COtvPONENT - Along = ~o

Card 1 TITLE (8A10)

Card 2 ACCELERATION (6(F6.3,F6.4),8X)

NXFH time-acceleration pairs describing the time-history of the compo­nent of ground acce1erati on along e = ~o are to be spec ifi ed on thesecards, with six pairs per card. Time must be expressed in seconds andaccelerations as multiples of g, the acceleration due to gravity.

(i i) SECOND COtvPONENT - Along e :: 90°

Card 1 TITLE (8A10)

Card 2 ACCELERATION (6(F6.3,F6.4),8X)

NYFH time-acceleration pairs describing the time-history of the compo­nent of ground acceleration along e :: 90 0 are to be specified on thesecards, with six pairs per card. Time must be expressed in seconds andaccelerations in multiples of g.

-77-

Page 86: Dynamics Technology, Inc.

Dynamics TechnOlogy, Inc.DT-7814-2

XII. OUTPUT INFORMATION CARDS

Card 1. OUTPUT CONTROL (NAMELIST: PRINTIT)

NPRINT:

NNODE:

NNEL:

NANGLE:

Print interval. Nodal-circle displacement amplitudesand element stress amplitudes are written on TAPE3every NPRINT time-intervals. If printed output oftime history response is required (i .e., NNODE ! (3and/or NNEL f 0), nodal-circle displacements and/orelement stresses are also printed every NPRINT time­interval s.

Total number of nodal-circles at which time-historyof displacements is to be printed.

Total number of elements at which time-history ofstresses is to be printed.

Total number of different directions around the cir­cumference of a nodal-circle or axisymmetric elementat which displacement and stresses are to be printed.

Card 2. ANGLE SELECTION (8F10.0)

List of NANGLE values of angles (in degrees) describing directions alongthe circumference at which displacements and stresses are to beprinted. These cards are to be omitted in NANGLE =0°.

Card 3. NODAL CIRCLE SELECTION (1615)

List of NNODE nodal circle numbers at which displacements are to beprinted. These cards are to be omitted if NNODE = 0.

Card 4. ELEMENT SELECTION (1615)

Li st of NNEL el ement numbers for which stresses are to be pri nted.These cards are to be omitted if NNEL = 0.

-78-

Page 87: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

OUTPUT

The following is printed by the program (note that some of these may besuppressed according to the options provided in Cards II and XII).

1. First set of input data:options, etc.

structural and material properties,

2. Hydrostatic loads: i.e., equivalent nodal-circle loads due tohydrostatic pressure of the surrounding water and fluids inside thetank. Nodal-ci rcl e di spl acements and el ement stresses for stati cloads. Added-mass due to fluids inside the tank.

3. Frequencies and mode shapes of the structure, including the effectof i nteri or fl uids but not the effect of water su rroundi ng thestructure.

4. Second set of input data: geometric data for the surrounding andinterior fluids, structural nodal-points affected by hydrodynamici nteracti on.

5. The generalized mass matrix and the generalized force vector,including hydrodynamic effects.

6. Thi rd set of input data: response data i ncl udi ng number of timesteps, time increment, and modal damping ratios, earthquake acceler­ation data, control data for output of time history of response.

7. Displacements of selected nodal circles (see card group XII),stresses in selected elements along selected angles at instants oftime, determi ned by the pri nt interval NPRINT. The di spl acementsand stresses printed include the static values at the beginning ofthe earthquake motion.

8. The peak values of displacement amplitudes of each nodal-circle andamplitudes of stress in each element and with time at which theyoccur during the earthquake. These peak values exclude the staticvalues.

-79-

Page 88: Dynamics Technology, Inc.

Dynaml cs Techno! 09Y, Inc.OT-7814-2

9. The following quantities are written on TAPE3:

Log.ical Record 1: NUMNP, NUMEL, NMOOE, OT, NT, NPRINT, IGRAV, NGRD

Starting with Record 2, two records are written for every NPRINTtime-intervals for each ground motion component using the followingtwo statements:

WRITE (3) X

WRITE (3) STRESS

X and STRESS are one-dimensional arrays, dimensioned properly sothat X(3*1-2), X(3*I-1) and X(3*I) are the r, z and e-components,respectively, of the displacement amplitude at nodal-circle I,

1=1, ••• ,Nl.!M'JP. Similarly, STRESS (6*N-5), STRESS (6*N-4)' STRESS( 6*N-3)'STRESS(6*N-2), STRESS{6*N-1) and STRESS{6*N) are the amplitudes ofthe six components, (jrr, (jzz, (jee, (jrz, (jre and ;e in the elementnumber N, N=1,2, ••• ,NUMEL.

If IGRAV = I, the dynami c responses start wi th the fi rst set of Xand STRESS. However, if IGRAV = 2, the first set of X and STRESS isthe static response; the dynamic response starts with the secondset.

STORAGE REQUIREMENTS

The cord storage requi rements of the program are separated into fi xedand variable parts with the fixed part consisting of instructions, non­subscripted variables, and those arrays which do not depend on the sizeof the individual problem. The variable part is stored in Array A,which appears in the blank COMMON statement.

The bl ank COMMON storage requi rements of the program can be changeddepending on the size of the problem to be solved. This is done byusing the RFL job control statement to increase the program size:

RFL(MMAX)

MMAX (in octal) is the total memory words requested. N=MMAX-45000 isthe available memory size for blank COMMON storage.

-80-

Page 89: Dynamics Technology, Inc.

-.., .. _.... ~- . __ .... _.-;;;J.,J,

OT-7814-2

The value for N must exceed each of the following:

(1) 3*NUMNP*(4 + MBANO) + 11*NUMEL + 11*NUMMAT + NBC + NPO + NPI

(2) 3*NUMNP*(8 + MBANO) + 5*NUMEL + 11*NUMMAT + NBC + NMODE*(NMODE + 1)

(3) 5*NUMNP + (2 + 3*NUMNP + NMODE + 3*NUINTEX)*NMODE + (3 + NEBAND +NMODE)*NUMPEX + 8*NUELEX + NUINTEX + NUFSF + (1 + NEBANO +NM:lDE)*NUCOF

(4) 5*NUMNP + (2 + 3*NUMNP + NMOOE)*NMODE + 7*NUELIN + (4 + 2*NMODE +NIBANO)*NUNPIN

(5) 5*NUMNP + (408 + 3*NUMNP + 2*NMOOE)*Nr~OE + 2*NXFH + 2*NYFH + NT

(6) 852 + (22 + 4*NMOOE)*NUMNP + 805*NMOOE + 42*NUMEL + NM:lOE + NNEL +NANGLE + 2*NT

where:

NUMNP: number of nodal circles in the structural idealization

NUMEL: number of elements in the structural idealization

NUMMAT: number of different structural materials

NBC: number of structural displacement constraints in thestructural idealization

NPO: number of nodal circles on the exterior surface of thestructure affected by the surrounding water

NP I : number of nodal ci rc1es on the i nteri or su rface of thestructure affected by the fluids in the tank interior

MBANO = 3*( MB + 1)

MB = max MB i , i = 1, NUMELi

MBi :

NMODE:

NUMPEX:

NUELEX:

di fference between the 1argest and small est structualnodal-circle numbers for structural element i

number of modes of vibration included

number of nodal circles in the exterior water idealiza­tion

number of elements in the exterior water idealization

-81-

Page 90: Dynamics Technology, Inc.

UYIIClIIII \,;:) I ~\';lHlU I U!:lY, HI\,;.

OT-7814-2

NUINTEX: number of fluid nodal-circles on the exterior structure­fluid interface

NUFSF: number of exterior fluid nodal-circles on the freesurface of the fluid

NEBANO = NEB + 1

NEB = max NEBi , i = 1, NUELEXi

NEBi :

NUNPIN:

NUELIN:

difference between the largest and smallest nodal circlenumbers for exterior fluid element i

number of nodal circles in the interior fluid idealiza­tion

number of elements in the interior fluid idealization

NIBANO = NIB + 1

NIB = max NIB., i = 1, NUELINi 1

NIBi : difference between the largest and smallest nodal circlenumbers for interior fluid element

NXFH: number of ordinates describing time-history of firstground motion component, along e = 0°

NYFH: number of ordi nates describi ng time-hi story of secondground motion component, along e = 90°

NT: number of integration time steps

NNODE total number of structural nodal-ci rcl es at whi ch time­history of displacements is to be printed

NNEL: total number of structural elements for which time­history of stresses is to be printed

NANGLE: total number of di fferent 1ocati ons around the circum­ference at which di spl acements and stresses are to beprinted

If only frequencies and mode shapes are desired along with staticanalysis, it suffices to check (1) and (2) above.

-82-

Page 91: Dynamics Technology, Inc.

"'J11_,UI_.., 1__ .lll_.""jJ'

DT-7814-2

The computer time required for solution depends on a number offactors. The more important ones are the number of i ntegrati on timesteps (NT), the number of structural nodal ci rcl es (NUMNP), the band­width (MBAND) of the structural stiffness matrix (the nodal circlesshould be numbered in a manner which minimizes the bandwidth), thenumber of structural elements (NUMEL), the number of modes of vibrationto be included (NMODE), interval for printing and writing (NPRINT), andthe number of nodal-circles (NUNPEX, NUNPIN) and elements (NUELEX,NUELIN) in the idealization of the fluid domain.

-83-

Page 92: Dynamics Technology, Inc.

Dynamics Technology, Inc.DT-7814-2

APPENDIX B. PROGRAM IlERSTIl LISTINGS

-84-

Page 93: Dynamics Technology, Inc.

PRO

GRA

ME

RST

76

/17

6O

PT=1

STA

TIC

FT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

TH

ISPR

OG

RAM

SHO

ULD

BE

CO

MPI

LED

USI

NG

THE

FTN

"ST

AT

IC"

OPT

ION

WH

EREB

YM

TOP

CAN

BE

AD

JUST

EDD

YN

AM

ICA

LLY

AT

RUN

TIM

EV

IATH

ECM

OR~FL

PAR

AM

ETER

ONTH

EJO

BC

AR

D.

~ I

5

10

15 20

25

30

PRO

GRA

ME

RS

T(I

NP

UT

.OU

TP

UT

.TA

PE

1.T

AP

E2.

TA

PE

3.T

AP

E4.

TA

PE

6=O

UT

PU

T.

1T

AP

E7.

TA

PE

B,T

AP

E9)

C C**

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

*C

EAR

THQ

UA

KE

RE

SPO

NSE

OF

SEA

-BA

SED

STO

RA

GE

TAN

KS

c***

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

C C C C CC

OM

MO

N/F

CO

NST

/PI,

ROW

.W

LOC

OM

MO

N/C

NT

RL

/NU

MN

P,N

AN

GL

E,M

BA

ND

,NB

C,N

F,N

PO.N

PI,T

RA

CE

.RE

AD

FRQ

DIM

EN

SIO

NH

ED

(8)

COM

MON

A(2

00

00

)LO

GIC

AL

REA

DFR

G,P

LOTA

NK

.PLO

TMO

DLO

GIC

AL

PLO

TAC

CN

AM

ELIS

TIT

AN

KI

NU

MN

P,N

UM

EL.

NU

MM

AT,

NM

OD

E.W

LO

,WL

I.N

PO,

NP

I.IG

RA

V,

1R

EAD

FRG

,PLO

TAN

K,P

LOTM

OD

NA

MEL

IST

IEX

TF

LD

IN

UN

PEX

,N

UEL

EX,

NU

INT

EX

.NU

FSF,

NU

CO

FN

AM

ELIS

T/I

NT

FL

D/

NU

NPI

N.N

UE

LIN

,N

UIN

TIN

,NU

EL

OIL

.RO

ILN

AM

ELIS

T/R

ES

PO

NS

IN

GR

D,N

T,D

T.N

XFH

,NY

FH,P

LO

TA

CC

NA

MEL

IST

IPR

INT

ITI

NPR

INT

.NN

OD

E.N

NE

L.N

AN

GL

ED

ATA

PL

OT

AN

K/.F

.I,

PL

OT

MO

D/.

F.I.

PL

OT

AC

C/.

F.I,

RE

AD

FR

Q/.

F./

PI=

3.

14

15

92

65

RO

W=

0.0

62

5/3

2.2

C CG

ETTH

EA

VA

ILA

BLE

BLA

NK

COM

MON

MEM

ORY

SIZ

EC

CA

LLPF

L<

MTO

P)

MST

OR

=M

TOP

-LO

CF

(A(!

»+

!

35

C C CRE

AD

AND

PRIN

TO

FC

ON

TRO

LIN

FOR

MA

TIO

N

REA

D1

00

0.

HED

REA

DTA

NKPR

INT

TAN

KPR

INT

20

00

.H

ED

.NU

MN

P,N

UM

EL

.NU

MM

AT

,NM

OD

E.W

LO

.WL

I.NPO

,NPI

40

45 50 55

C CRE

AD

DA

TAAN

DD

ETER

MIN

EEL

EMEN

TPR

OPE

RT

IES

CN

2=I+

NU

MN

PN

3=N

2+N

UM

NP

N4=

N3+

5*N

UM

EL

N5=

N4+

NU

Mt1

AT

*9

N6=

N5+

NU

MM

AT

N8=

N6+

NU

MM

AT

NEG

==3*

NU

MN

PN

9==N

S+N

EQC

ALL

MSC

HEC

K(M

STO

R,-N

9+N

UM

NP.

"LA

YO

UT

")

CA

LLL

AY

OU

T(A

(1),

A(N

2),

A(N

3).

A(N

4).

A(N

5).

A(N

6).

A(N

S).

A(N

9).

1N

UM

MA

T.N

UM

EL,P

LOTA

NK

lN

F=O

IF(

IGR

AV

.E

G.

1l

NF=

11

20

CA

LLE

LE

ME

NT

(A(I

).A

(N2

).A

(N3

).A

(N4

),A

(N5

).A

(N6

).A

(N8

l.N

F,N

UM

EL

)c C

FORM

TOTA

LM

ASS

AN

DS

TIF

FN

ES

SM

ATR

ICES

Page 94: Dynamics Technology, Inc.

PRO

GR

AM

ER

ST

c

76

/17

6O

PT

=l

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

2

N9=

N8+

NB

C6

0N

10=

N9+

NE

GN

l1=

Nl0

+N

EG

N12

=N

11+

(NE

G*M

BA

ND

)N

13=

N12

+N

PO

CA

LLM

SCH

EC

K(M

STO

R,

N1

3+

NP

!'"T

OT

AL

")6

5C

ALL

TO

TA

L(A

(1),

A(N

2),

A(N

S),

A(N

9),

A(N

l0),

A(N

l1),

A(N

12

),A

(N1

3),

WL

O1

,WL

I,N

PO

,NE

G,M

BA

ND

,NU

ME

L,

IGR

AV

)c C

SOL

VE

FOR

ST

AT

ICLO

AD

SC

70

NU

M=6

*NU

MEL

IF(N

F.

NE

.O)

GO

TO1

50

N14

=N

13+

NP

IC

ALL

MSC

HE

CK

(MST

OR

,N

14+N

UM

,"S

TA

TIC

")C

ALL

ST

AT

IC(A

(N8

),A

(N9

),A

(N1

0),

A(N

11

),A

(N1

4),

NE

G,M

BA

ND

75

l,NU

M,N

UM

EL

)1

50

IF(N

F.

EG.

0)

GO

TO2

00

~8

0

85

C CM

OD

ESH

APE

SA

ND

NA

TUR

AL

FRE

QU

EN

CIE

SC

N12

=N11

+NM

OD

EN

13=

N12

+(N

EG

*MB

AN

D)

N14

=N

13+

NE

QN

15=

N14

+N

EG

N16

=N

15+

NE

QN

17=

N16

+N

EG

CA

llM

SCH

EC

K(M

STO

R,N

17+

NH

OD

E**

2,"E

IGE

N")

CA

LLE

IGE

N(A

(NB

),A

(N9

),A

(Nl0

),A

(Nl1

),A

(N1

2),

A(N

13

),A

(Nl

14

),A

(N1

5),

A(N

16

),A

(N1

7),

NE

G,N

HO

DE

,MB

AN

D,A

(lJ,

A(N

2J,

PlO

TH

OD

)

90

95

10

0

10

5

11

0

C C C C C C

Sal

VE

FOR

HY

DR

OD

YN

AM

ICR

ESP

ON

SE(I

NC

OM

PR

ES

SIB

LE

FL

UID

)

N13

=N

12+

(NE

Q*N

MO

DE

)N

TE

MP

=N

l0-1

WR

ITE

(1)

(A(I

),I=

N9,

NT

EM

P)

NT

EM

P=

N13

-1W

RIT

E(1

)(A

(!),

I=N

l1,N

TE

MP

)B

AC

KSP

AC

E1

BA

CK

SPA

CE

1N4=N3+r~EG

N5=

N4+

NM

OD

EN

6=N

5+(N

EG

*NM

OD

E)

N7=

N6+

NM

OD

EN

8=N

7+(N

MO

DE

*NM

OD

E)

NTE

I1p

..N

4-1

REA

D(1

)(A

(I"

I=N

3,N

TEM

P)N

TE

I1P=

N6-

1R

EA

D(

1)

(A(I)

,I=

N4

,N

TE

MP)

BA

CK

SPA

CE

1B

AC

KSP

AC

E1

WA

TER

TR

EA

TE

DA

SA

FIN

ITE

-EL

EM

EN

TSY

STE

M

REA

DE

XT

FLD

PR

INT

EX

TFL

D

Page 95: Dynamics Technology, Inc.

115

PRO

GRA

MER

ST7

6/1

76

OP

T=

lST

AT

IC

PRIN

T2

04

0

FTN

4.8

+4

98

03

/16

/81

16.

39.

39

PAG

E3

O(J

"""'"

12

0

125

130

135

140

145

15

0

155

160

165

170

C C C C C C C C C C C C

REA

DAN

DPR

INT

WA

TER

ELEM

ENT

PRO

PER

TIE

S

PRIN

T2

0S

0.

NU

NPE

X,N

UE

LE

X.N

UIN

TE

X,N

UFS

F,N

UC

OF

N9=

N8+

NM

OD

E*N

UIN

TEX

*3N

l0=N

9+N

UIN

TE

XN

ll=

Nl0

+N

UN

PEX

N12

=Nll+

NU

NPE

XN

13=N

12+8

*NU

EL

EX

CA

LLM

SCH

EC

KIM

STO

R,N

13+N

UFS

F,"E

XT

"IC

ALL

EX

TIA

(N9

1,A

INl0

1.A

INll

l,A

IN1

21

,AIN

13

1,

1N

UN

PEX

.NU

EL

EX

,NE

BA

ND

,NU

INT

EX

.NU

CO

F,W

LO

I

SOLV

EFO

RR

ESP

ON

SES

OF

WA

TER

FIN

ITE

-EL

EM

EN

TSY

STEM

NEG

F=N

UN

PEX

+NU

CO

FN

14=N

13+N

UFS

FN

1S=N

14+N

EG

FN

16=N

15+N

EGF*

NM

OD

EN

17=N

16+N

EG

F*N

EB

AN

DC

ALL

MSC

HE

CK

IMST

OR

,N17

,"S

OL

EX

T")

CA

LLS

OL

EX

TIA

IN31

,AIN

41.A

IN51

,AIN

61,A

IN71

,AIN

81.A

IN91

.1

AIN

10

1,A

INl1

1,A

IN1

21

,AIN

13

),A

IN1

41

.AIN

15

1,A

IN1

6),

2N

MO

DE,

NEG

,NU

NPE

X,

NU

ELEX

,N

UIN

TEX

.N

UFS

F,N

EB

AN

D,N

EG

FI

INT

ER

IOR

FLU

IDS

TREA

TED

AS

AFI

NIT

E-E

LE

ME

NT

SYST

EM

REA

DIN

TFL

DPR

INT

INT

FLD

N9=

N8+

NU

NPI

NN

10=N

9+N

UN

PIN

Nl1

=N

l0+

NU

NP

INN

12=

Nl1

+4*

NU

EL

INN

13=N

12+N

UE

LIN

N14

=N13

+NU

EL

INN

15=N

14+N

UE

LIN

CA

LLM

SCH

EC

KIM

STO

R,N

15,

"IN

T"I

CA

LLIN

TIA

(N81

,A

IN9)

.A

lNl0

I,A

(Nl1

),A

IN1

2),

A(N

131,

1.A

IN14

1,1

RO

IL.

NU

INT

IN,N

UE

LIN

.N

UN

PIN

,NU

EL

OIL

)C

ALL

BN

DW

TH

(AIN

8),A

IN9)

.AIN

111.

AIN

121,

A(N

14),

NU

EL

IN,N

UN

PIN

,1

NIB

AN

D)

N13

=N12

+NM

OD

E*N

UN

PIN

N14

=N13

+NU

NPI

N*N

IBA

ND

N15

=N14

+NU

NPI

NN

16=N

15+N

UN

PIN

*NM

OD

EC

ALL

MSC

HE

CK

IMST

OR

,N16

,·S

OL

INT

")C

ALL

SO

LIN

TIA

IN5

),A

(N6

).A

IN7

1,A

IN8

),A

IN9

),A

(Nl0

),A

INll

).A

IN1

2).

1A

IN13

1,A

(N14

),A

IN1

S',

RO

IL,

NU

EL

IN.

NIB

AN

D.

NU

NPI

N.

NEG

.N

MO

DE,

2N

UE

LO

IL)

TIM

ER

ESPO

NSE

OF

MOD

ALD

ISPL

AC

EMEN

TS

REA

DR

ESPO

NS

PRIN

TR

ESPO

NS

IFIN

GR

D.

EG.

1)PR

INT

20

20

.N

T,D

TIF

ING

RD

.EG

.2

)PR

INT

20

21

.N

T.D

T

Page 96: Dynamics Technology, Inc.

PRO

GR

AM

ER

ST7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E4

co OQ

17

5

18

0

18

5

19

0

19

5

20

0

20

5

21

0

21

5

22

0

22

5

NG

=NG

RD

NB

UF

=20

0*N

t10D

EN

l0=

N8

N11

=N

l0+

NM

OD

EN

TA

PE

=2

17

9N

12

=N

ll+

NX

FH

N13

=N

12+

NX

FH

N14

=N

13+

NM

OD

EN

15=

N14

+N

MO

DE

N16

=N

15+

NM

OD

EN

17=

N16

+N

MO

DE

N18

=N

17+

NM

OD

EN

19=

N18

+N

BU

FN

20=

N19

+N

TN

21=

N20

+N

BU

FN

22=N

21+N

MO

DE

*NM

OD

EC

AL

L11

SCH

ECK

(MST

OR

,N

22,

"TS

TE

P")

CA

LL

TS

TE

P(A

(N4

),A

(N6

),A

(N7

),A

(Nl0

),A

(Nll

),A

(N1

2),

A(N

13

),A

(N1

4),

1A

(N1

5),

A(N

16

),A

(N1

7),

A(N

18

),A

(N1

9),

A(N

20

),A

(N2

1),

2N

MO

DE

,NT

,D

T.

NX

FH

,NB

UF

.MB

UF

,NB

LO

CK

,NG

RD

,NT

AP

E,N

G.P

LO

TA

CC

)IF

(NG

.E

G.

1)

GO

TO1

85

NG

=l

NT

AP

E=

7N

XFH

=NY

FHG

OTO

17

9C C

SU

PE

RP

OS

ITIO

NO

FM

OD

ESA

ND

EV

AL

UA

TIO

NO

FS

TR

ES

SE

SC

18

5C

ON

TIN

UE

REA

DP

RIN

TIT

PR

INT

PR

INT

ITIF

(NA

NG

LE

.E

G.

0)

NA

NG

LE

=lN

2=1+

NA

NG

LE

N3=

N2+

Nt1

0DE

N4=

N3+

(NE

Q*N

MD

DE

)R

EAD

(1)

rHE

t1P

=N

4-1

RE

AD

(l)

(A(I

),I=

N2

.NT

EM

P)

N5=

N4+

NU

MhI6=t~5+NNODE

N7=

N6+

NN

EL

N8=

N7+

NB

UF

r~9=N8+NBUF

Nl0

=N

9+N

MO

DE

Nl1

=N

l0+

Nt1

0D

EN

12

=N

ll+

NE

GN

13=

N12

+N

EG

N1

4=

N1

3+

6N

15

=N

14

+6

N1

6=

N1

5+

12

*1

0N

17

=N

16

+6

*1

2*

10

N18

=N

17+

NU

MN

19=

N18

+N

EG

N20

=N

19+

NE

GN

21=

N20

+N

UM

N22

=N

21+

NE

QN

23=

N22

+N

UM

Page 97: Dynamics Technology, Inc.

PRO

GR

AM

ER

ST7

6/1

76

oP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/S1

16

.39

.39

PAG

E5

~ ~

23

0

23

5

24

0

24

5

25

0

25

5

26

0

26

5

27

0

27

5

N24

=N

23+

NE

QN

25=

N24

+N

UM

N26

=N

25+

NE

GN

27=N

26+N

UM

N28

=N27

+NU

MN

29=N

2B+N

UM

NP

N30

=N29

+NU

MN

P*N

MoD

EN

31=

N30

+N

TN

32=

N31

+N

TN

33=

N32

+N

BU

FN

34=

N33

+N

BU

FN

35=N

34+N

MO

DE

N36

=N35

+NM

OD

EC

ALL

MS

CH

EC

K(M

ST

OR

,N36

,"R

ES

Po

N")

CA

LL

RE

SP

oN

(A(1

),A

(N2

).A

(N3

).A

(N4

),A

(NS

),A

(N6

),A

(N7

),A

(NS

).1

A(N

9).

A(N

l0).

A(N

ll).

A(N

12

),A

(N1

3),

A(N

14

),A

(N1

5),

A(N

16

),A

(N1

7).

2A

(N1

S).

A(N

19

),A

(N2

0),

A(N

21

),A

(N2

2).

A(N

23

).A

(N2

4).

A(N

25

).A

(N2

6),

3A

(N2

7),

A(N

28

),A

(N2

9).

A(N

30

).A

(N3

1),

A(N

32

),A

(N3

3).

A(N

34

),A

(N3

5).

3N

MO

DE

.NE

Q,N

AN

GL

E,N

PR

INT

,NN

OD

E,N

NE

L.N

VM

NP

,NU

ME

L,N

UM

,4

NB

LO

CK

,NB

UF,

MB

UF.

IGR

AV

,D

T.N

T.

NG

RD

)2

00

IF(I

GR

AV

.N

E.2

)G

OTO

25

0IF

(NF

.G

E.1

)G

OTO

25

0N

F=

lG

OTO

12

02

50

PR

INT

30

00

10

00

FOR

MA

T(S

A1

0)

20

00

FOR

MA

T(l

Hl,

SA

10

11

135

HN

UM

BER

OF

NO

DA

LP

oIN

TS

----

----

---

14

I2

35H

NU

MB

ERO

FE

LE

ME

NT

S--

----

----

----

-1

4I

335

HN

UM

BER

OF

DIF

F.

MA

TE

RIA

LS

----

----

14

I4

35H

NU

MB

ERO

FE

IGE

NM

OD

ES

----

----

----

-1

4I

535

HW

AER

LE

VE

LO

UT

SID

ET

AN

K--

----

----

FlO

.3

,3H

FT

.I

63

SH

WA

ERL

EV

EL

INS

IDE

TA

NK

----

----

--F

lO.

3.3

HF

T.

I7

35H

NU

MB

ERO

FPR

ESS

UR

EP

OIN

TS

oUT

S1D

E-

14

IS

35H

NU

MB

ERO

FPR

ESS

UR

EP

OIN

TS

1N

S1

DE

--1

41

)2

02

0FO

RM

AT

(lH

l/4

6H

ON

LYO

NE

CO

MPO

NEN

TO

FG

RO

UN

DM

OTI

ON

INC

LU

DE

DI

1*

NO

.O

FT

IME

ST

EP

SSE

LE

CT

ED

=*

.17

1*

DT

INSE

CO

ND

S=

*,F

l0.4

/)2

02

1FO

RM

AT

(lH

l/4

2H

TWO

CO

MPO

NEN

TSO

FG

RO

UN

DM

OT

ION

INC

LU

DE

DI

1*

NO

.O

FT

IME

ST

EP

SSE

LE

CT

ED

=*

,17

1*

DT

INSE

CO

ND

S=

*.F

l0.4

/)2

04

0FO

RM

AT

(lH

l/4

1H

INT

ER

AC

TIO

NPR

OB

LEM

ISSO

LV

ED

BYF.

E.M

.I)

20

50

FOR

MA

T(1

13

5H

NU

MBE

RO

FN

OD

AL

PO

INT

SO

FF

LU

ID=

,11

0.

11

35

HN

UM

BER

OF

ELEM

ENT

OF

FL

UID

=,1

10

.2

13

5H

NU

MB

ERO

FN

.P

.O

NTH

EIN

TE

RFA

CE

=.1

10

.3

13

8H

NU

MB

ERO

FN

.P.

ON

THE

FRE

ESU

RFA

CE

=,

17

,4

14

9H

NU

MB

ERO

FPO

WER

SE

RIE

STE

RM

SFO

RSU

PER

EL

EM

EN

T=

,1

2)

30

00

FOR

MA

T(1

11

17

HEN

DO

FPR

OB

LEM

)ST

OP

END

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

Page 98: Dynamics Technology, Inc.

PRO

GR

AM

ER

ST7

6/1

76

OPT

::1S

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E6

ENTR

YP

OIN

TS

DEF

LIN

ER

EFE

RE

NC

ES

22

63

3E

RST

1

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AR

EAL

AR

RA

Y/

/R

EFS

15

318

*5

17

*5

58

*6

55

*7

41

2*

87

94

96

5*

12

61

4*

13

77

*1

53

5*

15

51

1*

16

21

5*

18

93

5*

24

3D

EFI

NE

D1

05

10

72

09

24

64

2D

TR

EAL

RE

FS2

21

70

17

11

89

24

32

47

31

HED

REA

LA

RR

AY

RE

FS1

43

8D

EFI

NE

D3

52

46

74

IIN

TE

GE

RR

EFS

94

96

10

51

07

20

9D

EFI

NE

D9

49

61

05

10

72

09

24

62

5IG

RA

VIN

TE

GE

RR

EFS

18

54

65

24

32

49

2M

BAN

DIN

TE

GE

RC

NT

RL

RE

FS1

36

26

57

48

18

72

47

11

MBU

FIN

TE

GE

RR

EFS

18

92

43

24

65

1M

STO

RIN

TE

GE

RR

EFS

50

64

73

86

12

51

36

15

216

11

88

24

2D

EFI

NE

D3

12

46

50

MTO

PIN

TE

GE

RR

EFS

30

31

1N

AN

GLE

INT

EG

ER

CN

TR

LR

EFS

13

23

20

32

04

24

3D

EFI

NE

D2

03

3N

BCIN

TE

GE

RC

NTR

LR

EFS

13

59

24

71

2N

BLO

CK

INT

EG

ER

RE

FS1

89

24

32

47

02

NB

UF

INT

EG

ER

RE

FS1

84

18

61

89

21

32

14

23

82

39

24

3D

EFI

NE

D1

73

24

67

6N

EBA

ND

INT

EG

ER

RE

FS1

26

13

51

37

24

66

0N

EGIN

TE

GE

RR

EF

S4

96

06

16

26

57

48

1

~8

28

38

48

58

79

29

91

01

13

71

62

20

62

17

21

82

24

22

52

27

22

92

31

24

3D

EFI

NE

D4

82

46

77

NEQ

FI~JTEGER

RE

FS1

33

13

41

35

13

7D

EFI

NE

D13

14

NF

INT

EG

ER

CN

TRL

RE

FS1

3;5

57

17

62

50

DE

FIN

ED

53

54

25

12

47

01

NG

INT

EG

ER

RE

FS1

89

19

2D

EFI

NE

D1

72

19

32

46

40

NG

RDH

JTE

GE

RR

EFS

22

17

01

71

17

21

89

24

32

47

00

NIB

AN

DIN

TE

GE

RR

EFS

15

51

58

16

22

46

23

Nt1

0DE

INT

EG

ER

RE

FS1

83

88

08

68

79

21

00

101

10

22

*1

03

12

01

34

13

71

57

16

01

62

17

31

75

17

91

80

18

11

82

18

32

*1

87

18

92

05

20

62

15

21

62

35

24

02

41

24

32

46

47

NN

ELIN

TE

GE

RR

EFS

23

21

22

43

24

64

6N

NO

DE

INT

EG

ER

RE

FS2

32

11

24

36

NP

IIN

TE

GE

RC

NTR

LR

EF

S1

31

83

86

47

25

NPO

INT

EG

ER

CN

TRL

RE

FS1

31

83

86

36

52

46

45

NPR

INT

INT

EG

ER

RE

FS2

32

43

24

64

1N

TIN

TE

GE

RR

EFS

22

17

017

11

85

18

92

36

23

72

43

24

70

3N

TA

PEIN

TE

GE

RR

EFS

18

9D

EFI

NE

D1

76

19

42

46

73

NTE

MP

INT

EG

ER

RE

FS9

49

61

05

10

72

09

OEF

INED

9:3

95

10

41

06

20

80

24

b3

2N

UC

OF

INTE

GER

Rt=

:r:S

20

11

91

26

131

~4627

NU

ELEX

INT

EG

ER

RE:

FS2

01

19

12

41

26

13

72

46

34

NU

EL

ININ

TE

GE

RR

EFS

211

48

14

91

50

151

15

31

55

16

22

46

36

NU

EL

OIL

INT

EG

ER

RE

FS2

11

53

16

22

46

31

NU

FSF

ItH

EG

ER

RE

FS2

01

19

12

51

32

13

72

46

30

NU

INT

EX

INT

EG

ER

RE

FS2

01

19

12

012

11

26

13

72

46

35

NU

INT

ININ

TE

GE

RR

EFS

21

15

3

Page 99: Dynamics Technology, Inc.

PRO

GR

AM

ER

ST7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16.

39

.3

9PA

GE

7

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N2

46

66

NUM

INT

EG

ER

RE

FS7

37

42

10

22

32

26

22

82

30

23

22

33

24

3D

EFI

NE

D7

02

46

21

NU

MEL

INT

EG

ER

RE

FS1

83

84

451

55

65

70

74

24

32

46

22

NU

MM

AT

INT

EG

ER

RE

FS1

83

84

54

64

751

0N

UM

NP

INT

EG

ER

CN

TRL

RE

FS1

31

83

84

24

34

85

0.2

34

23

52

43

24

62

6N

UN

PEX

INT

EG

ER

RE

FS2

01

19

12

21

23

12

613

11

37

24

63

3N

UN

PIN

INT

EG

ER

RE

FS21

14

51

46

14

71

53

15

51

57

15

81

59

16

01

62

24

64

3N

XFH

INT

EG

ER

RE

FS2

21

77

17

81

89

DE

FIN

ED

19

52

46

44

NY

FHIN

TE

GE

RR

EFS

22

19

52

46

62

N10

INT

EG

ER

RE

FS61

65

74

87

93

12

21

26

13

71

47

15

31

62

17

51

89

21

62

43

DE

FIN

ED

60

12

11

46

17

42

15

24

66

3N

11IN

TE

GE

RR

EFS

62

65

74

80

87

96

12

31

26

13

71

48

15

31

55

16

21

77

18

92

17

24

3D

EFI

NE

D61

12

21

47

17

52

16

24

66

4N

12IN

TE

GE

RR

EFS

63

65

81

87

92

12

41

26

13

71

49

15

31

55

15

71

62

17

81

89

21

82

43

DE

FIN

ED

62

80

12

31

48

17

72

17

24

66

5N

13IN

TE

GE

RR

EFS

64

65

72

82

87

95

12

51

26

13

21

37

15

01

53

15

81

62

17

9

-Q1

89

21

92

43

DE

FIN

ED

63

819

21

24

14

91

57

17

82

18

24

66

7N

14IN

TE

GE

RR

EFS

73

74

83

87

13

31

37

15

11

53

15

51

59

16

21

80

18

92

20

24

3D

EFI

NE

D7

28

21

32

15

01

58

17

92

19

24

67

0N

15IN

TE

GE

RR

EFS

84

87

13

41

37

15

21

60

16

218

11

89

22

12

43

DE

FIN

ED

83

13

315

11

59

18

02

20

24

67

1N

16IN

TE

GE

RR

EFS

85

87

13

51

37

161

18

21

89

22

22

43

DE

FIN

ED

84

13

41

60

181

22

12

46

72

N17

INT

EG

ER

RE

FS8

68

71

36

18

31

89

22

32

43

DE

FIN

ED

85

13

51

82

22

22

47

04

N18

INT

EG

ER

RE

FS1

84

18

92

24

24

3D

EFI

NE

D1

83

22

32

47

05

N19

INT

EG

ER

RE

FS1

85

18

92

25

24

3D

EFI

NE

D1

84

22

42

46

52

N2

INT

EG

ER

RE

FS4

351

55

65

87

20

52

09

24

3D

EFI

NE

D4

22

04

24

70

6N

20IN

TE

GE

RR

EFS

18

61

89

22

62

43

DE

FIN

ED

18

52

25

24

70

7N

21IN

TE

GE

RR

EFS

18

71

89

22

72

43

DE

FIN

ED

18

62

26

24

71

0N

22

INT

EG

ER

RE

FS1

88

22

82

43

DE

FIN

ED

18

72

27

24

71

3N

23IN

TE

GE

RR

EFS

22

92

43

DE

FIN

ED

22

82

47

14

N24

ItH

EG

ER

RE

FS2

30

24

3D

EFI

NE

D2

29

24

71

5N

25IN

TE

GE

RR

EFS

23

12

43

DE

FIN

ED

23

02

47

16

N26

INT

EG

ER

RE

FS2

32

24

3D

EFI

NE

D2

31

24

71

7N

27It

HE

GE

RR

EFS

23

32

43

DE

FIN

ED

23

22

47

20

N28

INT

EG

ER

RE

FS2

34

24

3D

EFI

NE

D2

33

24

72

1N

29IN

TE

GE

RR

EFS

23

52

43

DE

FIN

ED

23

42

46

53

N3

ItH

EG

ER

RE

FS4

451

55

99

10

51

37

20

62

43

DE

FIN

ED

43

20

52

47

22

N30

INT

EG

ER

RE

FS2

36

24

3D

EFI

NE

D2

35

24

72

3N

31IN

TE

GE

R'

RE

FS2

37

24

3D

EFI

NE

D2

36

24

72

4N

32IN

TE

GE

R.

RE

FS2

38

24

3D

EFI

NE

D2

37

24

72

5N

33IN

TE

GE

RR

EFS

23

92

43

DE

FIN

ED

23

82

47

26

N34

INT

EG

ER

RE

FS2

40

24

3D

EFI

NE

D2

39

Page 100: Dynamics Technology, Inc.
Page 101: Dynamics Technology, Inc.

PRO

GR

AM

ER

ST7

6/1

76

OP

T=

lST

AT

ICFT

N4

.8+

49

80

3/1

6/8

116

.3

9.

39

PAG

E9

INL

INE

FUN

CT

ION

ST

YPE

AR

GS

DEF

LIN

ER

EFE

RE

NC

ES

LOC

FIN

TE

GE

R1

INT

RIN

31

NA

ME

LIS

TS

EX

TFL

DIN

TFL

DP

RIN

TIT

RE

SPO

NS

TAN

K

DEF

LIN

E2

021 2

32

2 18

RE

FER

EN

CE

S1

13

11

41

43

14

42

01

20

21

68

16

93

63

7

~ lw.J

STA

TEM

ENT

LA

BE

LS

22

70

61

20

22

76

71

50

23

31

61

79

23

37

01

85

23

54

62

00

23

55

32

50

24

44

71

00

0FM

T2

44

51

20

00

Ft1T

24

51

62

02

0FM

T2

45

33

20

21

Fi'1T

24

55

02

04

0nI

T2

45

57

20

50

FMT

,24

61

03

00

0Fl

1T

COM

MO

NB

LOC

KS

LEN

GTH

FCO

NST

3C

NTR

L9

//

20

00

0

DEF

LIN

ER

EFE

RE

NC

ES

55

25

27

671

17

71

96

20

01

92

24

97

62

53

24

92

50

25

43

52

55

38

26

41

70

26

617

12

68

11

52

69

11

92

74

25

3

ST

AT

IST

ICS

PRO

GR

Al1

LEN

GTH

BU

FFE

RLE

NG

THSC

MLA

BEL

EDCO

MM

ONLE

NG

THSC

MB

LAN

KCO

MM

ONLE

NG

TH5

20

00

8SC

MU

SED

30

03

82

17

62

81

4B

47

04

0B

15

39

92

02 12

20

00

0

Page 102: Dynamics Technology, Inc.

SUB

RO

UTI

NE

MSC

HEC

K7

6/1

76

OPT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E

5

*DEC

KM

SCH

ECK

SUB

RO

UTI

NE

MSC

HEC

K(M

MA

X,M

NEE

D,M

ESSA

GE)

IF(M

MAX

.G

E.M

NEE

D)

RET

UR

NPR

INT

5.M

ESSA

GE.

MN

EED

-MM

AX

5FO

RMA

T(1

1*

---

NO

TEN

OU

GH

MEM

ORY

FOR

SUB

RO

UTI

NE

-*

,A1

0,

11

*---

NE

ED

*,I

9.*

MOR

EW

ORD

S*2

1*

---

PRO

GRA

MS

TO

PP

ED

*II)

STO

P"N

OT

ENO

UG

HM

EMO

RY"

END

SYM

BO

LIC

REF

EREN

CE

MAP

(R=

2)

ENTR

YPO

INT

SD

EFL

INE

REF

EREN

CES

3M

SCH

ECK

23

VA

RIA

BL

ES

SNTY

PER

ELO

CA

TIO

N0

MES

SAG

EIN

TEG

ERF.

P.R

EFS

0M

MAX

INTE

GER

F.P.

RE

FS0

MN

EED

INTE

GER

F.P.

RE

FS

-0-

FIL

EN

AM

ESM

ODE

-f:.

OU

TPU

TFM

TW

RIT

ES4

STA

TEM

ENT

LAB

ELS

DEF

LIN

ER

EFER

ENC

ES2

15

Ff1T

54

ST

AT

IST

ICS

PRO

GRA

MLE

NG

TH41

133

352

0001

3SC

MU

SED

4 3 3

DE

FIN

ED 4 4

2D

EFI

NE

DD

EFI

NE

D2 2

Page 103: Dynamics Technology, Inc.

SUB

RO

UT

INE

LAY

OU

T7

6/1

76

OP

T=

lST

AT

ICFT

N4

.8+

49

80

3/1

6/8

116

.39

.3

9PA

GE

5

10

SUB

RO

UTI

NE

LA

YO

UT

(R,

Z,IX

,E,R

O,W

AN

G,N

EB

C,C

OD

E,N

UM

MA

T,N

UM

EL

,PL

DT

T)

C C**

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

*C

GEO

MET

RYAN

DM

ATE

RIA

LPR

OPE

RT

IES

OF

STR

UC

TUR

EA

RERE

AD

IN.

CN

OD

AL

POIN

TS

CAN

BE

GEN

ERA

TED

AT

EQU

AL

INTE

RV

AL

ORIN

LAV

ERS.

C**

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

*C

LOG

ICA

LPL

OTT

DIt1

EN

SIO

NR

(1),

Z(1

),NE

13C

(1),

COD

E(1

),IX

(NU

MEL

,1

),E

(9,

1),

ROC1

),W

ANG

C1

1),

NP

TS

(10

0),

IFIG

(10

0),

RP

LO

T(S

.10

0),

ZP

LO

T(S

,1

00

)C

OM

MO

N/C

NTR

L/N

UM

NP,

NA

NG

LE,M

BA

ND

,NB

CD

ATA

XM

AT

/6H

ISO

TR

O/

-(j

'v-l

15

20

25

30

C C CRE

AD

AND

PRIN

TO

FM

ATE

RIA

LPR

OPE

RT

IES

DO1

10

M=l

,NU

MM

AT

REA

D1

00

1,

MTY

PE,

XXM

AIF

(XX

MA

.N

E.X

MA

T)GO

TO1

09

REA

D1

01

0,

EE

,EE

U,R

O(M

TY

PE

)PR

INT

20

06

,M

TY

PE,E

E,E

EU

,RO

(MT

YPE

)W

AN

G(M

TYPE

)=O

.D

O1

02

1=1,

9IF

(I.

LE.

3)

E(I

,MT

YP

E)=

EE

IF(1

.G

T.3

.A

ND

.1.

LE.

6)

E(

I,M

TY

PE)=

EE

UIF

(I.

GT.

6)

E(I

,MT

YP

E)=

EE

/(2

.*(1

.+E

EU

»1

02

CO

NTI

NU

EGO

TO1

10

10

9RE

AD

10

11

,(E

CI,

MT

YPE

),1

=1

,9),

RO

Ct1

TY

PE),

WA

NG

CMTY

PE)

PRIN

T2

00

7,

MTY

PE,

(E(I

,MT

YP

E),

I=1,

9),R

OC

MT

YPE

),W

AN

GC

MT

YPE

)1

10

CO

NTI

NU

E

3S 40

45

50

55

C CRE

AD

AND

PRIN

TN

OD

AL

POIN

TD

ATA

CPR

INT

20

04

L"'O

N13C

=O1

20

REA

D1

00

2,

N,C

OD

EC

N),

R(N

),Z

CN

),M

OD

,NL

IM,F

AC

R,F

AC

ZL

l=L

+l

IF(N

-L1

)1

90

,17

0,1

30

13

0IF

CL

.LE

.O)

GOTO

18

0D

IV=

N-L

DR

=(R

(N)-

RC

/DIV

DZ

=(Z

CN

)-Z

CL

»/D

IVM

=N-l

DO1

40

K=L

1,M

CO

DE

OO

=O.O

R(K

)=R

CK

-l)+

DR

140

Z(K)~Z(K-1)+DZ

GOTO

17

01

50

Lt"

'N+

lIr

(FA

CR

.LE

.O.O

lFA

CR

ul.

0IF

(FA

CZ

.LE

.O

.0

)F

AC

Z=

1.0

PRIN

T2

10

0,

MO

D,N

LIM

,FA

CR

,FA

CZ

16

0N

=N+l

Nl=

N-M

OD

N2=

NI-

MO

DIF

(Nl.

LE

.0.O

R.N

2.L

E.

0)

GOTO

20

0

Page 104: Dynamics Technology, Inc.

SUB

RO

UT

INE

LAY

OU

T7

6/1

76

OPT

:;1ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

116

.39

.3

9PA

GE

2

.-()

0',

60 65

70

75 80

85

C C C

CO

DE

(N)=

O.O

R(N

)=R

(Nl)

+F

AC

R*

(R(N

l)-R

(N2

»Z

(N)=

Z(N

l)+

FA

CZ

*(Z

(Nl)

-ZIN

IF(N

.L

T.

NL

IM)

GOTO

160

MO

D=O

17

0L=

NPR

INT

20

02

,(K

,CO

DE

O\)

,R(K

).,Z

<lO

,K=

L1

,N)

CO

D=C

OD

E(N

)IF

(CO

O.E

Q.O

.O)

GOTO

17

50

=1

00

DO1

72

J:;

I,3

IF(C

OD

.LT

.D

)GO

TO1

72

NI3

C=N

BC

+lN

EB

C(N

BC

)=3*

N-3

+J

CO

D=C

OD

-D1

72

D=

D/I

0.

17

5IF

(MO

D.G

T.

0)

GOTO

15

0IF

(N-N

UM

NP)

12

0,2

20

,21

01

80

PRIN

T2

13

0ST

OP

19

0PR

INT

21

40

,N

STO

P2

00

PRIN

T2

15

0ST

OP

21

0PR

INT

21

60

,N

,NU

MN

PST

OP

22

0C

ON

TIN

UE

REA

DAN

DPR

INT

OF

ELEM

ENT

PRO

PER

TIE

S

90

95

10

0

10

5

11

0

PRIN

T20

01N

=OM

BAN

D=O

23

0RE

AD

10

03

,M

,(I

X(M

,I)

,1=

1,5

)

24

0N

=N+l

IF(M

.EO

.N

)GO

TO2

60

DO2

50

1=

1,4

25

01X

(N,

l)=

lX(N

-l,

1)+

1IX

(N,

5)=

IX(N

-l,

5)

26

0PR

INT

20

03

,N

,<

IX(N

,I)

,1

=1

,5)

IFIN

.EG

.N

UM

EL)

GOTO

27

0IF

(N.

EG.

M)

GOTO

23

0GO

TO2

40

27

0IF

<.N

OT.

PLO

TT

)GO

TO2

80

DO2

78

N=1

,NU

ME

LN

PT

S(N

)=5

IF1G

(N}=

2DO

27

5lo

ot.

4R

PLO

T(

1.

N)::

:R(

IX(N

,I»

27

5Z

PL

OT

(!,N

):;Z

(lX

(N,l

»R

PL

OT

(5,N

)=R

PL

OT

(I,N

)2

78

ZP

LO

T(5

,N):

;ZP

LO

T(1

,N)

CA

LLO

PLT

CA

LLM

UL

PLT

(RPL

OT

,Z

PLO

T,N

PTS,

NU

ME

L,

1,5

,1

00

,"R

-AX

1S

",6

,1

"Z-A

XIS

",6,

9,IF

IG)

CA

LLPL

OT

IO.

,0.

,99

9)

CD

ETER

MIN

EBA

ND

WID

TH

Page 105: Dynamics Technology, Inc.

SUB

RO

UT

INE

LAY

OU

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E3

R-O

RD

Z-O

RD

II)

,I3

,lS

HIS

OT

RO

PIC

II=

,F1

6.6

/6H

RHO

=,F

16

.6

,

MA

TE

RIA

L*n

LK

OR

TH

OT

RO

PIC

IIE

T=

,FI6

.6,6

HK

/SF

T.

IIN

US

T=

,F1

6.6

1G

ST

=,F

I6.6

1

J

28

0M

B=O

DO2

90

N=

l,N

UM

EL

DO

29

01

=1

,4DO

29

0J=

I,4

MM

=IA

BS

(IX

(N,I

)-IX

(N,J

»IF

(MM

.G

T.M

B)

MB=

MM

29

0C

ON

TIN

UE

MB

AN

D=3

*MB

+31

00

1FO

RM

AT

(I5

,5X

,A6

)1

00

2FO

RM

AT

(I5

,F5

.0

,2

FI0

.O

,2I5

,2F

I0.

0)

10

03

FOR

MA

T(6

15

)1

01

0FO

RM

AT

(3F

I0.0

)1

01

1FO

RM

AT

(6F

I0.0

/5F

I0.0

)2

00

1FO

RM

AT

(IH

l,*

EL

EM

EN

TN

O.

20

02

FOR

MA

T(I

7,F

I0.

2,2

FI0

.3)

20

03

FOR

MA

T(1

11

3,4

16

,11

2)

20

04

FOR

MA

T(3

8HIN

O.

PT

.R

ES

TR

AIN

T2

00

6FO

RM

AT

(11

11

6H

MA

TE

RIA

LN

UM

BER

16H

E=

,F1

6.6

,6H

K/S

FT

./6

HN

U2

16H

K-S

EC

**

2/F

T.*

*4

/)2

00

7FO

RM

AT

(111

16H

OM

AT

ER

IAL

NU

MBE

RII

,17

H1

6H

EN=

.FI6

.6

,4

X,6

HE

S=

,F1

6.6

,4X

.6H

26H

NU

NS

=,F

I6.6

,4X

,6H

NU

NT

=,F

I6.6

,4X

,6H

36H

GN

S=

,FI6

.6,4

X.6

HG

NT

=,F

I6.6

,4X

,6H

44H

OR

O=

F1

6.

6,

16H

K-S

EC

**

2/F

T.

**

41

512

HA

NG

LEB

EL

T=

,F1

6.

6)

21

00

FOR

MA

T(2

1H

GE

NE

RA

TIO

NW

ITH

MO

D=

I3,3

X,6

HM

LIM

=I4

,3X

,6H

FA

CR

=F

I0.5

,1

3X

,6H

FA

CZ

=F

I0.

5)

21

30

FOR

MA

T(2

8H

FIR

ST

JOIN

TC

AR

DIS

MIS

SIN

G)

21

40

FOR

MA

T(3

1H

CO

OR

DIN

AT

EC

AR

DFO

RJO

INT

NO

.1

5,

16H

NO

TIN

SEG

UE

NC

E)

21

50

FOR

MA

T(4

2H

INS

UF

FIC

IEN

TIN

FOR

MA

TIO

NTO

GE

NE

RA

TE

ME

SH)

21

60

FOR

MA

T(1

4H

JOIN

TN

UM

BER

15

,21

HE

XC

EE

DS

GIV

EN

NU

MN

P=

I5)

RET

UR

NEN

D

11

5

12

0

12

5

14

5

13

0

13

5

14

0-c "'

i

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

ENTR

YP

OIN

TS

DEF

'L

INE

RE

FER

EN

CE

S3

LAY

OU

T1

14

7

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N1

04

3CO

DR

EA

LR

EF

S6

6-6

97

2D

EFI

NE

D6

57

20

CO

DE

RE

AL

AR

RA

YF

.P

.R

EF

S9

64

65

DE

FIN

ED

13

74

65

81

04

4D

RE

AL

RE

FS

69

72

73

DE

FIN

ED

67

73

10

35

DIV

RE

AL

RE

FS

42

43

DE

FIN

ED

411

03

6D

RR

EA

LR

EF

S4

7D

EF

INE

D4

21

03

7D

ZR

EA

LR

EF

S4

8D

EFI

NE

D4

30

ER

EA

LA

RR

AY

F.

P.

RE

FS

92

9D

EFI

NE

D1

23

24

25

28

10

23

EE

RE

AL

RE

FS

20

23

25

DE

FIN

ED

19

10

24

EEU

RE

AL

RE

FS

20

24

25

DE

FIN

ED

19

10

32

FAC

RR

EA

LR

EF

S51

53

59

DE

FIN

ED

37

51

Page 106: Dynamics Technology, Inc.

SUB

RO

UT

INE

LAY

OU

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

0~/16/81

16

.39

.39

PAG

E4

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N1

03

3FA

CZ

REA

LR

EF

S5

25

36

0D

EFI

NE

D3

75

21

02

5I

INT

EG

ER

RE

FS

2*

23

3*

24

2*

25

28

29

912

*9

59

72

*1

06

2*

10

71

19

DE

FIN

ED

22

28

29

91

94

97

10

51

17

12

14

IFIG

INT

EG

ER

AR

RA

YR

EF

S9

111

DE

FIN

ED

10

40

IX

INT

EG

ER

AR

RA

YF.

P.R

EF

S9

95

96

97

10

61

07

2*

11

9D

EF

INE

D1

91

95

96

10

45

JIN

TE

GE

RR

EF

S7

11

19

DE

FIN

ED

68

11

81

04

0K

INT

EG

ER

RE

FS

46

2*

47

2*

48

4*

64

DE

FIN

ED

45

64

16

26

LI~HEGER

RE

FS

38

40

41

42

43

DE

FIN

ED

35

63

10

34

L1

INT

EG

ER

RE

FS

39

45

64

DE

FIN

ED

38

50

10

20

MIt-

.ITEG

ERR

EF

S4

59

19

39

9D

EF

INE

D1

64

49

11

04

6M

BIN

TE

GE

RR

EF

S1

20

12

2D

EF

INE

D1

15

12

02

MBA

ND

INT

EG

ER

CN

TR

LR

EF

S11

DE

FIN

ED

90

12

21

04

7M

t1IN

TE

GE

RR

EF

S2

*1

20

DE

FIN

ED

11

91

03

0M

ODIN

TE

GE

RR

EF

S5

35

55

67

4D

EF

INE

D3

76

21

02

1M

TYPE

HH

EG

ER

RE

FS

19

2*

20

21

23

24

25

3*

28

4*

29

DE

FIN

ED

17

10

27

NIN

TE

GE

RR

EF

S3

*3

73

94

14

24

34

45

05

45

55

85

96

06

16

36

46

57

17

57

88

29

29

32

*9

52

*9

62

*9

79

89

91

03

10

42

*1

06

2*

10

72

*1

08

2*

10

92

*1

19

DE

FIN

ED

37

54

89

92

.....Q

10

21

16

1N

AN

GLE

INT

EG

ER

CN

TR

LR

EF

S11

~3

NBC

INT

EG

ER

CN

TRL

RE

FS

117

07

1D

EF

INE

D3

67

00

~JEBC

INT

EG

ER

AR

RA

YF.

P.

RE

FS

9D

EF

INE

D1

71

10

31

NL

IMIt-

.ITEG

ERR

EF

S5

36

1D

EF

INE

D3

71

05

0N

PTS

INT

EG

ER

AR

RA

YR

EF

S9

11

1D

EF

INE

D1

03

0N

UfiE

LIN

TE

GE

RF.

P.

RE

FS

99

81

02

11

11

16

DE

FIN

ED

10

NU

MM

AT

INT

EG

ER

F.P.

RE

FS

16

DE

FIN

ED

10

NU

MN

PIN

TE

GE

RC

NTR

LR

EF

S11

75

82

10

41

N1

INT

EG

ER

RE

FS

56

57

2*

59

2*

60

DE

FIN

ED

55

10

42

N2

INT

EG

ER

RE

FS

57

59

60

DE

FIN

ED

56

0PL

OT

TL

OG

ICA

LF

.P.

RE

FS

81

01

DE

FIN

ED

10

RR

EA

LA

RR

AY

F.P.

RE

FS

9,2

*4

24

73

*5

96

41

06

DE

FIN

ED

13

74

75

90

ROR

EA

LA

RR

AY

F.

P.

RE

FS

92

02

9D

EF

INE

D1

19

28

13

60

RPL

OT

RE

AL

AR

RA

YR

EF

S9

10

81

11

DE

FIN

ED

10

61

08

0W

ANG

RE

AL

AR

RA

YF.

P.R

EF

S9

29

DE

FIN

ED

12

12

84

72

Xt1

AT

REA

LR

EF

S1

8D

EF

INE

D1

21

02

2X

Xf1

AR

EA

LR

EF

S1

8D

EF

INE

D1

70

ZR

EA

LA

RR

AY

F.

P.

RE

FS

92

*4

34

83

*6

06

41

07

DE

FIN

ED

13

74

86

02

34

4Z

PLO

TR

EA

LA

RR

AY

RE

FS

91

09

11

1D

EF

INE

D1

07

10

9

FIL

EN

AM

ESti

0DE

INP

UT

Ft1T

RE

AD

S1

71

92

83

79

1O

UT

PUT

Ft1T

WR

ITE

S2

02

93

45

36

47

67

88

08

28

89

7

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

Sr1

UL

PLT

13

11

1O

PL

T0

11

0

Page 107: Dynamics Technology, Inc.

SUB

RO

UT

INE

LAY

OU

T7

6/1

76

OPT

=1

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

5

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SPL

OT

31

13

INL

INE

FUN

CT

ION

ST

YPE

AR

GS

DE

FL

INE

RE

FER

EN

CE

SlA

BS

INT

EG

ER

1IN

TR

IN1

19

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

10

22

62

25

61

09

28

18

10

01

10

30

16

27

10

61

20

37

75

01

30

INA

CT

IVE

40

39

01

40

48

45

15

21

50

50

74

16

41

60

54

612

07

17

06

33

94

92

50

17

27

36

86

92

54

17

57

46

62

61

18

07

64

02

64

19

07

83

92

67

20

08

05

72

72

21

08

27

52

75

22

08

47

53

01

23

091

99

31

62

40

92

10

00

25

09

59

4~

33

62

60

97

93

-e:

35

72

70

10

19

80

27

51

07

10

50

27

81

09

10

24

15

28

01

15

10

10

29

01

21

11

61

17

11

86

36

10

01

FMT

12

31

76

40

10

02

FMT

12

43

76

44

10

03

FMT

12

591

64

61

01

0FM

T1

26

19

65

01

01

1FM

T1

27

28

65

32

00

1FM

T1

28

88

66

22

00

2FM

T1

29

64

66

52

00

3FM

T1

30

97

67

02

00

4FM

T13

13

46

76

20

06

FMT

13

22

07

13

20

07

Ft1T

13

52

97

45

21

00

FMT

14

15

37

56

21

30

FMT

14

37

67

63

21

40

FMT

14

47

87

72

21

50

FMT

14

58

01

00

02

16

0FM

T1

46

82

LO

OPS

LA

BE

LIN

DEX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

111

10

M1

63

072

BEX

TR

EFS

NO

TIN

NE

R3

71

02

I2

22

615

BO

PT1

44

14

0K

45

48

5BIN

STA

CK

21

4K

64

64

12B

EXT

RE

FS2

43

17

2J

68

73

lOB

INST

AC

K3

04

I9

191

lIB

EXT

RE

FS

32

72

50

I9

49

52B

INST

AC

K3

41

I9

79

7lI

BEX

TR

EFS

Page 108: Dynamics Technology, Inc.

SUB

RO

UT

INE

LAY

OU

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

lOO

PS

LA

BE

LIN

DE

XFR

OM

-TO

LEN

GTH

PR

OP

ER

TIE

S3

62

27

8N

10

21

09

25

9N

OT

INN

ER

37

42

75

I1

05

10

74

9IN

STA

CK

41

72

90

N1

16

12

125

BN

OT

INN

ER

42

02

90

I1

17

12

12

19

NO

TIN

NE

R4

30

29

0J

11

81

21

69

INST

AC

K

COM

MO

NB

LO

CK

SLE

NG

THC

NT

RL

4

03

/16

/81

16

.3

9.

39

PAG

E6

"­ '\:> ~

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

SCM

LA

BE

LE

DCO

MM

ON

LEN

GTH

52

00

09

SCM

USE

D

33

64

94

91

78

0 4

Page 109: Dynamics Technology, Inc.

SUB

RO

UT

INE

ELEM

ENT

76

/17

6O

PT=1

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E1

'(;; "

5

10

15

20 25 30

35

SUB

RO

UTI

NE

EL

EM

EN

T(R

,Z,

IX,E

,RO

,WA

NG

,NE

BC

,NF,

NU

ME

L)

C C**

****

****

****

****

****

****

****

****

****

****

****

****

***

****

****

****

****

**C

STR

UC

TUR

AL

ELEM

ENT

MA

SSAN

DS

TIF

FN

ES

SM

ATR

ICES

ARE

FORM

EDAN

DC

WR

ITTE

NO

NTO

TAPE

1EL

EMEN

TWIS

E,C

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

***

CD

IMEN

SIO

NR

(1),

ZI1

),N

EBC

I1),

IXIN

UM

EL,

1),

EI9

,1

),R

0I1

),1

WA

NG

(1)

CO

MM

ON

/LS

4AR

G/L

M(1

2),S

S(6

,1

2),

XC

,YC

,EL

MA

SS

(4),

S(1

2,(2

),M

TY

PE

,O(1

2)

I.C

I6,6

)D

IME

NSI

ON

RR

(4),

ZZ

(4),

EE

(9)

MG

=ODO

40

0N

=1,N

UM

EL

MT

YP

E=

IXIN

,5)

IFIM

TY

PE

.EQ

.M

C)GO

TO3

07

DO3

05

MM

=1

.9

30

5E

ElM

I'I}=

EIN

N,

NT

YPE

)B

ETA

=WA

NG

(MTY

PE)

RH

O=R

OI1

1TY

PE)

CA

LLS

SL

AW

IEE

,BE

TA

,C,N

F)

30

7DO

31

01

=1

,4II

=IX

(N,

I)RR

(I

)=R

(I

I)

31

0Z

Z(I

)=Z

(!I)

CA

LLM

AST

IF(R

R,

ZZ,

XC

,YC

,EL

MA

SS

,C,S

,SS

,O,R

HO

,NF

)DO

32

01

=1

.4

IK=

3*

IX(N

,I)-

3DO

32

0J=

1,3

JK=

4*

J-4

+1

LM

IJ1

0=

IK+

J3

20

CO

NTI

NU

Et1

C=M

TYPE

40

0C

ALL

WR

ITE

1(L

M,2

83,N

,NU

ME

L)

RET

UR

NEN

D

SYM

BO

LIC

REF

EREN

CE

MAP

(R=

2)

ENTR

YPO

INT

SD

EFL

INE

RE

FER

EN

CE

S3

ELEt

1EN

T1

35

VA

RIA

BL

ES

SNTY

PER

ELO

CA

TIO

N1

36

BET

AR

EAL

RE

FS

21

DEF

INED

19

36

7C

REA

LA

RRA

YLS

4,A

RG

REF

'S1

021

26

0E

REA

LA

RRA

YF.

P.R

EFS

81

8D

EFI

NE

D1

15

5EE

REA

LA

RRA

YR

EFS

12

21D

EFI

NE

D1

81

26

ELM

ASS

REA

LA

RRA

YL

S4A

RG

RE

FS1

02

61

40

IIN

TEG

ERR

EFS

23

24

25

28

30

DE

FIN

ED

22

27

141

II

INTE

GER

RE

FS2

42

5D

EFI

NE

D2

31

42

IKIN

TEG

ERR

EFS

31D

EFI

NE

D2

80

IXIN

TEG

ERA

RRA

YF.

P.R

EFS

81

52

32

8D

EFI

NE

D

Page 110: Dynamics Technology, Inc.

SUB

RO

UT

INE

EL

EM

EN

T7

6/1

76

OP

T=

1S

TA

TIC

FTN

4.8

+'4

98

03

/16

/81

16

.39

.39

PAG

E2

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N1

43

JIN

TE

GE

RR

EF

S3

03

1D

EF

INE

D2

91

44

JKIN

TE

GE

RR

EF

S3

1D

EF

INE

D3

00

LMIN

TE

GE

RA

RR

AY

LS4

AR

GR

EF

S1

03

4D

EF

INE

D3

11

33

MC

INT

EG

ER

RE

FS

16

DE

FIN

ED

13

33

13

5M

t1IN

TE

GE

RR

EF

S2

*1

8D

EF

INE

D1

73

52

MTY

PEIN

TE

GE

RL

S4A

RG

RE

FS

10

16

18

19

20

33

DE

FIN

ED

15

13

4N

INT

EG

ER

RE

FS

15

23

28

34

DE

FIN

ED

14

0N

EBC

INT

EG

ER

AR

RA

YF

.P.

RE

FS

8D

EF

INE

D1

0N

FIN

TE

GE

RF

.P

.R

EF

S2

12

6D

EF

INE

D1

0N

Uf1

ELIN

TE

GE

RF

.P.

RE

FS

81

43

4D

EF

INE

D3

53

QR

EA

LA

RR

AY

LS4

AR

GR

EF

S1

02

60

RR

EA

LA

RR

AY

F.

P.

RE

FS

82

4D

EF

INE

D1

37

RH

OR

EA

LR

EF

S2

6D

EF

INE

D2

00

ROR

EA

LA

RR

AY

F.

P.

RE

FS

82

0D

EF

INE

D1

14

5RR

RE

AL

AR

RA

YR

EF

S1

22

6D

EF

INE

D2

41

32

SR

EA

LA

RR

AY

LS4

AR

GR

EF

S1

02

61

4S

SR

EA

LA

RR

AY

LS4

AR

GR

EF

S1

02

60

WAN

GR

EA

LA

RR

AY

F.

P.

RE

FS

81

9D

EF

INE

D1

24

XCR

EA

LL

S4A

RG

RE

FS

10

26

12

5YC

RE

AL

LS4

AR

GR

EF

S1

02

60

ZR

EA

LA

RR

AY

F.

P.R

EF

S8

25

DE

FIN

ED

11

51

ZZR

EA

LA

RR

AY

RE

FS

12

26

DE

FIN

ED

25

~E

XT

ER

NA

LS

TY

PEA

RG

SR

EF

ER

EN

CE

S11

AS

TIF

112

6~

SSLA~~

42

1W

RIT

EI

43

4

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

30

51

81

73

43

07

22

16

03

10

25

22

03

20

32

27

29

04

00

34

14

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LE

NG

TH

PR

OP

ER

TIE

S1

24

00

N1

43

471

BEX

TR

EF

SN

OT

INN

ER

23

30

5M

t11

71

83B

INST

AC

K4

23

10

II

22

25

56

INST

AC

K5

33

20

I2

73

221

BN

OT

INN

ER

64

32

0J

29

32

4BIN

STA

CK

C0I

1MO

NB

LO

CK

SL

EN

GT

HL

S4A

RG

28

3

ST

AT

IST

ICS

PRO

GR

AM

LE

NG

TH

20:3

813

1G

CML

AB

EL

ED

COM

MO

NL

EN

GT

H4

33

32

83

52

00

0B

SCM

USE

D

Page 111: Dynamics Technology, Inc.

SUB

RO

UT

INE

SSLA

W7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

SUB

RO

UT

INE

SS

LA

WC

EE

,BE

TA

,C,N

F)

5

C C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CS

TR

ES

SS

TR

AIN

LAW

INN

-S-T

SYST

EM

C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

C

RO

TA

TE

MA

TE

RIA

LP

RO

PE

RT

IES

TOR

-Z-T

HSY

STE

M

DIM

EN

SIO

NE

E(9

),C

C6

,6),

DC

6.6

),C

C(6

,6)

DO

65

11

=1

.6D

O6

51-

\1-\=

1,6

C(

II.

1-\1

-\)=

0.

65

0(

II"'

,K)

=0

.C

(1.1

)=1

.0/E

E(1

)C

(1

.2

)=-E

E(4

)*C

(1,

1)

C(

1.3

)=

-EE

C5)*

CC1

,1

)C

(2,

ll=

CC

1,

2)

C(2

.2)=

1.0

/EE

(2)

C(2

,3)=

-EE

(6)*

C(2

,2)

C(3

,1l=

C(l

,3)

C(3

.2)=

CC

2.3

)C

(3.3

)=1

.0/E

E(3

)C

(4,4

)=E

E(7

)IF

CN

F.E

G.

0)

GO

TO7

0C

C5

.5)=

EE

(8)

C(6

.6)=

EE

(9)

CO

NT

INU

ED

O2

00

N=

l.3

DD

=C

(N,N

)D

O1

00

J=

l.3

C(N

.J)=

-C(N

,J)/

DO

DO

15

01

=1

,3IF

CN

-I)

11

0.1

50

,11

0D

O1

40

J=

l,3

IF(N

-J)

12

0.1

40

.12

0C

(I.J

)=C

(I.J

)+C

(I.N

)*C

(N,J

)C

ON

TIN

UE

C(I

.N)=

C(I

,N)/

DD

C(t~,

N)=

1.

0/0

0C

ON

TIN

UE

70

10

0

11

0

12

01

40

15

0

20

0C C C

15

10

20

40

25

35

30

........

I;;:) \...1

45

50

55

IF(B

ET

A.

EG

.0

.0)

GO

TO5

00

AN

G=

BE

TA

/57.

29

57

79

5S

S=

SIN

(AN

G)

CS

=C

OS

(AN

G)

S2

=S

S*

SS

C2=

CS

*CS

SC

=S

S*C

SO

(1

.1)=

C2

O(1

.2)=

52

O(

1.

4)=

SC

0(2

.1)=

S2

0(2

.2)=

C2

0(2

,4)=

-SC

0(3

.3)=

1.

00

(4.1

)=-2

.*S

C0

(4,2

)=-0

(4,1

)

Page 112: Dynamics Technology, Inc.

SU

BR

OU

TIN

ESS

LAW

76

/17

6O

PT

=l

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

2

60

65

70

75

D(4

,4)=

C2

-S2

D(5

,5

)=1

.0

D(6

,6

)=1

.0

DO

28

7JJ=

1,6

Dl=

C(1

,1)*

D(

1.

JJ)+

C(

1,

2)*

D(2

,JJ)+

C(1

,3

)*D

(3,

JJ)

D2=

C(2

,1

)*D

(1

,JJ)

+C(2

,2

)*D

(2,

JJ)

+C(2

,3

)*D

(3,JJ)

D3

=C

(3.1

)*D

(l,J

J)+

C(3

,2)*

D(2

,JJ)+

C(3

,3)*

D(3

,JJ)

D4

=C

(4,4

)*D

(4,J

J)D

5=

C(5

,5)*

D(5

,JJ)

D6

=C

(6,6

)*D

(6,J

J)D

O2

87

II=

JJ,6

CC(I

I,

JJ)"

'D(

1,

II

)*D

1+

D(2

,II

)*D

2+

D(3

,I

I>*

D3

+D

(4,II

)*D

4+

D(5

,I1

)*D

5+

D1

(6,

II

)*D

62

87

CC

(JJ,

II)"

'CC

(II,

JJ)

DO

30

01

=1

,6

DO

30

0J=

l,6

30

0C

(I,J

)=C

C(I

,J)

50

0R

ET

UR

NEN

D

'.SY

MB

OL

ICR

EFE

RE

NC

EM

AP

(R"'

2)

<:> i=:

EN

TR

YP

OIN

TS

DE

FL

INE

RE

FE

RE

NC

ES

3S

SL

AlJ

17

5

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N2

45

AN

GR

EA

LR

EF

S4

44

5D

EF

INE

D4

30

BE

TA

RE

AL

F.

P.

RE

FS

42

43

DE

FIN

ED

10

CR

EA

LA

RR

AY

F.

P.

RE

FS

71

31

41

51

71

81

92

72

93

*3

43

63

*6

23

*6

33

*6

46

56

66

7D

EF

INE

D1

10

12

13

14

15

16

17

18

19

20

21

23

24

29

34

36

37

74

32

6C

CR

EA

LA

RR

AY

RE

FS

77

17

4D

EF

INE

D6

97

12

47

CS

RE

AL

RE

FS

2*

47

,..,4

8D

EF

INE

D4

52

51

C2

RE

AL

RE

FS

49

53

58

DE

FIN

ED

47

26

2D

RE

AL

AR

RA

YR

EF

S7

57

3*

62

3*

63

3*

64

65

66

67

6*

69

DE

FIN

ED

114

95

051

52

53

54

55

56

57

58

59

60

24

2D

DR

EA

LR

EF

S2

93

63

7D

EF

INE

D2

72

54

Dl

RE

AL

.R

EF

S6

9D

EF

INE

D6

22

55

D2

RE

AL

RE

FS

69

DE

FIN

ED

63

25

6D

3R

EA

LR

EF

S6

9D

EF

INE

D6

42

57

D4

REAL

R[;F

SG9

DEF

INii:

Ot.J

:J~~60

D5

RttA

LR

tJ'S

69

DE

:F'tN

ED

66

26

1D

6R

tAL

~EFS

69

DE

FIN

ED

67

0E

ER

EA

LA

RR

AY

F.

P.

RE

FS

71

21

31

41

61

72

02

12

32

4D

EF

INE

D1

24

4I

INT

EG

ER

RE

FS

31

3*

34

2*

36

2*

74

DE

FIN

ED

30

72

23

7II

INT

EG

ER

RE

FS

10

117

*6

92

*7

1D

EF

INE

D8

68

24

3J

INT

EG

ER

RE

FS

2*

29

33

3*

34

2*

74

DE

FIN

ED

28

32

73

25

3JJ

INT

EG

ER

RE

FS

3*

62

3*

63

3*

64

65

66

67

68

Page 113: Dynamics Technology, Inc.

SUB

RO

UT

INE

SSLA

W7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

VA

RIA

BL

ES

SNT

YPE

RE

LO

GA

TIO

N6

92

*7

1D

EF

INE

D6

12

40

KKIN

TE

GE

RR

EF

S1

011

DE

FIN

ED

92

41

NIN

TE

GE

RR

EF

S2

*2

72

*2

931

33

2*

34

DE

FIN

ED

26

0N

FIN

TE

GE

RF

.P

.R

EF

S2

2D

EF

INE

D1

25

2SC

REA

LR

EF

S51

54

56

DE

FIN

ED

48

24

65

5R

EA

LR

EF

52

*4

64

8D

EF

INE

D4

42

50

52

RE

AL

RE

FS

50

52

58

DEFIt~ED

46

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SC

OS

REA

L1

LIB

RA

RY

45

SIN

RE

AL

1L

IBR

AR

Y4

4

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

65

11

89

44

70

25

22

01

00

29

28

01

10

INA

CT

IVE

32

2*

31

01

20

INA

CT

IVE

34

2*

33

10

11

40

35

32

33

10

41

50

36

30

31

02

00

38

26

02

87

71

61

68

"-0

30

07

47

27

3

<:>2

33

50

07

54

2It

;L

OO

PSF

Rot

'l-T

OP

RO

PE

RT

IES

LA

BE

LIN

DE

XLE

NG

TH7

65

II8

1114

·13N

OT

INN

ER

15

65

KK

911

313

INST

AC

K4

52

00

N2

63

852

13N

OT

INN

ER

54

10

0J

28

29

4BIN

STA

CK

62

15

0I

30

36

3013

NO

TIN

NE

R7

51

40

J3

23

561

3IN

STA

CK

14

22

87

JJ

61

71

5413

NO

TIN

NE

R1

77

28

7II

68

7113

13O

PT2

17

30

0I

72

74

14B

NO

TIN

NE

R2

25

30

0J

73

74

313

INST

AC

K

ST

AT

IST

ICS

PRO

GR

At1

LE

NG

TH

4061

32

62

5200

013

SCM

USE

D

PAG

E3

2*

36

2*

37

Page 114: Dynamics Technology, Inc.

SUB

RO

UT

INE

ST

RA

IN7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.S

+4

98

03

/16

/81

16

.39

.39

PAG

E

~ C'\

5

10

15

20

25

30

35

40

45

50

55

SUB

RO

UT

INE

ST

RA

IN(S

.T.R

R.

ZZ

.H.B

,FA

C.N

)C C

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*C

FOR

MS

TR

AIN

DIS

PLA

CE

ME

NT

MA

TR

IXc*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CD

IME

NS

ION

B(6

.lS

),H

S(6

).H

T(6

).H

R(6

).H

Z(6

)D

IME

NSI

ON

RR

(4).

ZZ

(4).

H(6

)D

IME

NS

ION

II(6

),JJ(b

).L

L(b

)D

ATA

11

/1.2

.3.4

.13

.14

/.JJ/5

.6

.7

.S

.1

5.

16

/.L

L/9

.1

0.

11

.1

2.

17

.1

8/

DO

50

1=

1.

lOS

50

8(1

)=0

.0sr

1=

1.0

-6S

P=

1.

O+

ST

M=1

.O

-TT

P=

1.0

+T

H(

1)=

SM

*TM

/4.

H(2

)=S

P*

TM

/4.

H(3

)=S

P*

TP

/4.

H(4

)=S

M*

TP

/4.

H(5

)=(1

.0-S

*S

)H

(6

)=

(1

.O

-T*T

>H

S(

1)=

-T1

'1/4

.H

S(2

)=-H

S(1

)H

S(3

)=T

P/4

.H

S(4

)=-H

S(3

)H

S(5

)=-2

.0*

SH

S(b

)=O

.H

T(

1)=

-SM

/4.

HT

(2)=

-SP

/4.

HT

(3)=

-HT

(2)

HT

(4)=

-HT

<1

)H

T(5

)=0

.H

T(6

)=-2

.0*

TP

ZT

=H

T(1

)*Z

Z(1

)+H

T(2

)*Z

Z(2

)+H

T(3

)*Z

Z(3

)+H

T(4

)*Z

Z(4

)P

ZS

=H

S(1

)*Z

Z(1

)+H

S(2

)*Z

Z(2

)+H

S(3

)*Z

Z(3

)+H

S(4

)*Z

Z(4

)P

RS

=H

S(l

l*R

R(1

)+H

S(2

l*R

R(2

)+H

S(3

)*R

R(3

l+H

S(4

)*R

R(4

lP

RT

=H

T(1

)*R

R(1

)+H

T(2

)*R

R(2

)+H

T(3

)*R

R(3

)+H

T(4

)*R

R(4

)X

J=P

RS

*P

ZT

-PR

T*

PZ

SP

SR

=P

ZT

/XJ

PT

R=

-PZ

S/X

JP

SZ

=-P

RT

/XJ

PT

Z=

PR

S/X

JD

O1

00

1=

1.

6H

R(I

)=P

SR

*H

S(I

)+P

TR

*H

T(I

)1

00

HZ

(I)=

PS

Z*

HS

(I)+

PT

Z*

HT

(I)

R=

H(1

)*R

R(1

)+H

(2)*

RR

(2)+

H(3

)*R

R(3

)+H

(4)*

RR

(4)

DO2

00

K=

1.6

I=II

(K)

J=>

JJ(K

)L

=L

L(K

)8

(1.

I)=H

R(K

)8

(2.J

)=H

Z(K

)8

(3.1

)=H

(K)/

RB

(3,L

)=N

*B

(3,

I)8

(4.

I)=

HZ

CK

)8

(4.

J)

=HR

00

Page 115: Dynamics Technology, Inc.

SUB

RO

UT

INE

ST

RA

IN7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

60

13<5

,I

)=-B

(3,

L)

0(5

,L

)=8

(1,

1>

-8(3

,I)

0(6

,J)=

B(5

,1>

20

0B

(6,L

)=B

(2,J

)F

AC

=X

J*R

RET

UR

NEN

D

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

ENTR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

ST

RA

IN1

63

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

8R

EAL

AR

RA

YF

.P

.R

EF

S7

55

58

2*

59

60

61

DE

FIN

ED

11

25

25

35

45

55

65

75

85

96

061

0FA

CR

EA

LF

.P

.D

EFI

NE

D1

62

0H

REA

LA

RR

AY

F.

P.

RE

FS

84

*4

75

4D

EFI

NE

D1

17

18

19

20

212

2

~2

42

HR

REA

LA

RR

AY

RE

FS

'75

25

7D

EFI

NE

D4

52

26

HS

REA

LA

RR

AY

RE

FS

72

42

64

*3

64

*3

74

54

6'I

DE

FIN

ED

23

24

25

26

27

28

23

4H

TR

EA

LA

RR

AY

RE

FS

73

13

24

*3

54

*3

84

54

6D

EFI

NE

D2

93

03

13

23

33

42

50

HZ

REA

LA

RR

AY

RE

FS

75

35

6D

EF

INE

D4

62

04

IIN

TE

GE

RR

EFS

12

3*

45

3*

46

52

54

55

56

58

2*

59

60

DE

FIN

ED

114

44

92

56

II

INT

EG

ER

AR

RA

YR

EF

S9

49

DE

FIN

ED

10

22

4J

INT

EG

ER

RE

FS

53

57

60

61D

EFI

NE

D5

02

64

JJ

INT

EG

ER

AR

RA

YR

EF

S9

50

DE

FIN

ED

10

22

3K

INT

EG

ER

RE

FS

49

50

515

25

35

45

65

7D

EFI

NE

D4

82

25

LIN

TE

GE

RR

EF

S5

55

85

961

DE

FIN

ED

512

72

LL

INT

EG

ER

AR

RA

YR

EF

S9

,51

DE

FIN

ED

10

0N

INT

EG

ER

F.

P.

RE

FS

55

DE

FIN

ED

12

13

PR

SR

EAL

RE

FS

39

43

DE

FIN

ED

37

21

4PR

TR

EAL

RE

FS

39

42

DE

FIN

ED

38

21

6PS

RR

EAL

RE

FS4

5J;

>EFI

NED

40

22

0P

SZ

REA

LR

EF

S4

6D

EFI

NE

D4

22

17

PTR

REA

LR

EF

S4

5D

EFI

NE

D4

12

21

PTZ

REA

LR

EF

S4

6D

EFI

NE

D4

32

12

PZ

SR

EAL

RE

FS

39

41D

EFI

NE

D3

62

11

PZT

REA

L.R

EFS

:::J9

40D

EFII'

,IED

35

....)..

,...)

Rflt

:AL

~rFS

~4

62

Dt:

:t=

lNIW

47..~~ 0

RRRI

?:AL

AR

RA

YF

.P

.R

EFS

84

*3

74

*3

84

*4

7D

EF

INfm

0S

REA

LF.

P.

RE

FS

13

14

2*

21

27

DE

FIN

ED

20

5SM

REA

LR

EF

S1

72

02

9D

EFI

NE

D1

32

06

SP

REA

LR

EF

S1

81

93

0D

EFI

NE

D1

40

TR

EAL

F.P

.R

EF

S1

51

62

*2

23

4D

EFI

NE

D2

07

TMR

EAL

RE

FS

17

I1

82

3D

EFI

NE

D1

52

10

TP

REA

LR

EFS

19

20

25

DE

FIN

ED

16

21

5X

JR

EAL

RE

FS4

041

42

43

62

Page 116: Dynamics Technology, Inc.

~ <:Jo

SUB

RO

UT

INE

ST

RA

IN7

6/1

76

OP

T=

lS

TA

TIC

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

ND

EFI

NE

D0

ZZR

EAL

AR

RA

YF

.P

.R

EFS

STA

TE

ME

NT

LA

BE

LS

DEF

LIN

ER

EFE

RE

NC

ES

05

01

21

10

10

04

64

40

20

06

14

8

LO

OPS

LAB

ELIN

DEX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

12

50

I11

12

28

INST

AC

K1

14

10

0I

44

46

lOB

INST

AC

K1

44

20

0II.

48

612

58

OPT

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

30

38

19

55

20

00

BSC

MU

SED

39 8

FTN

4.8

+4

98

4*

35

4*

36

03

/16

/81

16

.39

.39

DE

FIN

ED

PAG

E3

Page 117: Dynamics Technology, Inc.

SU

BR

OU

TIN

EM

AS

TIF

76

/17

6O

PT

=l

ST

AT

ICF

TN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E1

" ~ -Q

5

10

15

20

25

30

35

40

45

50

55

SU

BR

OU

TIN

EM

AS

TIF

(RR

,Z

Z,R

M.

ZM

,EL

MA

SS

,O,G

K,G

C,G

,RH

O,N

)C C

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CFO

RM

EL

EM

EN

TM

ASS

MA

TR

IXM

AN

DE

LE

ME

NT

ST

IFF

NE

SS

MA

TR

IXK

C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*C

DIM

EN

SIO

NS

S(2

),R

R(4

),Z

Z(4

).E

LM

AS

S(4

),G

K(

12

,12

).G

C(6

,1

2>

'Q(

12

)D

rt1E

NS

ION

B(6

,1

8),

88

(6,

18

),S

(18

.18

),D

(6.6

),P

(18

),H

(6)

DA

TAS

S/-

O.

57

73

50

26

91

89

63

,0.

57

73

50

26

91

89

63

/F

Z=

-RH

O*

32

.2

DO

15

01

=1

,4

15

0E

LM

AS

S(I

)=O

.OD

O1

70

J=

l,1

8P

(J)=

O.O

DO

16

01

=1

,6B

Bn

.J)=

O.

01

60

B(I.

J)

=0

.0

DO

17

01

=1

,18

17

0S

(I.J

)=O

.0

RM

=(R

R(1

)+R

R(2

)+R

R(3

)+R

R(4

»/4

.0Z

M=

(ZZ

(1)+

ZZ

(2)+

ZZ

(3)+

ZZ

(4»

/4.0

DO

50

01

1=

1,2

DO

50

0JJ=

1,2

CA

LL

ST

RA

IN(S

S(I

I),S

S(J

J),R

R,

ZZ

,H,B

,FA

C,N

)IF

(N.

EG

.0

)F

AC

=2

.*F

AC

DO

40

0J=

1.

18

01

=(0

(1,

1)*

B(1

,J)+

0(1

,2)*

B(2

,J)+

0(1

,3)*

B(3

,J)+

0(1

,4)*

B(4

,J)+

0(1

,5)

1*

B(5

,J)+

0(1

,6)*

B(6

.J»

*F

AC

02

=(0

(2,

1)*

B(I

,J)+

0(2

,2)*

B(2

,J)+

0(2

,3)*

B(3

,J)+

0(2

,4)*

B(4

,J)+

0(2

,5)

1*

B(5

,J)+

0(2

,6)*

B(6

,J»

*F

AC

03

=<0

(3,

1)

*B(1

,J)+

0(3

,2

)*8

(2,

J)+

0(3

,3

)*

8(3

,J)

+O

(3,

'4)*

B(4

,,,

)+0

(3.

5)

1*

B(5

,J)+

0(3

,6)*

8(6

,J»

*F

AC

04

=<

0(4

.1)*

8(

1,

,,)1

+0

(4,

2H

I8(2

,..

)+0

(4/3

)*8

(3,

..)+

D(4

,4

)*B

(4,

,,)+

0(4

.5)

1*

B(S

,J)+

0(4

,6)*

8(6

.J»

*F

AC

05

=(0

(5.

1)*

B(I

,..)

+D

(5,2

)*B

(2,J

)+0

(5.3

)*B

(3,J

)+D

(5.4

)*B

(4,.

.)+

0(5

,5)

1*

B(5

,..)

+0

(5,6

)*8

(6,J

»*

FA

C0

6=

(0(6

.1

)*B

(1,.

.)+

D(6

,2)*

B(2

,..)

+D

(6.3

)*B

(3,J

)+D

(6,4

)*B

(4,J

)+D

(6,5

)1

*B

(5,J

)+0

(6,6

)*B

(6,

J»*

FA

CD

O4

00

I=J,

18

S(

I.J)

=S

(L

J)+

B(1

,I

>*

Ol+

B(2

,I

)*0

2+

B(3

,I

)*D

3+

8(4

,I

)*D

4+

B(5

,I

)*0

5+

B(

16

,1)*

06

40

0S

(J,

I)=

S(I,

J)

IF(N

.E

O.

0)

GO

TO4

70

DO

45

01

=1

,44

50

EL

MA

SS

(I)=

EL

MA

SS

(I)+

FA

C*

H(I

)*R

HO

47

0IF

(N.

NE

.0

)G

OTO

50

0B

Z=

FZ

*FA

CP

(S)=

P(S

)+B

Z*

H(l

)P

(6)=

P(6

)+B

Z*

H(2

)P

(7)=

P(7

)+B

Z*

H(3

)P

(B)=

P(B

)+B

Z*

H(4

)5

00

CO

NT

INU

EIF

(N.N

E.

0)

GO

TO5

10

DO

50

51

=1

,1

85

05

IF(S

(I.I

l.E

G.O

.O)

S(I.I

)=

l,O

C CFO

RM

ST

RE

SS

DIS

PL

AC

EM

EN

TM

AT

RIX

Page 118: Dynamics Technology, Inc.

SUB

RO

UT

INE

MA

ST

IF7

6/1

76

OP

T=

1S

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.3

9.

39

PAG

E2

C5

10

CA

LLS

TR

AIN

(O.

0,0

.O

.RR

,Z

Z,H

.BB

.FA

C.N

)6

0DO

53

01

=1

,6D

O5

30

J=1

.1

8B

(1.

J)=

O.

0D

O5

30

1\=

1.6

53

0B

(I.J

)=B

(I.J

)+D

(I.K

)*B

B(K

,J)

65

C CE

LIM

INA

TE

EXTR

AD

EG

RE

ES

OF

FREE

DO

MC

DO

55

0N

N=

I.6

L=

18

-NN

70

K=

L+

lD

O5

50

1=

1,

LC

=S

(I.

K)

ISO

\.K

)D

O5

40

J=

I.6

54

0B

(J.

I)=

B(J

.I)-C*B(~K)

75

DO

55

0J=

I.L

55

0S

(I.J

)=S

(I,J

)-C

*S

(K.J

)IF

(N.N

E.O

)G

OTO

57

0D

O5

60

1=

9.

12

56

0S

(1

.1

)=0

.8

0C C

RE

LO

CA

TE

ST

IFF

NE

SS

MA

TR

IXA

ND

LOA

DV

ECTO

R'-

.C

.....5

70

DO

58

01

=1

.12

t:lQ

(I

)=P

(I)

85

DO

58

0J=

I.1

25

80

QK

(I.J

)=S

(I.J

)D

O5

90

J=1

.6

DO

59

0K

=1.

12

59

0Q

C(J

.K)=

B(J

.K)

90

RET

UR

NEN

D

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

EN

TR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

t1A

STli=

"1

90

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N5

20

BR

EA

LA

RR

AY

RE

FS

82

46

*2

76

*2

96

*3

16

*3

36

*3

56

*3

76

*4

06

42

*7

48

9D

EF

INE

D1

76

26

47

46

74

BBR

EA

LA

RR

AY

RE

FS

85

96

4D

EF

INE

D1

65

11

BZ

RE

AL

RE

FS

48

49

50

51D

EF

INE

D4

75

15

CR

EA

LR

EF

S7

47

6D

EF

INE

D7

20

DR

EA

LA

RR

AY

F.

P.

RE

FS

86

*2

76

*2

96

*3

16

*3

36

*3

56

*3

76

4D

EF

INE

D1

50

3D

lR

EA

LR

EF

S4

0D

EF

INE

D2

75

04

02

RE

AL

RE

FS

40

DE

FIN

ED

29

50

5D

3R

EA

LR

EF

S4

0D

EF

INE

D3

15

06

D4

RE

AL

RE

FS

40

DE

FIN

ED

33

Page 119: Dynamics Technology, Inc.

SUB

RO

UT

INE

MA

STIF

76

/17

6o

PT

=l

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9:3

9PA

GE

3

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N5

07

05

REA

LR

EFS

40

DE

FIN

ED

35

51

0D

6R

EAL

RE

FS4

0D

EFI

NE

D3

70

ELM

ASS

REA

LA

RRA

YF

.P.

RE

FS7

45

DE

FIN

ED

11

24

55

02

FAC

REA

LR

EFS

24

25

27

29

313

33

53

74

54

75

9D

EFI

NE

D2

54

75

FZR

EAL

RE

FS4

7D

EFI

NE

D1

01

57

6H

REA

LA

RRA

Y.R

EFS

82

44

54

84

95

051

59

47

6I

INT

EG

ER

RE

FS1

21

61

71

98

*4

02

*4

23

*4

54

*5

56

23

*6

47

22

*7

42

*7

62

*7

92

*8

42

*8

6D

EFI

NE

D11

15

18

39

44

54

60

717

88

35

00

II

INT

EG

ER

RE

FS2

4D

EFI

NE

D2

24

77

JIN

TE

GE

RR

EFS

14

161

71

96

*2

76

*2

96

*3

16

*3

36

*3

56

*3

73

92

*4

02

*4

26

23

*6

43

*7

43

*7

62

*8

62

*8

9D

EFI

NE

D1

32

661

73

75

85

87

50

1JJ

INT

EG

ER

RE

FS2

4D

EFI

NE

D2

35

12

KIN

TE

GE

RR

EFS

2*

64

3*

72

74

76

2*

89

DE

FIN

ED

63

70

88

51

4L

INT

EG

ER

RE

FS7

071

75

DE

FIN

ED

69

0N

INT

EG

ER

F.P.

RE

FS2

42

54

34

65

35

97

7D

EFI

NE

D1

51

3NN

INT

EG

ER

RE

FS6

9D

EFI

NE

D6

8.....

.1

55

4P

REA

LA

RR

AY

RE

FS8

48

49

50

518

4.... ....,

DE

FIN

ED

14

48

49

50

510

GR

EAL

ARR

AY

F.

P.R

EFS

7D

EFI

NE

D1

84

0OC

REA

LA

RR

AY

F.P.

RE

FS7

DE

FIN

ED

18

90

OKR

EAL

AR

RA

YF

.P.

RE

FS7

DE

FIN

ED

18

60

RHO

REA

LF

.P.

RE

FS1

04

5D

EFI

NE

D1

0RM

REA

LF.

P.D

EFI

NE

D1

20

0RR

REA

LA

RR

AY

F.

P.R

EFS

74

*2

02

45

9D

EFI

NE

D1

10

50

SR

EAL

AR

RA

YR

EFS

84

04

25

52

*7

22

*7

68

6D

EFI

NE

D1

94

04

25

57

67

95

16

SS

REA

LA

RR

AY

RE

FS7

2*

24

DE

FIN

ED

90

Zf1

REA

LF

.P.

DE

FIN

ED

121

0ZZ

REA

LA

RRA

YF

.P.

RE

FS7

4*

21

24

59

DE

FIN

ED

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SST

RA

IN8

24

59

STA

TEM

ENT

LA

BE

LS

DEF

LIN

ER

EFE

RE

NC

ES

01

50

12

110

16

01

71

50

17

01

91

31

80

40

04

22

63

90

45

04

54

42

35

47

04

64

32

51

50

05

22

22

34

60

50

55

55

42

70

51

05

95

30

53

06

46

061

63

05

40

74

73

05

50

76

68

717

50

56

07

97

84

05

57

08

37

70

58

08

68

38

5

Page 120: Dynamics Technology, Inc.
Page 121: Dynamics Technology, Inc.

SUB

RO

UT

INE

WR

ITE

I7

6/1

76

OP

T=

1S

TA

TIC

FTN

4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

'­ ......

lI.i

5

10

15

20

SUB

RO

UT

INE

WR

ITE

1(A

,LA

,N,N

UM

EL

)C C

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

**C

WR

ITE

MA

TRIX

AO

NT

AP

EI

AS

AN

AR

RA

YC

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

**C

DIM

EN

SIO

NA

(LA

)C

OM

MO

N/B

UF

/B(2

830l

LB

=2

83

0IF

(N.

NE.

1)

GO

TO1

00

REW

IND

1M

=O1

00

MM

=M+L

ADO

20

01

=1

.LA

II=

I+M

20

0B

(II)

=A

(I)

M=M

MIF

(N.

EO.

NU

MEL

)G

OTO

30

0IF

«M

+L

A).

LE

.L

B)

GO

TO4

00

30

0W

RIT

E(1

lB

M=O

40

0R

ETU

RN

END

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

l

EN

TR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

WR

ITE

I1

22

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AR

EA

LA

RR

AY

F.P

.R

EF

S7

16

DE

FIN

ED

10

BR

EA

LA

RR

AY

BU

FR

EF

S8

20

DE

FIN

ED

16

52

IIN

TE

GE

RR

EF

S1

51

6D

EF

INE

D1

45

3I

IIN

TE

GE

RR

EF

S1

6D

EF

INE

D1

50

LAIN

TE

GE

RF

.P

.R

EF

S7

13

14

19

DE

FIN

ED

47

LBIN

TE

GE

RR

EF

S1

9D

EF

INE

D9

50

MIN

TE

GE

RR

EF

S1

31

51

9D

EF

INE

D1

21

721

51M

MIt

HE

GE

RR

EF

S1

7D

EF

INE

D1

30

NIN

TE

GE

RF.

P.

RE

FS

10

18

DE

FIN

ED

10

NU

MEL

ItH

EG

ER

F.

P.

RE

FS

18

DE

FIN

ED

1

FIL

EN

AM

ESM

OD

ET

AP

El

UN

FMT

WR

ITE

S2

0M

OT

ION

'1'I.

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S1

31

00

13

10

02

00

16

14

37

30

02

01

84

24

00

22

19

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LEN

GTH

PR

OP

ER

TIE

S2

32

00

I1

41

64

8IN

STA

CK

Page 122: Dynamics Technology, Inc.

SUB

RO

UT

INE

WR

ITE

l7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

2

COM

MO

NB

LO

CK

SB

UF

LE

NG

TH

28

30

..... ..... ~

ST

AT

IST

ICS

PRO

GR

At1

LE

NG

TH

StM

LA

8EL

ED

COM

MO

NL

EN

GT

H5

20

00

BSC

t1U

SED

54B

54

16

B4

42

83

0

Page 123: Dynamics Technology, Inc.

SUB

RO

UTI

NE

TOTA

L7

6/1

76

OP

T=

lST

AT

ICFT

N~.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

.... i;;

5

10 15

20

25

30

35 40

45 50

55

SUB

RO

UT

INE

TO

TA

LIR

,Z,

NEB

C,

MA

SS,

XS

,A,

IJB

CO

,IJ

BC

I,W

LO

,WL

I,1

NPP

O,

NEG

,MB

AN

D,

NU

MEL

,IG

RA

V)

C c***

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

CTO

TAL

ST

IFF

NE

SS

AND

MA

SSM

ATR

ICES

AND

LOA

DV

ECTO

RA

RE

FORM

EDBY

CR

EAD

ING

ELEM

ENTA

LIN

FOR

MA

TIN

FRO

MT

APE

1.C

NO

DA

LLO

AD

SD

UE

TOW

ATE

RPR

ESS

UR

EA

REC

ALC

ULA

TED

.C

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

***

CC

OM

MO

N/C

NTR

L/N

UM

NP,

NA

NG

LE,M

BA

N,N

BC

,NF

,NP

P,N

PP

I,T

RA

CE

CO

MM

ON

/LS4

AR

G/L

M(1

2),S

SC6.

12

),X

C.Y

C.E

LM

AS

S(4

),S

I12.

12

),M

TY

PE

,GI1

2)

1,

C1

6,6

)D

IME

NSI

ON

R(1

),Z

Cll

,NE

BC

lll,

MA

SS

lll,

XS

(1),

AIN

EG

.MB

AN

D),

IJB

CO

INP

PO

)1,

IJB

CI

(1)

REA

LM

ASS

C CFO

RMM

ASS

AND

ST

IFF

NE

SS

MA

TRIC

ESC

DO1

00

1=1,

NEG

MA

SS

CI)

=O

.OXS

CI

)=0

.0DO

10

0J=

l,MB

AN

D1

00

AI

I,J)

=O

.0

DO1

40

N=l

,NU

ME

LC

ALL

REA

Dl

ILM

,2

83

,N

,N

UM

EL)

DO1

20

1=

1,1

2II

=L

MII

)X

SII

I)=

XS

CII

)+Q

II)

DO1.

10J=

I,1

2JJ

=L

MIJ

)-II

+l

IFIJ

J.L

T.

1)

GOTO

11

0A

III,

JJ)=

AII

I,JJ)+

SII

,J)

11

0C

ON

TIN

UE

12

0C

ON

TIN

UE

IF(N

F.

EO

.O)

GOTO

14

0DO

13

01

=1

,4II

=L

M(I

)M

AS

SII

I)=

MA

SS

(II)

+E

LM

AS

SC

I)M

AS

SII

I+l)

=M

AS

SII

I)1

30

MA

SS

III+

2)=

MA

SS

(II)

14

0C

ON

TIN

UE

C CST

AT

ICPR

ESS

UR

EC

IFIN

PPO

.EG

.O

.AN

D.

NP

PI.

EQ

.O)

GOTO

16

0IF

INPP

O.E

G.

0)

GOTO

14

5IF

(IG

RA

V.E

G.2

.A

ND

.N

F.N

E.0

)GO

TO14

5RE

AD

10

10

,(I

JI3C

OO

O.K

=I,

NP

PO

IPR

INT

20

10

CA

LLH

YD

RD

STIR

,Z,

IJB

CO

,NP

PO

,X

S,W

LO

,-l.

0)

14

5IF

(NP

PI.

EG

.0

)GO

TO1

60

IFII

GR

AV

.EG

.2.

AN

D.N

F.N

E.O

)GO

TO16

5RE

AD

10

10

,II

JBC

IIK

),K

=l.

NP

PIl

PRIN

T20

11C

ALL

HY

DR

OST

(R,

Z,IJ

BC

I,N

PP

I,X

S.W

LI,

1.0

)1

60

CO

NTI

NU

EC

Page 124: Dynamics Technology, Inc.

SUB

RO

UT

INE

TO

TA

L7

6/1

76

OP

T=

1S

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

75

18

91

90

80

-1

01

0-C'\

20

10

85

20

11

60

65

70

CD

ISPL

AC

EM

EN

TB

OU

ND

AR

YC

ON

DIT

ION

C1

65

TR

AC

E=O

.D

O1

70

1=

1.

NEG

17

0T

RA

CE

=TR

AC

E+A

BS

{A(I,

1)

)IF

(NF

.NE

.O)

GO

TO1

87

DO

18

51

=3

.N

EG,

3IF

(A(1

.1).

EG.0

.0)

A{

1.1

)=1

.0

18

5C

ON

TIN

UE

18

7IF

(NB

C.

LE

.0

)G

OTO

19

0D

O1

89

K=

I.N

BC

I=N

EB

C(K

)A

(I,l

)=O

.OX

S{I

)=0

.D

O1

89

J=2.

MB

AN

DA

(1

.J)

=O

.L

=I-

J+

lIF

(L.L

E.

0)

GO

TO1

89

A(L

,J)=

O.

CO

NT

INU

EW

RIT

E(1

)A

BA

CK

SPA

CE

1R

EW

IND

4W

RIT

E(4

)IJ

BC

OB

AC

KSP

AC

E4

FOR

MA

T(1

6I5

)FO

RM

AT

(IH

1/2

6H

WA

TER

OU

TS

IDE

TH

ETA

NK

I)FO

RM

AT

(11

12

6H

FL

UID

SIN

SID

ET

HE

TAN

K/)

RE

TU

RN

END

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

EN

TR

YP

OIN

TS

DE

FL

INE

RE

FE

RE

NC

ES

3T

OT

AL

18

6

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AR

EA

LA

RR

AY

F.

P.

RE

FS

13

32

62

65

78

DE

FIN

ED

12

33

26

57

07

37

63

67

CR

EA

LA

RR

AY

LS4

AR

GR

EF

S1

11

26

EL

MA

SSR

EA

LA

RR

Ay

LS4

AR

GR

EF

S11

38

34

6I

INT

EG

ER

RE

FS

20

.·21

23

27

28

32

37

38

62

2*

65

70

71

73

74

DE

FIN

ED

19

26

36

61

64

69

0IG

RA

VIt

HE

GE

RF

.P

.R

EF

S4

75

2D

EF

INE

D1

35

1I

IIt

HE

GE

RR

EF

S2

*2

83

02

*3

22

*3

82

*3

92

*4

0D

EF

INE

D2

73

70

IJB

CI

INT

EG

ER

AR

RA

YF

.P

.R

EF

S1

35

5D

EF

INE

D1

53

0IJ

BC

OIN

TE

GE

RA

RR

AY

F.

P.

RE

FS

13

50

81

DE

FIN

ED

14

83

47

JIN

TE

GE

RR

EF

S2

33

03

27

37

47

6D

EF

INE

D2

22

97

23

52

JJ

INT

EG

ER

RE

FS

31

2*

32

DE

FIN

ED

30

35

3K

INT

EG

ER

RE

FS

48

53

69

DE

FIN

ED

48

53

68

Page 125: Dynamics Technology, Inc.

SUB

RO

UT

INE

TOTA

L7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E3

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N3

54

LIN

TE

GE

RR

EF

S7

57

6D

EF

INE

D7

40

LMIN

TE

GE

RA

RR

AY

LS4

AR

GR

EF

S11

25

27

30

37

0M

ASS

REA

LA

RR

AY

F.

P.

RE

FS

13

15

38

39

40

DE

FIN

ED

12

03

83

94

02

MBA

NIN

TE

GE

RC

NT

RL

RE

FS

10

0M

BAN

DIN

TE

GE

RF

.P

.R

EF

S1

32

27

2D

EF

INE

D3

52

MTY

PEIN

TE

GE

RL

S4A

RG

RE

FS

113

50

NIN

TE

GE

RR

EF

S2

5D

EF

INE

D2

41

NA

NG

LEIN

TE

GE

RC

NT

RL

RE

FS

10

3N

BCIt

HE

GE

RC

NT

RL

RE

FS

10

67

68

0N

EBC

INT

EG

ER

AR

RA

YF

.P.

RE

FS

13

69

DE

FIN

ED

10

NEG

INT

EG

ER

F.

P.

RE

FS

13

19

61

64

DE

FIN

ED

4N

FIN

TE

GE

RC

NT

RL

RE

FS

10

35

47

52

63

:5N

PPIN

TE

GE

RC

NT

RL

RE

FS

10

6N

PP

IIN

TE

GE

RC

NT

RL

RE

FS

10

45

515

35

50

NPP

OIN

TE

GE

RF

.P

.R

EF

S1

34

54

64

85

0D

EF

INE

D1

0N

UM

ELIN

TE

GE

RF

.P

.R

EF

S2

42

5D

EF

INE

D0

NU

MN

PIN

TE

GE

RC

NT

RL

RE

FS

10

35

3Q

REA

LA

RR

AY

LS4

AR

GR

EF

S11

28

0R

RE

AL

AR

RA

YF

.P

.R

EF

S1

35

05

5D

EF

INE

D1

32

SR

EA

LA

RR

AY

LS4

AR

GR

EF

S11

32

14

SS

RE

AL

AR

RA

YL

S4A

RG

RE

FS

117

TR

AC

ER

EA

LC

NT

RL

RE

FS

10

62

DE

FIN

ED

60

62

0W

LIR

EA

LF

.P

.R

EF

S5

5D

EF

INE

D1

-0

WLO

RE

AL

F.

P.

RE

FS

50

DE

FIN

ED

1-..

12

4XC

RE

AL

LS4

AR

GR

EF

S11

--.J

0X

SR

EA

LA

RR

AY

F.

P.

RE

FS

13

28

50

55

DE

FIN

ED

121

28

71

12

5Y

CR

EA

LL

S4A

RG

RE

FS

110

ZR

EA

LA

RR

AY

F.

P.

RE

FS

13

50

55

DE

FW

ED

FIL

EN

AM

ES!f

OD

EIN

PU

TFM

TR

EA

DS

48

53

OU

TPU

TFM

TW

RIT

ES

49

54

TA

PE

lU

NFM

TW

RIT

ES

78

MO

TIO

N7

9T

AP

E4

UN

FMT

WR

ITE

S8

1M

OT

ION

80

82

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SH

YD

RO

ST7

50

55

RE

AD

l4

25

INL

IN

EFU

NC

TIO

NS

TY

PEA

RG

SD

EF

LIN

ER

EFE

RE

NC

ES

AB

SR

EA

L1

INT

RIN

62

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

10

02

31

92

251

11

03

32

93

10

12

03

42

60

13

04

03

67

11

40

41

24

35

12

41

45

51

46

47

15

01

60

56

45

511

50

16

56

05

20

17

06

26

10

18

56

66

41

74

18

76

76

3

Page 126: Dynamics Technology, Inc.

SUB

RO

UT

INE

TOTA

L

STA

TEM

ENT

LA

BE

LS

21

61

89

22

41

90

32

71

01

0FM

T3

31

20

10

Ft1T

33

62

01

1FM

T

LO

OPS

LAB

EL11

10

02

01

00

26

14

03

21

20

43

11

06

31

30

15

61

70

17

01

85

17

71

89

21

31

89

COt1

MO

NB

LOC

KS

CN

TRL

LS4

AR

G

IND

EXI J N I J I I I K J LE

NG

TH8

28

3

76

/17

6O

PT

=l

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

4

DEF

LIN

ER

EFE

RE

NC

ES

77

68

72

75

78

67

83

48

53

84

49

85

54

FRO

t1-T

OLE

NG

THP

RO

PE

RT

IES

19

23

14B

NO

TIN

NE

R2

22

32B

INST

AC

K2

441

46B

EXT

RE

FSN

OT

INN

ER2

63

424

BN

OT

INN

ER

29

33

lOB

INST

AC

K3

64

05B

INST

AC

K61

62

4BIN

STA

CK

64

66

3BIN

STA

CK

68

77

25

8N

OT

INN

ER

72

77

58IN

STA

CK

ST

AT

IST

ICS

PRO

GRA

MLE

NG

THSC

MLA

BEL

EDCO

MM

ONLE

NG

TH"

52

00

0B

SCM

USE

D

- <140

0B4

43

82

56

29

1

Page 127: Dynamics Technology, Inc.

SUB

RO

UT

INE

RE

AD

l7

6/1

76

OP

T=

lS

TA

TIC

SUB

RO

UT

INE

RE

AD

1(A

,LA

,N,N

UM

EL

)

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E

5

C C**

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

CR

EAD

MA

TR

IXA

(IN

AR

RA

YFO

RM

)FR

OM

TA

PE

1.C

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

**C

10

15

10

0

20

0

20

40

0

-. ---..(l

DIM

EN

SIO

NA

(LA

)C

OM

MO

N/B

UF

/B(2

830)

LB

=2

83

0IF

(N.

NE.

1)

GO

TO1

00

REW

IND

1M

=OR

EAD

(1)

aM

M=M

+LA

DO

20

01

=1

.LA

II=

I+M

A(I)

=B(

II)

t1=M

MIF

(N.E

Q.N

UM

EL

)G

OTO

40

0IF

«M

+L

A).

LE

.L

a)G

OTO

40

0R

EAD

(1)

aM

=OR

ET

UR

NEN

D

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

EN

TR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

RE

AD

l1

23

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AR

EA

LA

RR

AY

F.

P.

RE

FS

0B

RE

AL

AR

RA

YB

UF

RE

FS

57

IIN

TE

GE

RR

EF

S6

0II

INT

EG

ER

RE

FS

0LA

INT

EG

ER

F.

P.

'RE

FS

54

LBIt

HE

GE

RR

EF

S5

5M

ItH

EG

ER

RE

FS

56

Mt1

ItH

EG

ER

RE

FS

0N

INT

EG

ER

F.

P.

RE

FS

0N

UM

ELIN

TE

GE

RF

.P

.R

EF

S

FIL

EN

AM

ESM

OD

ET

APE

1U

NFt

1TRE

ADS

13

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S1

51

00

14

10

02

00

17

15

42

40

02

31

92

0

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LE

NG

TH

PR

OP

ER

TIE

S2

52

00

I1

51

731

3IN

STA

CK

7D

EF

INE

D1

17

81

7D

EF

INE

D1

32

11

61

7D

EF

INE

D1

51

7D

EF

INE

D1

67

14

15

20

DE

FIN

ED

20

DE

FIN

ED

91

41

62

0D

EF

INE

D1

21

82

21

8D

EF

INE

D1

41

01

9D

EF

INE

D1

9D

EF

INE

D1

21

MO

TIO

N11

Page 128: Dynamics Technology, Inc.

SUB

RO

UT

INE

REA

D1

76

/17

6O

PT

=1

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.

39

.3

9PA

GE

2

COM

MO

NB

LO

CK

SB

UF

LEN

GTH

28

30

......

No~

ST

AT

IST

ICS

PRO

GR

At1

LE

NG

TH

SCM

LA

BE

LE

DCO

MM

ON

LE

NG

TH

52

00

0B

SCt·1

USE

D

61

B5

41

68

49

28

30

Page 129: Dynamics Technology, Inc.

SU

BR

OU

TIN

EH

YD

RO

ST7

6/1

76

OP

T=

1S

TA

TIC

FTN

4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

'"~ .....

5

10

15

20

25

30

35

40

45

50

55

SUB

RO

UT

INE

HY

DR

OST

(R,

Z,

IJB

C,N

PP

,XS

.WL

,SG

N)

C C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*C

CA

LC

UL

AT

EH

YD

RO

STA

TIC

PR

ES

SU

RE

C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*C

oIt1

EN

SIO

NIJ

BC

(1)•

XS

(1

)•R

<1),

Z(

1)

PR

INT

20

20

I=IJ

BC

<1

)J=

IJB

C(2

)R

l=O

.R

2=O

.L

l=1

.IF

(WL

.LT

.Z

(I»

GO

TO5

0P

J=.0

62

5*

(WL

-Z(I

»*

SG

N*

R(I

)N

N=

NP

P-l

GO

TO1

00

50

11

=3

*1

-2JJ=

3*

J-2

X=

WL

-Z(J

)?J=

0.0

62

5*

X*

SG

N*

R(J

)D

Z=

Z(I

)-Z

(J)

DR

=R

(I)-

R(J

)F

=X

/DZ

Rll

=P

J*F

**

2*

OZ

/6.

RI2

=-P

J*F

**

2*

DR

/6.

RJl=

PJ*

F*

(I.-

F/3

.)*

OZ

/2.

RJ2

=-P

J*F

*(

1.-F

/3.

)*D

R/2

.X

S(I

I)=

XS

(II)

+R

llX

S(I

I+l)

=X

S(I

I+l)

+R

I2X

S(J

J)=

XS

(JJ)

+R

JlX

S(J

J+l)

=X

S(J

J+l)

+R

J2R

l=R

JlR

2=

RJ2

PR

INT

20

30

,I,

RIl

,R

I2N

N=

NP

P-l

Ll=

2.

10

00

01

50

L=

Ll.

NN

PI=

PJ

I=IJ

BC

(L)

J=IJ

BC

(L+

l)1

1=

3*

1-3

JJ=

3*

J-3

DR

=R

(I)-

R(J

)D

Z=

Z(I

)-Z

(J)

PJ=

0.0

62

5*

(WL

-Z(J

»*

SG

N*

R(J

)R

Il=

(2.*

PI+

PJ)

*D

Z/6

.R

I2=

-(2

.*

PI+

PJ)

*D

R/6

.R

Jl=

(2.*

PJ+

PI)

*D

Z/6

.R

J2=

-(2

.*

PJ+

PI)

*D

R/6

.X

S(I

I+l)

=X

S(I

I+l)

+R

IIX

S(I

I+2

)=X

S(I

I+2

)+R

I2X

S(J

J+l)

=X

S(J

J+l)

+R

JlX

S(J

J+2

)=X

S(J

J+2

)+R

J2R

ll=

RIl

+R

lR

I2=

RI2

+R

2R

l=R

Jl

Page 130: Dynamics Technology, Inc.

SUB

RO

UT

INE

HY

DR

OST

76

/17

6OPT~l

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

2

60

65

R2~RJ2

PR

INT

20

30

,r.

RI1

.R

I21

50

CO

NT

INU

EP

RIN

T2

03

0,

J.R

l.R

22

02

0FO

Rt1

AT

(1X

,46

HE

GU

IVA

LE

NT

NO

DA

LFO

RC

ES

DU

ETO

FL

UID

PRE

SSU

RE

II

132

HN

O.

PT

.R

-LO

AD

Z-L

OA

D/I

20

30

FOR

MA

TC

II2

.2F

I0.3

1R

ETU

RN

END

CA

RD

NR.

SE

VE

RIT

YD

ET

AIL

SD

IAG

NO

SIS

OF

PRO

BLE

M

10

IIJ

BC

AR

RA

YR

EFE

RE

NC

EO

UT

SID

ED

IME

NSI

ON

BO

UN

DS.

SYM

BO

LIC

RE

FER

EN

CE

MA

PC

R=2

1

ENTR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

HY

DR

OST

16

5

.......

VA

RIA

BL

ES

SN

TY

PER

EL

OC

AT

ION

N2

46

DRR

EAL

RE

FS2

62

84

85

0D

EFI

NE

D2

34

4~

24

5D

ZR

EAL

RE

FS2

42

52

74

74

9D

EFI

NE

D2

24

52

47

FR

EAL

RE

FS2

52

62

*2

72

*2

8D

EFI

NE

D2

42

33

IIt

HE

GE

RR

EFS

14

2*

15

18

22

23

35

42

44

45

59

DE

FIN

ED

94

02

42

II

INT

EG

ER

RE

FS2

*2

92

*3

02

*5

12

*5

2D

EFI

NE

D1

84

20

IJB

CI~HEGER

AR

RA

YF.

P.

RE

FS7

91

04

041

DE

FIN

ED

12

34

JIN

TE

GE

RR

EFS

19

20

212

22

34

344

45

21<4

66

1D

EFI

NE

D1

041

24

3J.

JIN

TE

GE

RR

EF

S2

*3

1~2*32

2*

53

2*

54

DE

FIN

ED

19

43

25

4L

ItH

EG

ER

RE

FS4

041

DE

FIN

ED

38

23

7L

1IN

TE

GE

RR

EF

S3

8D

EFI

NE

D1

33

72

41

NN

ItH

EG

ER

RE

FS

38

DE

FIN

ED

16

36

0N

PP

INT

EG

ER

F.P.

RE

FS1

63

6D

EFI

NE

D1

25

5P

IR

EAL

RE

FS4

74

84

95

0D

EFI

NE

D3

92

40

PJ

REA

LR

EFS

25

26

27

28

39

47

48

49

50

DE

FIN

ED

15

214

60

RR

EAL

AR

RA

YF.

P.R

EFS

71

521

2*

23

2*

44

46

DE

FIN

ED

12

50

RII

REA

LR

EFS

29

35

515

55

9D

EFI

NE

D2

54

75

52

51

RI2

REA

LR

EFS

30

35

52

56

59

DE

FIN

ED

26

48

56

25

2R

JlR

EAL

RE

FS3

13

35

35

7D

EFI

NE

D2

74

92

53

RJ2

REA

LR

EFS

32

34

54

58

DE

FIN

ED

28

50

23

5R

1R

EAL

RE

FS5

561

DE

FIN

ED

113

35

72

36

R2

REA

LR

EFS

56

61D

EFI

NE

D1

23

45

80

SGN

REA

LF.

P.R

EFS

15

21

46

DE

FIN

ED

1

Page 131: Dynamics Technology, Inc.

SU

BR

OU

TIN

EH

YD

RO

ST7

6/1

76

OP

T=

lS

TA

TIC

VA

RIA

BL

ES

oW

L2

44

Xo

XS

oz

FIL

EN

AM

ESO

UT

PUT

SNT

YPE

RE

AL

RE

AL

RE

AL

RE

AL

MO

DE

FMT

RE

LO

CA

TIO

NF

.P

.

AR

RA

YF

.P

.

AR

RA

YF

.P

.

WR

ITE

S

RE

FS

RE

FS

RE

FS

53

51R

EF

SD

EF

INE

D

8

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

14

15

20

46

DE

FIN

ED

212

4D

EF

INE

D2

07

29

30

31

32

54

DE

FIN

ED

12

93

05

25

35

47

14

15

20

2*

22

1

35

59

61

PAG

E

51 31

2*

45

3 52

32

46

STA

TE

ME

NT

LA

BE

LS

30

50

10

61

00

o1

50

20

72

02

0FM

T2

22

20

30

FMT

DE

FL

INE

18

38

60

62

64

RE

FER

EN

CE

S1

4 17

38 8

35

59

61

LO

OPS

LA

BE

L1

10

15

0IN

DE

XL

FRO

M-T

O3

86

0L

EN

GT

H47

BP

RO

PE

RT

IES

EXT

REF

S

......

N llJ

ST

AT

IST

ICS

PRO

GR

At1

LE

NG

TH

52

00

0B

SCM

USE

D27

1B1

85

Page 132: Dynamics Technology, Inc.

SUB

RO

UT

INE

ST

AT

IC7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E

..... ~

5

10

15

20

25

30

35

40 45

50

55

SUB

RO

UT

INE

ST

AT

ICeN

EB

C,S

MA

SS

,XS

,A,S

TR

ES

,NE

G,M

BA

ND

,NU

M.N

UM

EL

)C c*

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

**C

DIS

PLA

CE

ME

NT

SD

UE

TOS

TA

TIC

LOA

DS

AR

EC

AL

CU

LA

TE

D.

ELEM

ENT

ST

RE

SS

ES

CA

RE

CO

MPU

TED

.S

TA

TIC

DIS

PLA

CE

ME

NT

SA

ND

ST

RE

SS

ES

AR

EW

RIT

TE

NC

ON

TOT

AP

£3.

c***

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

CC

OM

MO

NIC

NT

RL

/NU

MN

P,N

AN

GL

E,M

BA

N,N

BC

,NF

.NP

PO

,NP

PI,

TR

AC

EC

OM

MO

N/L

S4A

RG

/LM

(12)

,SS

(6,

12

),X

C,V

C,E

LM

AS

S(4

).S

(12

,1

2),

MT

VP

E.G

(12

)1

,CC

6,6

)D

IME

NSI

ON

NE

BC

(l),

SM

AS

S(l

),X

S(1

),A

CN

EQ

,MB

AN

D),

ST

RE

SeN

UM

),S

IGe6

)R

EIH

ND

3R

EAD

el)

AB

AC

KSP

AC

E1

DO

50

K=

l.N

BC

I=N

EB

CeK

)5

0A

er.

1)=

1.

0C

ALL

BA

NS

OL

(NE

O,M

BA

ND

,NE

O,A

,X

S,O

)C

AL

LB

AN

SO

LeN

EO

,MB

AN

D.N

EO

,A,X

S,

1)

MPR

INT

=OR

DH

ND

1DO

30

0N

=l,

NU

ME

LC

AL

LR

EA

D1e

LM

,283

,N.N

UM

EL

)IV

=6

IF(N

F.

EO.

0)

IV=

4D

O1

80

1=

1,

6S

IG(I

)=O

.OD

O1

80

J=

1.

12

-.!-

.!=L

M(J

)1

80

SIG

(I)=

SIG

eI)

+S

S(I

,J)*

XseJJ)

DO

19

0J=

1.

IV1

90

SIG

(J)=

6.9

44

44

*S

IG(J

)N

N=

6*N

DO

19

51

=1

.6

ST

RE

S(N

N-6

+I)

=S

IG(I

)1

95

CO

NT

INU

EIF

CM

PRIN

T)

28

0,2

70

,28

02

70

CO

NT

INU

EP

RIN

T2

00

0t'I

PR

INT

=50

28

0M

PR

INT

=M

PR

INT

-lP

RIt

H2

00

1,

N,

XC

,ve

.eS

IG(

1),

1=

1,

IV)

30

0C

ON

TIN

UE

PR

INT

20

09

DO

36

01

=1

,N

EG3

60

XS

(I)=

XS

CI)

*1

2.

PR

INT

20

10

,(N

/XS(~*N-;;O/XS(:J*N~1

I,X

S(:

:3*N

I,N

aI,

NU

MN

PI

WfH

iE(3

)(X

fOH

l>.

r""l

,N!j

;(})

wR

ITE

(3)

STR

I::S

20

00

FOR

MA

T(l

Hl,

23H

EL

EM

bNT

ST

RE

SS

ES

INP

SII

I1

6HE

L.

NO

7XIH

R7X

1HZ

7X5H

SIG

R7X

5HS

IGZ

7X5H

SIG

T2

6X6H

TA

URZ

6X6H

TA

URT

6X6H

TA

UZ

TI)

20

01

FOR

MA

T(1

5,

lX,2

F8

.2,6

E1

2.4

)2

00

9FO

RM

AT

(lH

l,4

4H

DIS

PL

AC

EM

EN

TS

DU

ETO

ST

AT

ICL

OA

DS

--IN

INC

HE

SII

141

HN

OD

AL

PT

R-D

ISP

LA

CE

ME

NT

Z-D

ISP

LA

CE

ME

NT

216

HT

DIS

PLA

CE

ME

NT

)

Page 133: Dynamics Technology, Inc.

SUB

RO

UTI

NE

STA

TIC

76

/17

6O

PT=1

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

60

20

10

FORM

AT

(I9

,3E

16

.4)

RET

UR

NEN

D

SYM

BO

LIC

REF

EREN

CE

MAP

(R=

2)

ENTR

YPO

INT

SD

EFL

INE

REF

EREN

CES

3ST

AT

IC1

59

VA

RIA

BL

ES

SNTY

PER

ELO

CA

TIO

N0

AR

EAL

ARR

AY

F.P.

RE

FS12

192

0D

EFI

NE

D1

1418

36

7C

REA

LA

RRA

YLS

4AR

GR

EFS

10

12

6EL

MA

SSR

EAL

ARR

AY

LS4A

RG

RE

FS10

34

0I

INTE

GER

RE

FS1

82

83

*3

12

*3

64

32

*4

74

9D

EFI

NE

D17

27

35

43

46

493

43

IYIN

TEG

ERR

EFS

32

43

DE

FIN

ED

25

26

34

4J

INTE

GER

RE

FS3

031

2*

33

DE

FIN

ED

29

32

34

5JJ

ItH

EG

ER

RE

FS31

DE

FIN

ED

30

33

7K

INTE

GER

RE

FS17

DE

FIN

ED

160

LMII

HE

GE

RA

RRA

YLS

4AR

GR

EFS

102

43

02

MBA

NIN

TEG

ERC

NTR

LR

EFS

9.....

.0

MBA

NDIN

TEG

ERF.

P.R

EFS

1219

20D

EFI

NE

D1

t34

1M

PRIN

TIN

TEG

ERR

EFS

38

42

DE

FIN

ED

2141

42

35

2M

TYPE

INTE

GER

LS4A

RG

RE

FS1

03

42

NIN

TEG

ERR

EFS

24

...3

4.4

34

*4

8D

EFI

NE

D2

34

81

NA

NG

LEIN

TEG

ERC

NTR

LR

EFS

93

NBC

INTE

GER

CN

TRL

RE

FS9

160

NEB

CIN

TEG

ERA

RRA

YF.

P.R

EFS

12

17

DE

FIN

ED

10

NEG

INTE

GER

F.P.

RE

FS12

2*

19

2*

20

46

49

DE

FIN

ED

14

NF

INTE

GER

CN

TRL

RE

FS9

26

34

6NN

INTE

GER

RE

FS3

6D

EFI

NE

D3

46

NPP

IIN

TEG

ERC

NTR

LR

EFS

95

NPP

OIN

TEG

ERC

NTR

LR

EFS

90

NUM

INTE

GER

F.P.

RE

FS12

DE

FIN

ED

10

NU

MEL

II'H

EG

ER

F.P.

RE

FS2

32

4D

EFI

NE

D0

NU

I1N

PIN

TEG

ERC

NTR

LR

EFS

948

35

3Q

REA

LA

RRA

YLS

4AR

GR

EFS

101

32

SR

EAL

ARR

AY

LS4A

RG

RE

FS10

34

7S

rGR

EAL

ARR

AY

RE

FS12

31

33

36

43

DE

FIN

ED

28

313

30

SMA

SSR

EAL

ARR

AY

F.P.

RE

FS1

2D

EFI

NE

D1

14S

5R

EAL

ARR

AY

LS4A

RG

RE

FS10

31

0S

TR

ES

REA

LA

RRA

YF.

P.R

EFS

12

50

DE

FIN

ED

13

67

TRA

CE

REA

LC

NTR

LR

EFS

91

24

XCR

EAL

LS4A

RG

RE

FS10

43

0X

SR

EAL

ARR

AY

F.P

.R

EFS

12

192

031

47

3*

48

49

DE

FIN

ED

14

71

25

YCR

EAL

LS4A

RG

RE

FS1

04

3

FIL

EN

AM

ESM

ODE

OU

TPU

TFM

TW

RIT

ES4

04

34

548

TA

PEI

UN

FI1T

REA

DS

14M

OT

ION

1522

Page 134: Dynamics Technology, Inc.

SUB

RO

UT

INE

ST

AT

IC7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E3

FIL

EN

AM

ESM

OD

ET

AP

E3

UN

FMT

WR

ITE

S4

95

0M

OTI

ON

13

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SB

AN

SOL

61

92

0R

EA

Dl

42

4

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

50

18

16

01

80

31

27

29

01

90

33

32

01

95

37

35

02

70

INA

CT

IVE

39

38

12

72

80

42

2*

38

03

00

44

23

03

60

47

46

27

22

00

0FM

T51

40

30

62

00

1F/

'"lT

54

43

31

12

00

9FM

T5

54

53

26

20

10

FMT

58

48

LO

OPS

LA

BE

LIN

DEX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

26

50

K1

61

84B

INST

AC

K5

53

00

N2

34

464

BEX

TR

EFS

NO

TIN

NE

R6

41

80

I2

73

117

BN

OT

INN

ER

73

18

0J

29

31

5BIN

STA

CK

10

61

90

J3

23

33B

INST

ACJ

.{.....

12

01

95

I3

53

72B

INST

AC

K~

14

63

60

I4

64

73B

INST

AC

KC

'l1

54

N4

84

812

BEX

TR

EF

S

COM

MO

NB

LO

CK

SLE

NG

THC

NT

RL

8L

S4A

RG

28

3

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

36

5B

24

5SC

ML

AB

EL

ED

COM

MO

NLE

NG

TH4

43

B2

91

52

00

0B

SCM

USE

D

Page 135: Dynamics Technology, Inc.

SU

BR

OU

TIN

EB

AN

SOL

76

/17

6O

PT

=l

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

25

18

0.....

20

0N 'i

30

30

0

35

35

04

00

405

10

15

20

45

C C C C C C C C C

SU

BR

OU

TIN

EB

AN

SO

L(N

N,M

M,N

DIM

,A,B

,KK

)

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

LIN

EA

RE

GU

AT

ION

SOL

VE

RFO

RSY

MM

ET

RIC

BA

ND

EDM

AT

RIC

ES

KK

=0

TR

IAN

GU

LA

RIZ

ES

BA

ND

MA

TR

IXA

KK

=1

RE

DU

CE

SA

ND

BA

CK

SU

BS

TIT

UT

ES

VEC

TOR

BK

K=

2B

AC

KS

UB

ST

ITU

TE

SV

ECTO

RB

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

DIM

EN

SIO

NA

(ND

IM,

1),

B(1

)

NR

=N

N-

1IF

(KK

-l)

10

0,3

00

,40

01

00

DO

20

0N

=1

,NR

M=

N-

1IF

(A(N

.1

).E

G.

o.)

A(N

,1

)=

1.

OE

-16

PIV

OT

=A

(N,l

)M

R=

MIN

D(M

M,N

N-M

)D

O2

00

L=

2,M

RC

=A

(N,

Ll/

PIV

OT

IF(C

.EG

.O

.)

GO

TO2

00

I=

M+

LJ

=0

DO

18

0K

=L

,MR

J=

J+

1A

(I,J

)=

A(I

,J)

-C

*A

(N,K

)A

(N,

L)

=C

CO

NT

INU

EIF

(A(N

N,

1).

EG

.O

.)

A(N

N,1

)=

1.O

E-1

6G

OTO

50

0D

O3

50

N=

1,N

RM

=N

-1

MR

=M

INO

(MM

,NN

-M)

C=

B(N

)B

(N)

=C

IA(N

,1

)D

O3

50

L=

2,M

RI

=M

+L

B(I

)=

B(I

I-

A(N

,L)*

CB

(NN

)=

B(N

Nl/

A(N

N,

1)

DO

45

0K

=2

,NN

M=

NN

-K

N=

M+

1M

R=

MIN

D(M

M,K

)D

O4

50

L=

2,M

RI

=M

+L

45

0B

(N)

=B

(N)

-A

(N,L

l*B

(I)

50

0R

ET

UR

NEN

D

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

Page 136: Dynamics Technology, Inc.

SUB

RO

UT

INE

BA

NSO

l7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

ENTR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

BA

NS

Ol

14

7

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AR

EAL

AR

RA

YF

.P

.R

EFS

10

16

17

20

2*

26

29

35

38

39

46

DE

FIN

ED

11

62

62

72

90

BR

EAL

AR

RA

YF

.P.

RE

FS1

03

43

83

92

*4

6D

EFI

NE

D1

35

38

39

46

16

7C

REA

LR

EF

S2

12

62

73

53

8D

EFI

NE

D2

03

41

70

III

HE

GE

RR

EFS

2*

26

2*

38

46

DE

FIN

ED

22

37

45

17

1.J

INT

EG

ER

RE

FS2

52

*2

6D

EFI

NE

D2

32

51

72

KIN

TE

GE

RR

EF

S2

641

43

DE

FW

ED

24

40

0K

KIN

TE

GE

RF

.P

.R

EF

S1

3D

EFI

NE

D1

16

6L

INT

EG

ER

RE

FS

20

22

24

27

37

38

45

46

DE

FIN

ED

19

36

44

16

3M

INT

EG

ER

RE

FS1

82

23

33

74

24

5D

EFI

NE

D1

53

24

10

Mt1

INT

EG

ER

F.

P.

RE

FS

18

33

43

DE

FIN

ED

11

65

MR

IIH

EG

ER

RE

FS

19

24

36

44

DE

FIN

ED

18

33

43

16

2N

INT

EG

ER

RE

FS

15

2*

16

17

20

26

27

32

34

2*

35

38

3*

46

DE

FIN

ED

14

31

42

0N

DIl1

INT

EG

ER

F.

P.R

EF

S1

0D

EF

INE

D1

0NN

INT

EG

ER

F.

P.R

EF

S1

21

82

*2

93

33

*3

94

041

'.D

EFI

NE

D1

~1

61

NRI~JTEGER

RE

FS1

43

1D

EFI

NE

D1

2C'

Q1

64

PIV

OT

RE

AL

RE

FS2

0D

EF

INE

D1

7

INL

IN

EFU

NC

TIO

NS

TY

PEA

RG

SD

EFL

INE

RE

FER

EN

CE

SM

INO

INT

EG

ER

0IN

TR

IN1

83

84

3

STA

TE

ME

NT

LA

BE

LS

OE

FL

INE

RE

FER

EN

CE

S0

10

0IN

AC

TIV

E1

41

30

18

02

62

46

12

00

28

14

19

21

73

30

03

11

30

35

03

83

13

61

23

40

03

91

30

45

04

64

04

41

56

50

04

73

0

LO

OPS

lAB

EL

IND

EX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

15

20

0N

14

28

51

8N

OT

INN

ER

31

20

0L

19

28

33

8N

OT

INN

ER

50

18

0K

24

26

58

INST

AC

K7

43

50

N3

13

82

78

NO

TIN

NE

R1

13

35

0L

36

38

58

INST

AC

K13

14

50

K4

04

62

58

NO

TIN

NE

R1

46

45

0L

44

46

58

INST

AC

K

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

22

18

14

55

20

00

8SC

l1U

SED

Page 137: Dynamics Technology, Inc.

SU

BR

OU

TIN

EB

NE

IGN

76

/17

6O

PT

=l

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

SUB

RO

UT

INE

BN

EIG

N(N

N,M

M,N

MO

,NB

C,E

V,N

EB

C,S

MA

SS

,A,B

,V,R

,CN

,SN

,TR

AC

E)

CD

IMEN

SIO

NEV

(1

),N

EBC

(1

),S

t1A

SS(

1),

A(N

N,

1),

B(

1),

R(

1),

SN(

1),

CN

(1

),1

V(

1)

RE

DU

CE

TOC

LA

SS

ICA

LE

IGE

NV

AL

UE

PRO

BLE

MA

*X

~

5

10

15

20

25

30

35

40

45

C C C C C C C C C

INIT

IAL

IZE

TO

L=

1.O

E-1

2IF

LA

G=

0N

LOO

P=

5N

SMA

X=

50

PS

HIF

T=

O.

Mt1

1=

Mt"i

+1

NW=

NN

*MM

NE

IG=

0N

R=

NNN

NR

=N

N-

1R

EW

IND

2

DO

12

0I

=1

,N

NX

=S

MA

SS

(I)

IF(X

.G

T.0

.)G

OTO

11

0P

RIN

T1

2,

I1

2FO

RM

AT

(30H

ON

EG

.O

RZ

ER

OM

ASS

,E

QU

AT

ION

IFL

AG

=1

GO

TO1

20

11

0S

MA

SS

(I)

=1.

/SG

RT

(X)

12

0C

ON

TIN

UE

IF(I

FL

AG

.N

E.0

)S

TO

PD

O1

30

I=

1,N

NL

=I

-1

MR

=M

INO

(MM

,NN

-I+

l)D

O1

30

J=

1,M

RK

=L

+J

13

0A

(I,J

)=

A(I

,J)*

SM

AS

S(I

)*S

MA

SS

(K)

IMPO

SEB

OU

ND

AR

YC

ON

DIT

ION

SO

NA

IF(N

BC

.L

E.

0)

GO

TO1

50

DO

14

0N

=1,

NB

CI

=N

EBC

(N)·

A(I

,1

)=

10

0.

*TR

AC

E1

40

CO

NT

INU

E

15

)

E*X

50 55

C CC

OM

PAC

TM

AT

RIX

AIN

TO

Al-

DA

RR

AY

VC

15

0D

O1

60

J=

2,M

ML

=N

N*

(J-1

)M

=N

N-

J+

1D

O1

60

I=

1,

MK

=L

+I

16

0V

(K)

=A

(I,J

)W

RIT

E(2

)(V

(I

),I=

1,

NW

)C C

COM

PUTE

SMA

LLES

TEI

GEN

VA

LUE

AND

ASS

OCI

ATE

EIG

ENV

ECTO

ROF

A

Page 138: Dynamics Technology, Inc.

SUB

RO

UT

INE

BN

EIG

N7

6/1

76

OP

T=

lST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

2

......

VJ~

60

65

70

75

80

85 90

95

10

0

10

5

11

0

CBY

INV

ER

SEIT

ER

AT

ION

C1

65

NE

IG=

NE

IG+

1E

l=

O.S

HIF

T=

O.

NS

=0

KK

T=

2C

ALL

BA

NS

OL

(NR

,MM

,NN

,V,B

,O)

DO1

70

I=

NR

,NN

17

0B

(Il

=O

.DO

180

I=

1,N

R1

80

B(I)

=1.

IF(N

BC

.LE

.0

)GO

TO2

00

PO1

90

N=

1,N

BC

I=

NE

BC

(N)

19

0B

(I)

=0.

20

0N

S=

NS

+1

CA

LLB

AN

SOL

(NR

,MM

,NN

,V,B

,KK

T)

KK

T=

1E

=O

.DO

22

0I

=1,

NR

IF(A

IlS

(B(I

ll.

GT.

AB

S(E

llE

=B

(I)

22

0C

ON

TIN

UE

E=

1.

IEE

PS=

(E-E

l)/E

*1

00

.DO

23

0I

=1,

NR

23

0B

(I)

=B

(I)*

EE1

=E

IF(A

BS

(EP

S).

GT.

1..

AN

D.

NS

.LT

.1

5)

GOTO

20

0N

L=

NL

OO

P'-

32

50

DO2

60

I=

1,N

R2

60

R(I

)=

B(I

)N

S=

NS

+1

CA

LLB

AN

SOL

(NR

,MM

,NN

,V,B

,1

)E

=O

.DO

30

0I

=1,

NR

IF(A

BS

(B(I

».G

T.A

BS

(E»

E=

B(I

)3

00

CO

NTI

NU

EDM

AX=

O.

SUI1

D=

O.

DO3

20

I=

1,N

RB

(I)

..B

(I

)IE

D=

AB

S(B

(I)-

R(I

»SU

MD

..SU

MD

+D

**2

IF(D

.GT

.D

MA

X)

DMAX

=D

32

0C

ON

TIN

UE

IF(D

MA

X.L

E.

TO

l.O

R.N

S.G

E.

NSM

AX

)GO

TO4

00

NL..

NL+

1IF

(NL

.Li.

NlO

OP)

GOTO

25

0R

EWIN

D2

REA

D(2

)(V

(I),

I=l,

NW

)NL

=0

X=

o.Y

=O

.DO

34

0I

=1,

NR

X=

X+

B(I

)*R

(I)

34

0y

=y

+B

(I)*

8(I

)

Page 139: Dynamics Technology, Inc.

SUB

RO

UT

INE

BN

EIG

N7

6/1

76

OP

T=

1S

TA

TIC

FTN

4.

8+

49

80

3/1

6/8

11

6.

39

.3

9PA

GE

3

......~ "-

11

5

12

0

12

5

13

0

13

5

14

0

14

5

15

0

15

5

16

0

16

5

17

0

SH

IFT

=S

HIF

T+

AM

AX

1(1

.-4

.*S

UM

D,0

.9)*

X/(

Y*

E)

DO3

50

I=

1,N

R3

50

V(I

)=

V(I

)-

SH

IFT

CA

LLB

AN

SO

L(N

R,M

M,N

N,V

,B,O

)G

OTO

25

04

00

X=

o.y

=O

.D

O4

20

I=

1,

NR

X=

X+

B(I

)*R

(I)

42

0Y

=Y

+B

(I)*

B(I

)S

HIF

T=

SH

IFT

+X

/(Y

*E

)E

V(N

EIG

)=

SH

IFT

+P

SH

IFT

SH

IFT

=S

HIF

T-

TOL

P5

HIF

T=

EV

(NE

IG)

-TO

LY

=S

GR

T(Y

)D

O4

30

I=

1,N

N4

30

R(I

)=:

B(I

)/Y

IF(N

EIG

.G

E.N

MO

)G

OTO

65

0c C

DE

FLA

TE

BA

ND

MA

TRIX

CR

EWIN

D2

REA

D(2

)(V

(I),

I=l,

NW

)D

O4

50

NX=:

1,N

RFB

=R

(NX

)IF

(FB

.t·J

E.0

.)G

OTO

48

04

50

CO

NT

INU

E4

80

DO

50

0I

=1

,NR

L=

NW+

IV

(I)

=V

(I)

-S

HIF

T5

00

veL>

=o.

NR

S=

NR-

1N

R1=:

NR+

1G

l=

R(1

)**

25

2=

O.

C=

1.

DO

60

0I

=1

,NR

SK

=1

+1

G=

Ql

+R

(K)*

*2

IF(I

.LT

.NX

)G

OTO

55

05

2=

Gl/

0C

=R

(K)/

SO

RT

(O)

IF(F

B.L

T.0

.)C

=-C

55

0S

=S

GR

T(5

2)

C2

=C

*CS

N(I

)=

SC

N(I

l=C

01..

Gl"'N

N+

IA

ll=

V(I

)A

22=

V(K

)A

12=:

V(l)

X=

2.*A

12*S

*CV

(I)

=A

ll*

C2

+A

22

*S

2-

XV

(K)

=:A

22*C

2+

Al1

*S

2+

XV

eL)

=A

12

*(C

2-S

2)

+(A

11

-A2

2)*

S*

CMR

=M

INO

(I,M

M)

Page 140: Dynamics Technology, Inc.

SUB

RO

UT

INE

BN

EIG

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E4

....... la.I~

17

5

18

0

18

5

19

0

19

5

20

0

20

5

21

0

21

5

22

0

22

5

IF(M

R.

LE

.1

)GO

TO5

70

L1

=I

DO

56

0J

=2,

MR

L1

=L

l+

NN

RL

2=

Ll

+NN

Al

=V

(U)

A2

=V

(L2

)V

(Ll)

=A

l*C

-A

2*S

56

0V

(L2

)=

A2*

C+

Al*

S5

70

MR

=M

INO

(MM

1,N

R1

-I)

IF(M

R.

LT

.3

)G

OTO

60

0L

2=

KD

O5

80

J=

3,M

RL

2=

L2

+N

NL

l=

L2

+N

NR

Ai

'"V

(U)

A2

=V

(L2

)V

(Ll)

=A

l*C

-A

2*S

58

0V

(L2

)'"

A2*

C~

Al*

S6

00

CO

NT

INU

EC C

STO

RE

DE

FLA

TE

DM

AT

RIX

,E

IGE

NV

EC

TO

R,

SIN

ES

AN

DC

OS

INE

SO

FC

JAC

OB

IR

OT

AT

ION

MA

TR

ICE

SC

REW

IND

2W

RIT

E(2

)(V

(I).

I=l,

NW

)W

RIT

E(1

)(R

(I),

SN

(I),

CN

(I),

I=l,

NN

)N

R=

NR

-1

IF(N

BC

.LE

.O)

GO

TO1

65

DO

62

0N

=1,

NB

CI

=N

EB

C(N

)IF

(I.

GE.

NX

)N

EB

C(N

)=

I-

16

20

CO

NT

INU

EG

OTO

16

5C C

REC

OV

ERE

IGE

NV

EC

TO

RS

OF

OR

IGIN

AL

MA

TRIX

C'A

ND

CH

ECK

EIG

EN

VA

LU

EA

RR

AN

GEM

ENT

C6

50

DO

70

0I

=1.

NN

70

0A

(I,N

MO

)=

R(I

)IF

(NM

O.L

E.

1)

GO

TO9

00

LL

'"NM

O-

1D

O8

00

N=

1.L

LM

=NM

O-

NN

RS

=N

N-

MN

R=

NR

S+

1B

AC

KSP

AC

E1

Rt;A

PII

>IA

II,M

),5

NIU

d;)

Nll

hJE

1,N

N)

BA

CK

SPA

cE1

KK=

M+

1D

O8

00

L=

1.N

RS

I=

NR-

LK

=1

+1

DO

80

0J

=K

K.N

MO

Al

=A

<I,

J)

A2

'"A

(K,J

)A

(I,J

l=

Al*

CN

(Il

+A

2*

SN

(I)

Page 141: Dynamics Technology, Inc.

SUB

RO

UT

INE

BN

EIG

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E5

80

0A

(K,J

I=

A2

*C

N(I

>-

Al*

SN

(II

23

0D

O8

30

K=

1,

Ll

M=

LL

-K

+1

DO

83

0J

=1,

ME

l=

EV

(JI

E2

=E

V(J

+l1

23

5IF

(El.

LT

.E

21GO

TO8

30

EV

(J+

11

=E1

EV

(JI

=E

2DO

82

0I

=1,

NN

TEM

P=

A(I

tJ)

24

0A

(I,J

I=

A(I

,J+

l)8

20

A(I

,J+

l1=

TEM

P8

30

CO

NT

INU

E9

00

DO

92

0I

=1,

NN

X=

SM

AS

S(I

)2

45

SM

AS

Sl!

)=

1.I

X*

*2

DO

92

0J

=1,

NM

O9

20

A(!

,JI

=A

(I,J

I*X

RET

UR

NEN

D

'"SY

MB

OL

ICR

EFE

RE

NC

EM

AP

(R=

2)

\,.;

vJ

EN

TR

YP

OIN

TS

DEF

LIN

ER

EFE

RE

NC

ES

3B

NE

IGN

12

48

VA

RIA

BL

ES

SN

TY

PER

EL

OC

AT

ION

0A

RE

AL

AR

RA

YF.

P.R

EF

S3

37

54

2.26

22

72

39

24

02

47

DE

FIN

ED

13

74

42

11

21

92

28

22

92

40

24

12

47

12

37

Al

RE

AL

RE

FS

17

91

80

18

91

90

22

82

29

DE

FIN

ED

17

71

87

22

61

23

2A

llR

EAL

RE

FS

16

81

69

17

0D

EFI

NE

D1

64

12

34

A12

RE

AL

RE

FS

16

7,1

70

DE

FIN

ED

16

61

24

0A

2R

EA

LR

EF

S1

79

18

01

89

19

02

28

22

9D

EFI

NE

D1

78

18

82

27

12

33

A22

RE

AL

RE

FS

16

81

69

17

0D

EF!

NE

D1

65

0B

REA

LA

RR

AY

F.P.

RE

FS

36

57

52

*7

98

48

991

2*

94

99

lob

11

32

*1

14

11

81

23

2*

12

41

31

DE

FIN

ED

16

76

97

38

49

91

22

6C

REA

LR

EF

S1

57

2*

15

91

61

16

71

70

17

91

80

18

91

90

DE

FIN

ED

15

01

56

15

70

eNRE

ALAR

.RAY

F.P

.R

EFS

31

98

22

82

29

DE

FIN

ED

116

121

'1'

12

31

C2

R£::A

LR

EF

S1

68

16

91

70

DE

FIN

ED

15

910

!16

0R

EAL

RE

FS

10

12

*1

02

DE

FIN

ED

10

01

21

4Dr

-.AX

REA

LR

EF

S1

02

10

4D

EFI

NE

D9

61

02

12

11

ER

EAL

RE

FS

79

81

2*

82

84

85

94

99

11

51

25

DE

FIN

ED

77

79

81

92

94

12

12

EP

SR

EAL

RE

FS

86

DE

FIN

ED

82

0EV

RE

AL

AR

RA

YF

.P

.R

EF

S3

12

82

33

23

4D

EF

INE

D1

12

62

36

23

7

Page 142: Dynamics Technology, Inc.

SUB

RO

UT

INE

BN

EIG

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E6

VA

RIA

l3L

ES

SNT

YPE

RE

LO

CA

TIO

N1

20

5E

lR

EAL

RE

FS

82

23

52

36

DE

FIN

ED

61

85

23

31

24

3E

2R

EAL

RE

FS2

35

23

7D

EFI

NE

D2

34

12

21

Fl3

REA

LR

EF

S1

40

15

7D

EFI

NE

D1

39

11

75

IIN

TE

GE

RR

EFS

23

25

29

33

34

3*

37

44

53

54

55

67

69

73

2*

79

2*

84

2*

89

2*

94

2*

99

2*

10

01

08

2*

11

32

*1

14

2*

11

72

*1

23

2*

12

42

*1

31

13

71

43

2*

14

41

52

15

41

60

161

26

31

64

16

817

11

73

18

11

97

3*

19

82

*2

03

2*

21

13

*2

19

22

42

26

3*

22

82

*2

29

23

92

*2

40

24

12

44

24

52

*2

47

DE

FIN

ED

22

32

43

52

55

66

68

72

78

83

88

93

98

10

B1

12

11

61

22

13

01

37

14

215

11

97

19

82

02

21

02

19

22

32

38

24

31

16

4IF

LA

GIN

TE

GE

RR

EFS

31

DE

FIN

ED

92

71

20

1J

I~HEGER

RE

FS

36

2*

37

50

515

42

26

22

72

28

22

92

33

23

42

36

23

72

39

2*

24

02

41

2*

24

7D

EFI

NE

D3

54

91

74

18

42

25

23

22

46

12

02

KIN

TE

GE

RR

EFS

37

54

15

31

56

16

51

69

18

32

27

22

92

31

DE

FIN

ED

36

53

15

22

24

23

01

24

2KK

INT

EG

ER

RE

FS2

25

DE

FIN

ED

22

11

21

0K

KT

INT

EG

ER

RE

FS

75

DE

FIN

ED

64

76

11

77

LIt

HE

GE

RR

EFS

36

53

14

51

66

17

02

23

DE

FIN

ED

33

50

14

31

63

22

2

t1

24

1LL

INT

EG

ER

RE

FS2

14

23

02

31

DE

FIN

ED

21

3

'f:.

12

35

L1

It-H

EG

ER

RE

FS

17

51

76

17

71

79

18

71

89

DE

FIN

ED

17

31

75

18

61

23

6L

2It-

HE

GE

RR

EFS

17

81

80

18

51

86

18

81

90

DE

FIN

ED

17

61

83

18

51

20

4M

INT

EG

ER

RE

FS

52

21

62

19

22

12

32

DE

FIN

ED

512

15

23

10

Mt1

INT

EG

ER

F.P.

RE

FS1

31

43

44

96

57

59

11

18

17

1D

EFI

NE

D1

11

70

MM

IIN

TE

GE

RR

EF

S1

81

DE

FIN

ED

13

12

00

MR

INT

EG

ER

RE

FS

35

17

21

74

18

21

84

DE

FIN

ED

34

17

11

81

12

03

NIN

TE

GE

RR

EF

S4

37

22

02

20

32

15

DE

FIN

ED

42

712

01

214-

0N

BCIN

TE

GE

RF

:P.

RE

FS

414

27

071

20

02

01

DE

FIN

ED

10

NEB

CIN

TE

GE

RA

RR

AV

F.

P.R

EFS

34

37

22

02

DE

FIN

ED

12

03

11

72

~~E

IGIN

TE

GE

RR

EFS

60

12

61

28

13

2D

EFI

NE

D1

56

01

21

3N

LIN

TE

GE

RR

EFS

10

51

06

DEf

:"IN

ED8

71

05

10

91

16

5N

LOO

PIN

TE

GE

RR

EFS

87

10

6D

EFI

NE

D1

00

NMO

INT

EG

ER

F.

P.R

EF

S1

32

21

12

12

21

32

15

22

52

46

DE

FIN

ED

10

NN

INT

EG

ER

F.

P.R

EFS

31

41

61

72

23

23

45

051

65

66

75

91

11

81

30

16

31

76

18

51

98

21

02

16

21

92

38

24

3D

EFI

NE

D1

11

74

NN

RIN

TE

GE

RR

EFS

17

51

86

DEf

:"IN

ED1

71

17

3NR

INT

EG

ER

RE

FS6

56

66

87

57

88

38

891

93

98

11

21

16

11

81

22

13

81

42

14

61

47

19

92

23

DE

FIN

ED

16

19

92

17

Page 143: Dynamics Technology, Inc.

SUB

RO

UT

INE

BN

EIG

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E7

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N1

22

2N

RS

INT

EG

ER

RE

FS

15

12

17

22

2D

EF

INE

D1

46

21

61

22

3N

R1

INT

EG

ER

RE

FS

18

1D

EFI

NE

D1

47

,1

20

7N

SIN

TE

GE

RR

EF

S7

48

69

01

04

DE

FIN

ED

63

74

90

11

66

NSM

AX

INT

EG

ER

RE

FS1

04

DE

FIN

ED

111

17

1NW

HH

EG

ER

RE

FS

55

10

81

37

14

31

97

DE

FIN

ED

14

12

20

NXIt

HE

GE

RR

EFS

13

91

54

20

3D

EFI

NE

D1

38

11

67

PS

HIF

TR

EAL

RE

FS

12

6D

EFI

NE

D1

21

28

1:;:2

270

REA

LR

EF

S1

55

15

61

62

DE

FIN

ED

15

31

22

401

REA

LR

EF

S1

53

15

5D

EFI

NE

D1

48

16

20

RR

EAL

AR

RA

YF

.P

.R

EFS

31

00

11

31

23

13

91

48

15

31

56

19

82

11

DE

FIN

ED

18

913

11

23

0S

REA

LR

EF

S1

60

16

71

70

17

91

80

18

91

90

DE

FIN

ED

15

81

20

6S

HIF

TR

EAL

RE

FS

11

51

17

12

51

26

12

71

44

DE

FIN

ED

62

11

51

25

12

70

SMA

SSR

EA

LA

RR

AY

F.

P.

RE

FS3

23

2*

37

24

4D

EFI

NE

D1

29

24

50

SNR

EA

LA

RR

AY

F.

P.

RE

FS

31

98

22

82

29

DE

FIN

ED

11

60

21

91

21

5SU

MD

REA

LR

EF

S1

01

11

5D

EFI

NE

D9

71

01

12

25

52

REA

LR

EF

S1

58

i68

16

91

70

DE

FIN

ED

14

91

55

12

44

TEM

PR

EAL

RE

FS

24

1D

EFI

NE

D2

39

11

63

TaL

REA

LR

EF

S1

04

12

71

28

DE

FIN

ED

8

"-0

TR

AC

ER

EAL

F.

P.

RE

FS

44

DE

FIN

ED

1~

0V

RE

AL

AR

RA

YF

.P

.R

EF

S3

55

65

75

91

11

71

18

lJ--.

14

41

64

16

51

66

17

71

78

18

71

88

19

7D

EFI

NE

Dc

1.5

4.

10

81

17

13

71

44

14

51

68

16

91

70

17

91

80

18

91

90

11

76

XR

EAL

RE

FS

24

29

11

31

15

12

31

25

16

81

69

24

52

47

DE

FIN

ED

23

11

01

13

12

01

23

16

72

44

12

17

YR

EA

LR

EF

S1

14

11

51

24

12

51

29

13

1D

EFI

NE

D1

11

11

41

21

12

41

29

FIL

EN

AM

ESM

OD

EO

UT

PUT

FMT

WR

IrE

S2

5T

AP

EI

UN

FMT

WR

ITE

S1

98

REA

DS

21

9M

OT

ION

21

82

20

TA

PE

2U

NFM

TW

RIT

ES

55

19

7R

EAD

S1

08

13

7M

OTI

ON

18

10

71

36

19

6

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SB

AN

SOL

66

57

59

11

18

SOR

TR

EA

L1

LIB

RA

RY

29

12

91

56

15

8

INL

INE

FUN

CT

IO

NS

TY

PEA

RG

SD

EF

LIN

ER

EFE

RE

NC

ES

AB

SRE

AL1

INT

RIN

2*

79

86

2*

94

10

0M

AX

IRE

AL

0IN

TR

IN1

15

t1IN

OIN

TE

GE

R0

INT

RIN

34

17

118

1

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S1

10

41

2FM

T2

625

.3

51

10

29

24

40

12

03

02

22

80

13

03

73

23

50

14

04

54

2

Page 144: Dynamics Technology, Inc.

SUB

RO

UT

INE

BN

EIG

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E8

STA

TE

t1E

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S1

10

15

04

941

01

60

54

49

·52

13

71

65

60

20

02

05

01

70

67

66

01

80

69

68

01

90

73

712

03

20

07

47

08

60

22

08

07

80

23

08

48

32

52

25

08

81

06

11

90

26

08

98

80

30

09

59

30

32

01

03

98

03

40

11

41

12

03

50

11

71

16

40

64

00

12

01

04

04

20

12

41

22

04

30

13

11

30

04

50

14

11

38

46

54

80

14

21

40

05

00

14

51

42

52

25

50

15

81

54

05

60

18

01

74

60

15

70

18

11

72

05

80

19

01

84

62

76

00

19

115

11

82

"-0

62

02

04

20

1t..

l6

74

65

02

10

13

2<I"

l0

70

02

11

21

00

80

02

29

21

42

22

22

50

82

02

41

23

81

02

28

30

24

22

30

23

22

35

10

27

90

02

43

21

20

92

02

47

24

32

46

LO

OPS

LA

BE

LIN

DEX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

26

12

0I

22

30

15B

EXT

RE

FS

46

13

0I

32

37

24B

NO

TIN

NE

R6

31

30

.J3

53

74B

INST

AC

K1

03

14

0N

42

45

4BIN

STA

CK

11

11

60

.J4

95

420

BN

OT

INN

ER

12

31

60

I5

25

431

3IN

STA

CK

15

71

70

I6

66

72B

INST

AC

K1

65

18

0I

68

69

2BIN

STA

CK

17

71

90

N71

73

3BIN

STA

CK

22

12

20

I7

88

05B

INST

AC

K2

37

23

0I

83

84

3BIN

STA

CK

25

72

60

I8

88

921

3IN

STA

CK

27

73

00

I9

39

551

3IN

STA

CK

31

33

20

I9

81

03

lOB

INST

AC

K3

52

34

0I

11

21

14

513

INST

AC

K3

73

35

0I

11

61

17

3BIN

STA

CK

41

44

20

I1

22

12

45B

INST

AC

K4

41

43

0I

13

01

31

3BIN

STA

CK

46

04

50

NX1

38

14

151

3IN

STA

CK

EX

ITS

47

25

00

I1

42

14

54B

INST

AC

K5

06

60

0I

151

19

112

4BEX

TR

EF

SN

OT

INN

ER

Page 145: Dynamics Technology, Inc.

......

u,;

.......,

SUB

RO

UT

INE

BN

EIG

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16.

39

.3

9PA

GE

9

LO

OPS

LA

BE

LIN

DEX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

56

75

60

J1

74

18

0lO

BIN

STA

CK

61

55

80

J1

84

19

0lO

BIN

STA

CK

64

4I

19

81

98

11

8EX

TR

EF

S6

66

62

0N

20

12

04

5BIN

STA

CK

70

47

00

I2

10

21

12B

INST

AC

K7

13

80

0N

21

42

29

64B

EXT

RE

FS

NO

TIN

NE

R7

24

I2

19

21

913

BEX

TR

EF

S7

45

80

0L

22

22

29

27B

NO

TIN

NE

R7

62

80

0J

22

52

29

7BIN

STA

CK

10

00

83

0K

23

02

42

27

8N

OT

INN

ER

10

03

83

0J

23

22

42

22

8N

OT

INN

ER

10

16

82

0I

23

82

41

38

INST

AC

K1

03

09

20

I2

43

24

71

68

NO

TIN

NE

R1

04

09

20

J2

46

24

73

8IN

STA

CK

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

13

27

87

27

52

00

0B

SCM

USE

D

Page 146: Dynamics Technology, Inc.

SUB

RO

UT

INE

EIG

EN

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E

5 10 15

SUB

RO

UTI

NE

EIG

EN

(NE

BC

,SM

AS

S,X

S,E

V,A

,Wl,

W2,

W3,

W4,

CC

,!

NE

Q.N

MO

DE

,MB

AN

D,R

,Z

.PL

OT

TI

C c***

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

CST

RU

CTU

RA

LFR

EE

VIB

RA

TIO

NM

ODE

SHA

PES

AND

NA

TURA

LFR

EQ

UE

NC

IES

ARE

CC

ALC

ULA

TED

ORRE

AD

IN.

MB

AN

D+l

SET

SL

IMIT

ONM

AXM

ODE

FUR

NIS

HE

D.

C**

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

*C

CO

MM

ON

/CN

TRL/

NU

MN

P,N

AN

GLE

,MB

AN

,NBC,r~F,NPPO,NPPI.TRACE,READFRQ

DIM

EN

SIO

NN

EB

C(!

I,S

MA

SS

lll,

XS

(1I,

A(N

EQ

,M3

AN

D"E

Vll

l,W

l(1

',W

2(1

1,

1W

3(1

I,1~4

11I,

CC(N

MO

DE,

1I,

R(1

),Z

(1I,

KEE

P(1

00

I.2

ZPL

OT

(1

00

.20

),N

PT

S(2

01,

IFIG

(20

).A

PLO

T(1

00

.20

1LO

GIC

AL

REA

DFR

QLO

GIC

AL

PLO

TT

IF(R

EA

DFR

QI

GOTO

18

0RE

AD

(11

AB

AC

KSP

AC

E1

CA

LLB

NE

IGN

(NE

G,M

BA

ND

.NM

OD

E,N

BC

,EV

,NE

BC

,SM

ASS

,A.W

l,A,W

2,W

3,W

41

,TR

AC

EI2

0C C

COM

PUTE

EIG

EN

VA

LU

ES

AN

DE

IGE

NV

EC

TO

RS

CPR

INT

20

06

DO9

0I=

l,NM

OD

E2

5E

VII

I=S

QR

TIE

VII

II....

90

PRIN

T2

00

5,

I,E

VI

II

\.l.;

PRIN

T2

00

7~

CA

LLPR

INT

AIA

,NE

G,N

MO

DE

IIF

(.N

OT

.PL

OT

TI

GOTO

10

83

0Z

PR

EN

=10

0000

.IN

D=O

92

ZMA

X=O

.IN

D=

IND

+l

DO9

4I=

l,NU

MN

P3

59

4IF

(ZII

I.G

T.ZM

AX.

AN

D.

Z<

II.

LT

.Z

PRE

VI

ZMA

X=Z

III

RMA

X=O

.DO

96

I=l,N

UM

NP

IFIZ

III.

NE.

ZMA

XI

GO

TO9

6IF

IR(I

I.G

T.

RMA

XI

KE

EP

(IN

D)=

I4

0IF

(RII

I.G

T.

RMA

XI

RM

AX

=R(I

)9

6C

ON

TIN

UE

ZPR

EV=Z

MA

XIF

IZM

AX.

NE.

O.

IGO

TO9

2

45 50 55

CDO

10

21=

1,IN

DDO

10

0N

=l,N

MO

DE

10

0Z

PL

OT

Cl,N

I=Z

CK

EE

PC

I»1

02

KE

EP

(I)=

1+

3*

(KE

EP

(II-

l)C

ALL

OPL

TDO

106

J=

1,3

IF(J

.EG

.1

)Y

TIT

LE

="R

DIS

PL

."IF

(J.

EO.

21Y

TIT

LE

="Z

DIS

PL

.II

IF(J

.EG

.31

YT

ITL

E=

"TD

ISP

L.

"DO

104

K=l

,NM

OD

Er~PTS

IKI=

IND

IFIG

IKI=

3DO

104

1=1,

INC

Page 147: Dynamics Technology, Inc.

SU

BR

OU

TIN

EE

IGE

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

INE

W=

KE

EP

CI)

+C

J-l)

10

4A

PL

OT

CI.

K)=

AC

INE

W,K

)6

0C

AL

LM

UL

PL

TC

ZP

LO

T,A

PL

OT

,NP

TS

.NM

OD

E.

1.1

00

,20

,1

"Z-A

XIS

".6

,Y

TIT

LE

.8

.9

,IF

IG)

10

6C

ON

TIN

UE

CA

LL

PLO

TCO

.,0

.,9

99

)1

08

PR

INT

20

08

65

DO

15

0I=

l.N

MO

DE

DO

12

0J=

I.N

MO

DE

SUM

=O.

0D

O1

10

K=

1.N

EQ1

10

SUM

=SU

M+A

CK

.I)

*S

MA

SS

CK

)*A

CK

,J)

70

12

0CC

CI.

J)

=SU

M1

1=

1-1

IFC

II)

15

0.1

50

.13

01

30

DO

14

0L

=l.

II

14

0CC

CI.

L)

=CC

CL,

I>7

51

50

CO

NT

INU

EC

AL

LPR

INT

AC

CC

,NM

OD

E,N

MO

DE

)C C

WR

ITE

FR

EG

UE

NC

IES

AN

DM

OD

ES

HA

PE

SC

.... \rJ~

80

85

WR

ITE

(8)

CE

VC

N),

N=

l,N

MO

DE

)D

O1

70

N=

l,N

MO

DE

DO

17

0M

=l,N

UM

NP

L=

3*

M-2

17

0W

RIT

E(8

)M

,AC

L,N

).A

CL

+l,

N),

AC

L+

2,N

)R

ET

UR

NC C

REA

DF

RE

QU

EN

CIE

SA

ND

MO

DE

SH

AP

ES

C1

80

REA

D(8

)(E

VC

N).

N=

l,N

MO

DE

)9

0D

O1

90

N=

l.N

MO

DE

DO

19

0M

=l.N

UM

NP

L=

3*

M-2

19

0R

EAD

(8)

MM

,AC

L,N

),A

CL

+l,

N),

AC

L+

2,N

)P

RIN

T2

00

69

5D

O2

00

I=l,

NM

OD

E2

00

PR

INT

20

05

,I,

EV

CI)

PR

INT

20

07

CA

LL

PR

INT

AC

A,N

EQ

,NM

OD

E)

20

05

FOR

MA

TC

2HW

.Il

,2H

=,F

l0.3

)1

00

20

06

FOR

MA

T(l

Hl/

*ST

RU

CT

UR

EN

ATU

RA

LF

RE

QU

EN

CIE

SIN

RA

D/S

EC

.*)

20

07

FOR

MA

TC

III*

EIG

EN

VE

CT

OR

SP

HI

NO

RM

AL

IZE

DW

.R.

T.

MA

SSM

AT

RIX

*)2

00

8FO

RM

AT

CII

"V

ER

IFIC

AT

ION

OF

IMPO

SED

OR

TH

OG

ON

AL

ITY

RE

LA

TIO

N:

"I

1"

CP

HI)

T*

CM)

*(P

HI)

=In

)R

ET

UR

N1

05

END

SYM

BO

LIC

RE

FER

EN

CE

MA

PC

R=

2)

Page 148: Dynamics Technology, Inc.

SUB

RO

UTI

NE

EIG

EN

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E3

ENTR

YPO

INT

SD

EFL

INE

REF

EREN

CES

3E

IGE

N1

85

10

4

VA

RIA

BLE

SSN

TYPE

REL

OC

ATI

ON

0A

REA

LA

RRA

YF.

P.R

EFS

10

2*

18

28

59

2*

69

3*

84

98

DE

FIN

ED

11

63

*9

34

76

3A

PLO

TR

EAL

ARR

AY

RE

FS1

06

0D

EFI

NE

D5

90

CCR

EAL

ARR

AY

F.P.

RE

FS1

07

47

6D

EFI

NE

D1

70

74

0EV

REA

LA

RRA

YF.

P.R

EFS

10

18

25

26

80

96

DE

FIN

ED

12

58

96

10

IIN

TEG

ERR

EFS

2*

25

2*

26

3*

35

38

2*

39

2*

40

2*

47

2*

48

58

59

66

69

70

712

*7

42

*9

6D

EFI

NE

D2

43

43

74

55

76

59

54

73

7IF

IGIN

TEG

ERA

RRA

YR

EFS

10

60

~D

EFI

NE

D5

66

23

II

INTE

GER

RE

FS7

27

3D

EFI

NE

D71

61

2IN

DIN

TEG

ERR

EFS

33

39

45

55

57

DE

FIN

ED

31

33

62

1INEl~

ItH

EG

ER

RE

FS5

9D

EFI

NE

D5

86

16

oJIN

TEG

ERR

EFS

515

25

35

86

97

0D

EFI

NE

D5

06

66

20

KIN

TEG

ERR

EFS

55

56

2*

59

3*

69

DE

FIN

ED

54

68

62

7K

EEP

INTE

GER

ARR

AY

RE

FS1

04

74

85

8D

EFI

NE

D3

94

86

24

LIN

TEG

ERR

EFS

2*

74

3*

84

3*

93

DE

FIN

ED

73

83

92

62

5M

INTE

GER

RE

FS8

38

49

2D

EFI

NE

D8

29

12

MBA

NIN

TEG

ERC

NTR

LR

EFS

90

MBA

NDIN

TEG

ERF.

P.R

EFS

10

18

DE

FIN

ED

-6

26

Mt1

*IN

TEG

ERD

EFI

NE

D9

3-oJ

:;.6

15

NIN

TEG

ERR

EFS

47

80

3*

84

89

3*

93

0.

DE

FIN

ED

46

,BO

81

89

90

1N

AN

GLE

INTE

GER

CN

TRL

RE

FS9

3NB

CIN

TEG

ERC

NTR

LR

EFS

91

80

NEB

CH

HE

GE

RA

RRA

YF.

P.R

EFS

10

18

DE

FIN

ED

10

NEG

ItH

EG

ER

F.P.

RE

FS1

01

82

86

89

8D

EFI

NE

D1

4N

FIN

TEG

ERC

NTR

LR

EFS

90

NMOD

EIN

TEG

ERF.

P.R

EFS

10

18

24

28

46

54

60

65

66

2*

76

80

81

89

90

95

98

DE

FIN

ED

16

NPP

IIN

TEG

ERC

NTR

LR

EFS

95

NPP

OIN

TEG

ERC

NTR

LR

EFS

94

71

3N

PTS

INTE

GER

ARR

AY

RE

FS1

06

0D

EFI

NE

D5

50

NUM

NPH

HE

GE

RC

NTR

LR

EFS

93

43

78

29

10

PLO

TTLO

GIC

AL

F.P.

RE

FS1

42

9D

EFI

NE

D1

0R

REA

LA

RRA

YF.

P.R

EFS

10

39

2*

40

DE

FIN

ED

10

REA

DFR

GLO

GIC

AL

CN

TRL

RE

FS9

13

15

61

4Rt

1AX

REA

LR

EFS

39

-40

DE

FIN

ED

36

40

0Si

1ASS

REA

LA

RRA

YF.

P.R

EFS

10

'1S

69

DE

FIN

ED

162

:181

)11

REAl

.RE

FS69

70

DEFI

NED

67

69

7lR

AC

Ef~gAL

CNfR

LR

ItF

s<1

18

0W

iR

EAL

ARR

AY

F.P.

RE

FS1

01

8D

EFI

NE

D0

W2

REA

LA

RRA

YF.

P.R

EFS

10

18

DEF

INED

0W

3R

EAL

ARR

AY

F.P.

RE:

FS1

01

8D

EFI

NE

D0

W4

REA

LA

RRA

YF.

P.R

EFS

10

18

DE

FIN

ED

0XS

REA

LA

RRA

YF.

P.R

EFS

10

DE

FIN

ED

16

17

YT

ITL

ER

EAL

RE

FS6

0D

EFI

NE

D51

52

53

0Z

REA

LA

RRA

Y.

F.P

.R

EFS

10

3*

35

38

47

DE

FIN

ED

Page 149: Dynamics Technology, Inc.

SUB

RO

UT

INE

EIG

EN

76

/17

6O

PT

"'l

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

4

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N6

13

ZMAX

REA

LR

EFS

35

38

42

43

DE

FIN

ED

32

35

77

3Z

PLO

TR

EAL

AR

RA

YR

EFS

10

60

DE

FIN

ED

47

61

1ZP

REV

REA

LR

EFS

35

DE

FIN

ED

30

42

FIL

EN

AM

ESM

OD

EO

UTP

UT

FMT

WR

ITE

S2

32

62

76

49

49

69

7T

AP

El

UN

FMT

REA

DS

16

MO

TIO

N1

7T

APE

SU

NFt

1TW

RIT

ES

80

84

REA

DS

89

93

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SIl

NE

IGN

14

18

MU

LPLT

13

60

OPL

T0

49

PLO

T3

63

PRIN

TA

32

87

69

8SQ

RT

REA

L1

LIB

RA

RY

25

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

90

26

24

73

92

32

43

09

43

53

41

24

96

413

73

80

10

04

74

60

10

24

84

50

10

45

95

45

70

10

66

25

0.....

22

31

08

64

29

~0

11

06

96

80

12

07

06

60

13

0IN

AC

TIV

E7

37

20

14

07

47

32

67

15

07

56

52

*7

20

17

08

48

18

23

27

18

08

91

50

19

09

39

09

10

20

09

69

55

40

20

05

FMT

99

26

96

54

32

00

6FM

T1

00

23

94

55

22

00

7FM

T1

01

27

97

561

20

08

FMT

10

26

4

LO

OPS

LA

BE

LIN

DEX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

47

90

I2

42

612

BEX

TR

EFS

101

94

I3

43

55I

lIN

STA

CK

11

59

6I

37

41lO

BIN

STA

CK

13

11

02

I4

54

820

BN

OT

INN

ER

14

01

00

N4

64

73B

INST

AC

K1

53

10

6.j

50

62

47B

EXT

RE

FSN

OT

INN

ER

17

01

04

K5

45

924

BN

OT

INN

ER

20

41

04

I5

75

95I

lIN

STA

CK

22

61

50

I6

57

544

BN

OT

INN

ER

23

01

20

.J6

67

023

BN

OT

INN

ER

24

11

10

K6

86

94I

lIN

STA

CK

26

41

40

L7

37

42B

INST

AC

K3

05

17

0N

81

84

21B

EXT

RE

FSN

OT

INN

ER

30

61

70

t18

28

416

BEX

TR

EFS

33

61

90

N9

09

321

BEX

TR

EFS

NO

TIN

NE

R

Page 150: Dynamics Technology, Inc.

OP

T=

lS

TA

TIC

SUB

RO

UT

INE

EIG

EN

76

/17

6

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

33

71

90

M91

93

36

22

00

I9

59

6

CO

MI1

0NB

LO

CK

SLE

NG

THC

NT

RL

9

LEN

GTH 16

BlO

B

PR

OP

ER

TIE

SEX

TR

EF

SEX

TR

EF

S

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E5

....... t

ST

AT

IST

ICS

PRO

GR

AM

LEt~GTH

SCM

LA

BE

LE

DCO

MM

ON

LE

NG

TH

5200

013

SCM

USE

D

10

74

1B

llB

45

77 9

Page 151: Dynamics Technology, Inc.

SUB

RO

UT

INE

EX

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

"-2

5--e

.l.3

40

50

30

60

355

10

15

20

40

45 :so 55

SUB

RO

UT

INE

EX

T(I

JBC

,R,

Z,

IX,

IJF

S,

NU

FN

P,N

UF

EL

,NF

BA

ND

,NU

INT

F,

1N

UC

OF,

WL

O)

C C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CR

EAD

AN

DP

RIN

TE

XT

ER

IOR

WA

TER

EL

EM

EN

TP

RO

PE

RT

IES

C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CD

IME

NS

ION

R(1

).Z

(1),

IX(N

UF

EL

,1

),IJ

BC

(1),

IJF

S(l

)L

=Ot1

B=0

IB=

OIS

=l

IJF

S{

1)=

1P

RIN

T2

00

42

0R

EAD

10

02

.N

,IC

OD

E,R

(N),

Z{N

),M

OD

,NL

IM,F

AC

R,F

AC

ZIF

(N.

GT

.1

)G

OTO

25

IF(Z

(l).

LT

.W

LO

.AN

D.R

{l).

LT

.O.

00

01

)1

5=

02

5U

=L

+l

IF(N

-Ll)

90

,70

.30

30

IF(L

.LE

.0

)G

OTO

80

DIV

=N

-LD

R=

(R(N

)-R

{L

»/D

IVD

Z=

(Z{

N)-

Z(L

»/D

IVM

=N

-lD

O4

0K

=L

l.M

R{

K)=

R{

K-l

)+D

RZ

{K

)=Z

(K-l

)+D

ZG

OTO

70

U=

N+

lIF

(FA

CR

.LE

.O

.0

)F

AC

R=

1.0

IF(F

AC

Z.

LE

.o.

0)

FA

CZ

=1

.0P

RIN

T2

10

0,

MO

D,N

LIM

,FA

CR

.FA

CZ

N=

N+

lN

l=N

-MO

DN

2=N

l-t1

0DIF

(Nl.

LE

.O

.OR

.N

2.L

E.0

)G

OTO

10

0R

(N)=

R(N

l)+

FA

CR

*{

R(N

l)-R

(N2

»Z

{N

)=Z

(Nl)

+F

AC

Z*

{Z

{N

l)-Z

{N

IF(N

.LT

.N

LIM

)G

OTO

60

MO

D=O

70

L=N

DO

74

K=

L1,

NIF

(R(K

).L

T.O

.00

01

)G

OTO

73

IF(I

CO

DE

.EG

.0

)G

OTO

74

IF(I

CO

DE

.LT

.-l)

GO

TO7

37

2C

ON

TIN

UE

18

=1

8+

1IF

(I8

.GT

.NU

INT

F)

GO

TO7

8IF

(IC

OD

E.

GT.

0)

IJB

C{

I8)=

ICO

DE

IF(I

CO

DE

.EG

.-1

)IJ

BC

(IB

)=O

GO

TO7

47

31

S=

1S

+l

IJF

S(I

S)=

KIF

(IC

OD

E.

GT

.O)

GO

TO7

27

4C

ON

TIN

UE

PR

INT

20

02

,(K

,R{

K),

Z{

K).

ICO

DE

,K=

Ll.

N)

IF(M

OD

.GT

.O)

GO

TO5

0

Page 152: Dynamics Technology, Inc.

SUB

RO

UTI

NE

EXT

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

DO1

70

1=1.

4DO

17

0,)

=1

,4M

M=I

AB

S(IX

(N,

I)-

IX(N

,,))

IF(M

M.

GT.

MB)

MB=

MM

17

0C

ON

TIN

UE

IF(N

UC

OF.

LE

.0

)GO

TO1

96

MC

=NU

CO

F+N

UFN

PDO

19

01

=5

.81

1=

1-4

IFeI

X(N

,I

I.EG

.21

GOTO

19

21

90

CO

tHIN

UE

GOTO

19

61

92

DO19

41

=1

,211

11=I

AB

S(M

C-I

X(N

,II

»IF

(MM

.GT.

MBI

MB=

MM

11=

11+

1IF

(II.

GT

.4)

II=

l1

94

CO

NTI

NU

E1

96

CO

NTI

NU

EIF

eN.

EO.

NU

FEL

)GO

TO1

99

IF(N

.EG

.M

lGO

TO1

30

GOTO

140

19

9N

FI3A

ND

=t11

3+1

10

02

FORM

AT

(2I5

.2F

I0.0

,21

5,2

FI0

.0)

10

03

FORM

AT

(16

15

)20

01FO

RMA

T(l

Hl1

13

3H

EXT.

FLD

.E

L.

NO

.I

,)1

8X

.2H

I,),

3X

.2H

JK.3

X,2

HK

L.3

X,2

HL

I)2

00

2FO

RMA

T(I

7,8

X,F

10

.3,4

X,F

10

.3

,5X

,IS

)2

00

3FOR~lAT

(11

12.

IX,

41

5,

5X,

41

5)

20

04

FORM

AT

(11

38

HEX

T.F

LD

.N.P

.R

-oR

D2

10

0FO

RMA

T(2

1HG

ENER

ATI

ON

WIT

HM

OD

=I3

,3X

,6H

13X

,6H

FAC

Z=F

10.

51

"~ ~

60

65 70

75

80

85

90

95

10

0

105

11

0

78

SO 90

10

0

11

0

12

0

13

01

40

15

0

15

51

60

C C C

IF(N

-NU

FNPI

20

,12

0.1

10

PRIN

T2

12

0ST

OP

PRIN

T2

13

0ST

OP

PRIN

T2

14

0,

NST

OP

PR

INT

21

50

STO

PPR

INT

21

60

,N

.N

UFN

PST

OP

CO

NTI

NU

EPR

INT

20

01

N=O

REA

D1

00

3.

M,

(IX

(M,I

),I=

1,8

)N

=N+l

IF(M

.E

Q.N

lGO

TO1

60

DO1

50

1=1.

4IX

(N.

I)=

IXeN

-1.

1)+

1DO

15

5I=

5,S

IX(N

,Il

=IX

(N-1

.II

PRIN

T2

00

3,

N.

<IX

eN

.I).

I=1

,S)

DET

ERM

INE

BAN

DW

IDTH

KL

.

Z-O

RD

,7X

,5H

ICO

DE

II)

ML

IM=

I4,3

X,6

HFA

CR

=F10

.5,

Page 153: Dynamics Technology, Inc.

SUB

RO

UT

INE

EXT

76

/17

6O

PT

=1

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

116

.3

9.

39

PAG

E3

11

5

12

0

21

20

FOR

MA

T(/

31

HIN

TE

RFA

CE

NO

DA

LN

UM

BER

ERR

OR

I)2

13

0FO

RM

AT

(28

HF

IRS

TJO

INT

CA

RD

ISM

ISS

ING

)2

14

0FO

RM

AT

(31

HC

OO

RD

INA

TE

CA

RD

FOR

JOIN

TN

O.

IS.

16H

NO

TIN

SEG

UE

NC

E)

21

50

FOR

MA

T(4

2H

INS

UF

FIC

IEN

TIN

FOR

MA

TIO

NTO

GE

NE

RA

TE

MES

H)

21

60

FOR

MA

T(1

4H

JOIN

TN

UM

BER

I5.2

1H

EX

CE

ED

SG

IVE

NN

UFN

P=1

5)

RET

UR

NEN

D

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

ENTR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

EXT

11

20

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N6

15

DIV

REA

LR

EF

S2

22

3D

EFI

NE

D21

61

6D

RR

EAL

RE

FS

26

DEI

="IN

ED2

26

17

DZ

REA

LR

EF

S2

7D

EFI

NE

D2

36

12

FAC

RR

EAL

RE

FS

30

32

37

DE

FIN

ED

15

30

61

3FA

CZ

REA

LR

EF

S3

13

23

8D

EFI

NE

D1

53

16

24

IIN

TE

GE

RR

EF

S7

22

*7

62

*7

87

98

48

59

19

2D

EFI

NE

D7

27

57

77

98

39

09

56

04

IEIN

TE

GE

RR

EF

S4

74

84

95

0D

EFI

NE

D1

14

7....

...6

07

ICO

DE

ItH

EG

ER

RE

FS

44

45

2*

49

50

54

56

~ ~D

EFI

NE

D1

56

30

II

INT

EG

ER

RE

FS

96

98

99

DE

FIN

ED

91

98

99

0IJ

BC

I~JTEGER

AR

RA

YF

.P

.R

EF

S8

DE

FIN

ED

14

95

00

IJF

SIN

TE

GE

RA

RR

AY

F.

P.

RE

FS

8D

EFI

NE

D1

13

53

60

5IS

INT

EG

ER

RE

FS

52

53

DE

FIN

ED

12

17

52

0IX

INT

EG

ER

AR

RA

YF

.P

.R

EF

S8

76

78

79

2*

85

92

96

DE

FIN

ED

17

27

67

86

25

JIN

TE

GE

RR

EF

S8

5D

EFI

NE

D8

46

21

KIN

TE

GE

RR

EF

S2

*2

62

*2

74

35

33

*5

6D

EF

INE

D2

54

25

66

02

LIN

TE

GE

RR

EF

S1

82

021

22

23

DE

FIN

ED

9,.4

.16

14

L1

INT

EG

ER

RE

FS

19

25

42

56

DE

FIN

ED

18

29

62

0M

INT

EG

ER

RE

FS

25

72

74

10

3D

EFI

NE

D2

47

26

03

ME

INT

EG

ER

RE

FS

86

97

10

5D

EFI

NE

D1

08

69

76

27

Me

INT

EG

ER

RE

FS

96

DE

FIN

ED

89

62

6M

r1IN

TE

GE

RR

EF

S.

2*·8

62

*9

7D

EFI

NE

D8

59

66

10

MOD

WT

EG

ER

RE

FS

32

34

35

57

DE

FIN

ED

15

40

60

6N

INT

EG

ER

RE

FS

2*

15

.16

19

212

22

32

42

93

33

43

73

83

94

14

25

65

86

36

77

37

42

*7

62

*7

82

*7

92

*8

59

29

61

02

10

3D

EFI

NE

D1

53

37

17

30

NFB

AN

DIN

TE

GE

RF

.P

.D

EFI

NE

D1

10

56

11

NL

Ir1

INT

EG

ER

RE

FS

32

39

DE

FIN

ED

15

0N

UC

OF

INT

EG

ER

F.

P.

RE

FS

88

89

DE

FIN

ED

10

NU

FEL

INT

EG

ER

F.

P.

RE

FS

81

02

DE

FIN

ED

10

NU

FNP

INT

EG

ER

F.

P.

RE

FS

58

67

89

DE

FIN

ED

0N

UIN

TF

Ir-J

TEG

ERF.

P.

RE

FS

48

DE

FIN

ED

1

Page 154: Dynamics Technology, Inc.

FTN

4.8

+4

9"8

03

/16

/81

16

.39

,39

PAG

E

36

2*

37

2*

38

DE

FIN

ED

34

37

38

DE

FIN

ED

35

17

2*

22

26

3*

37

43

15

26

37

DE

FIN

ED

11

72

*2

32

73

*3

85

61

52

73

8

SUB

RO

UT

INE

EX

T7

6/1

76

OP

T=

lS

TA

TIC

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N6

22

Nl

INT

EG

ER

RE

FS3

56

23

N2

INT

EG

ER

RE

FS3

60

RR

EAL

AR

RA

YF

.P

.R

EFS

8D

EFI

NE

D1

0W

LOR

EAL

F.P.

RE

FS1

70

ZR

EAL

AR

RA

YF.

P.R

EFS

8D

EFI

NE

D1

FIL

EN

AM

ESM

OD

EIN

PUT

FMT

REA

DS

15

72

OU

TPU

TFt

1TW

RIT

ES

14

32

70

79

INL

INE

FUN

CT

ION

ST

YPE

AR

GS

DE

FL

INE

RE

FER

EN

CE

SlA

BS

INT

EG

ER

1IN

TR

IN8

59

6

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S1

62

01

55

83

62

51

81

60

30

INA

CT

IVE

20

19

04

02

72

56

75

02

95

71

01

60

33

39

12

37

041

19

28

13

37

24

65

4

'"1

45

73

52

43

45

~1

52

74

55

42

44

51C

l',1

76

78

59

48

20

1'8

061

20

20

49

06

31

92

07

10

06

53

62

12

11

06

75

82

15

12

06

95

82

20

13

07

21

03

23

51

40

73

10

40

15

07

67

50

15

57

87

72

62

16

07

97

40

17

08

78

38

40

19

09

39

03

37

19

29

59

20

19

41

00

95

36

01

96

101

88

94

36

41

99

10

51

02

47

51

00

2FM

T1

06

15

50

11

00

3FM

T1

07

72

50

32

00

1FM

T1

08

70

51

32

00

2FM

T1

10

56

51

72

00

3FM

T11

17

95"

1'"

20

04

FMT

11

21

4~~

53

12

10

0FM

T1

13

32

54

22

12

0Ft

1T1

15

59

54

72

13

0FM

T1

16

61

55

42

14

0FM

T1

17

63

56

32

15

0FM

T1

18

65

57

12

16

0Ft

1T1

19

67

56

59

616

36

5

4 56

67

Page 155: Dynamics Technology, Inc.

..... :5

SUB

RO

UT

INE

EX

T7

6/1

76

OP

T::

1S

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.3

9.

39

PAG

E5

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LE

NG

TH

PR

OP

ER

TIE

S6

14

0K

25

27

43

INST

AC

K1

26

74

K4

25

52

73

EX

ITS

16

0K

56

56

lOB

EXT

RE

FS

22

3I

72

72

IlB

EXT

RE

FS

24

61

50

I7

57

62B

INST

AC

K2

57

15

5I

77

78

2BIN

STA

CK

26

5I

79

79

11B

EXT

RE

FS

30

01

70

I8

38

72

28

NO

TIN

NE

R3

11

17

0J

84

87

6BIN

STA

CK

32

71

90

I9

09

3lO

BIN

STA

CK

EX

ITS

34

41

94

I9

51

00

13B

OPT

ST

AT

IST

ICS

PRO

GR

Af1

LE

NG

TH

64

6B

42

25

20

00

BSC

t1U

SED

Page 156: Dynamics Technology, Inc.

SUB

RO

UT

INE

SOLE

XT

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16.

39

.3

9PA

GE

5 10

SUB

RO

UTI

NE

SO

LE

XT

(SM

AS

S,W

,A,B

I,B

II,D

,IJ

BC

,R,Z

,IX

,IJ

FS

,1

HB

,HL

,HM

,NM

O,N

EG,

NU

FNP,

NU

FEL,

NU

INT

F,N

UFS

F,N

FBA

ND

,N

EGF)

C c**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*C

CO

MPU

TEG

ENER

ALI

ZED

FOR

CE

VEC

TOR

~ND

MA

SSM

ATR

IXC

FRO

ME

XT

ER

IOR

WA

TER

C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CD

IME

NSI

ON

SS

(2),

RR

(4),

ZZ

(4),

H(4

,4),

HH

(4,4

),F

K(S

O)

Dx'

MEN

SIO

NS

MA

SS

(l),

W(l

),A

(NE

G,

l),H

M(N

EG

F,

l),H

B(l

),H

L(N

EG

F,

1),

1D

(NM

O,

1),

BI

(1),

BI

I(N

MO

,1

),IJ

FS

(1),

IJB

C(1

),R(l

),

Z(1

),IX

(NU

FEL

,1

)C

OM

MO

N/C

NTR

L/N

UM

NP,

NA

NG

LE,

MB

AN

D,N

BC

,NF,

NPP

O,

NP

PI,

TRA

CE

CO

MM

ON

/FC

ON

ST/P

I,RO

W,H

SD

ATA

SS

I-0

.57

73

50

26

91

89

63

,0.5

77

35

02

69

18

96

31

15C

PRIN

T2

00

6,

(IJB

C(1

),I=

l,N

UIN

TF

)PR

INT

20

08

,(

IJF

S(I)

,1=

1,N

UFS

F)C C

GEN

ERA

TEBO

UN

DA

RYD

ISPL

AC

EM

EN

TS

20

CDO

97

K=

l,N

UIN

TF

II=

IJB

C(K

)IF

(K.

EG

.NU

INT

F)

GOTO

92

KJI

,=K

+l

--2S

91JJ

=IJ

BC

(KK

)

-F-

IF(J

J.N

E.O

)GO

TO9

2OQ

KK

=KK

+lGO

TO91

92

DO9

6M

=l,N

MO

30

IF(I

I.E

G.O

)GO

TO9

4DO

93

1=1,

3IU

=3

*K

-I+

l9

3D

(M,K

I)=

A(3

*II

-I+

l,M

)GO

TO9

63

59

4S

=(R

(K-l

)-R

(K»

**

2+

(Z(K

-l)-

Z(K

»*

*2

S=

SG

RT

(S)

Sl=

(R(K

-l)-

R(K

**

2+

(Z(K

-l)-

Z(K

**

2S

l=S

QR

T<

Sl

)R

S=

S/S

l4

0DO

95

1=

1,3

KI=

3*

K-I

+l

D(M

,KI)

=D

(M,K

I-3

)+(A

(3*

JJ-I

+1

,M)-

D(M

,KI-

*R

S9

5C

ON

TIN

UE

96

CO

NTI

NU

E4

59

7C

ON

TIN

UE

C CFO

RMM

ATR

IXH

C

so 55

DO1

00

1=

1,

NEG

FDO

10

0J=

l,N

FB

AN

D1

00

Ht1

(I,

J)=

O.

NU

CO

F=N

EGF-

NU

FNP

NU

F1=

t~UFNP+

1B

=0

.5*

PI/

HS

DO6

00

N=

l,NU

FE

LDO

15

01=

1,4

II=

IX(N

,1)

Page 157: Dynamics Technology, Inc.

8UB

RO

UT

INE

SOL

EX

T7

6/1

76

OP

T=

1S

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.3

9.

39

PAG

E2

70

25

03

00

75

32

0

80

......

35

0

-c.8

5

-..Q

37

03

71

90

37

2

37

3

95

37

5

60

65

10

0

10

5

11

0

RR<

I)=

R<

II

)1

50

ZZ

<l)

=Z

CII

)C

DO

20

01

=1

.4D

O2

00

J=

I.4

20

0H

HC

LJ)

=O

.D

O3

00

11

=1

.2D

O3

00

JJ=

1.2

CA

LL

FO

RM

HC

8S

CII

).S

8<

JJ).

RR

.Z

Z.H

)D

O2

50

1=

1,4

DO

25

0J=

I.4

HH

<I.

J)=

HH

CI.

J)+

HC

I.J)

HH

CJ,

I)=

HH

CI,

J)

CO

NT

INU

ED

O3

20

1=

1.

4II

=IX

CN

,I)

DO

32

0J=

I.4

JJ=

IXC

N.J

)-II

+l

IFC

JJ.

LT

.1

)G

OTO

32

0H

MC

II,J

J)=

HM

CII

,JJ)

+H

H<

I.J)

CO

NT

INU

EIF

CN

UC

OF.

LE

.0

)G

OTO

60

0D

O3

50

1=

5.8

11

=1

-4IF

CIX

CN

.I).

EG

.2)

GO

TO3

70

CO

NT

INU

EG

OTO

60

0G

OTO

C3

71

.3

71

,3

72

.3

73

).II

I1=

IXC

N.

II)

I2=

IXC

N.I

l+1

)G

OTO

37

51

1=

IXC

N.4

)1

2=

IX(N

,3)

GO

TO3

75

Il=

IXC

N.1

)1

2=

IXC

N.4

)S

IJ=

AB

S(Z

(Il)

-Z<

I2»

BR

=B

*R

Cll

)D

O3

80

K=

I.2

A2

=C

l.0

-88

(K»

/2.0

A3

=(1

.0+

88

(K»

/2.0

ZIJ

=Z

(11

)*A

2+

ZC

12

)*A

3D

O3

80

M=

I.N

UC

OF

Jl=

NU

F1

+M

-II

J2=

NU

F1

+M

-12

E1

G=

C2

.0*

M-1

.)*

BR

CA

LL

BE

SN

KS

CE

1G

.3.F

K)

HK

=0

.5*

SIJ

*E

1G

*<

FK

(1)+

FK

<3

»*

CO

S<

B*

ZIJ

)H

M<

Il.J

l)=

HM

<Il

.Jl)

+H

K*

A2

HM

CI2

.J2

)=H

MC

12

.J2

)+H

K*

A3

38

0C

ON

TIN

UE

M=O

DO

40

0I=

NU

F1.

NE

GF

M=M

+lE

IG=

C2

.0*

M-l

.0)*

BR

CA

LL

BE

SN

K8

CE

IG.3

.FK

)H

M(

II1

)=

EIG

*H

S/4

.0

*F

K(2

)*<

FK

(1

)+F

K(3

))

Page 158: Dynamics Technology, Inc.

SUB

RO

UT

INE

SOLE

XT

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E3

11

54

00

CO

NTI

NU

E6

00

CO

NTI

NU

EC C

FRE

E-S

UR

FAC

EBO

UN

DA

RYC

ON

DIT

ION

C1

20

DO6

50

1=1.

NU

FSF

II=

IJF

S(I

)HM

(II,

1)=

1.

0IF

(II.

EG.

1)

GOTO

64

0K

M=M

INO

(II,

NFB

AN

D)

125

DO6

30

K=2

,KM

IK=

II-K

+l

63

0H

M(I

K,K

1=

0.0

64

0DO

65

0J=

2.N

FB

AN

D6

50

HM

(II,

J)=

O.O

13

0C C

FORM

MA

TR

ICE

SDO

ANO

OJ

CDO

70

01=

1,N

EQF

H13

(I)=

O.

13

5DO

70

0J=

1.

NMO

70

0H

L<I.

J1=

0.

NN

=NU

1NT

F-1

DO7

50

1=1,

NNJ=

I+l

......

14

0R

IJ=

-R(I

)+R

(J)

~Z

IJ=

Z(I

)-Z

(J)

Q"

SIJ

=S

OR

T(R

IJ*

*2

+Z

IJ*

*2

)C

SN

=Z

IJ/S

IJS

SN

=R

IJ/S

IJ1

45

DO7

50

K=1

.2

Al=

(1.0

-SS

(K»

/2.0

A4

=(1

.0+

SS

(K')

/2.0

RF

=(R

(Il*

A1+

R(J

1*A

41*R

OW

HB

(I)=

HB

(I)+

RF

*A

1*

ZIJ

/21

50

HB

(J)=

HB

(J)+

RF

*A

4*

ZIJ

/2DO

75

0M

=1.

Nt1

0T

I=0

(M,3

*I-

21

*C

SN

+D

(M,3

*1

-11

*S

SN

TJ=

D(M

,3*

J-2

1*

CS

N+

D(M

,3*

J-1

)*S

SN

AF

=T

I*A

1+T

J*A

41

55

HL

(I,M

'=H

L(I

,M'+

RF

*A

1*

SIJ

*A

F/2

.0H

L(J

,Ml=

HL

(J,M

)+R

F*

A4

*S

IJ*

AF

/2.0

75

0C

ON

TIN

UE

C CIN

ITIA

LIZ

E13

1A

ND

131

I1

60

CDO

77

0M

=l,N

MO

[JI

(1);

,;(}

.b

d7

1b

N=

i.N

HtI

77

0B

II(M

,N

'=O

.1

65

CA

LLB

AN

SL1(

R.N

EG

F,N

F13A

ND

,HM

.HB

.1

)C

ALL

BA

NSL

1(R

,NE

OF

,N

FBA

NP,

HM

,HB

,2

)0

07

80

l=l.

NU

INT

FDO

78

0M

=l,N

MO

78

0D

(M,l

)=H

L<

l,M

)/R

OW

17

0DO

79

0t1

=1.

NMO

79

0C

ALL

BA

NS

L1(

R,N

EG

F,N

FB

AN

D,H

M,H

L(1

,M),

2)

Page 159: Dynamics Technology, Inc.

SUB

RO

UTI

NE

SOLE

XT

76

/17

6O

PT=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E4

'­ \t\ ......

175

18

0

18

5

19

0

19

5

20

0

20

5

21

0

21

5

22

0

C CR

ESET

FRE

E-S

UR

FAC

EBO

UN

DA

RYC

ON

DIT

ION

CDO

80

0I=

l,N

UF

SF

II=

IJF

SII

)IF

Ill.

GT.

NU

INT

F)GO

TO8

00

HB

(II)

=O

.DO

79

9M

=l,N

MO

79

9H

UIL

M)=

O.

80

0C

ON

TIN

UE

PRIN

T20

01C

ALL

PRIN

TA

IHB

,NE

GF.

1)

PRIN

T2

00

2.

CA

LLPR

INT

AIH

L,N

EG

F.N

MO

)N

WA

LL=O

DO8

05

J=l,

NU

INT

FIF

IIJB

CIJ

).G

T.O

)N

WA

LL=N

WA

LL+1

80

5C

ON

TIN

UE

WR

IrE

(9)

NW

ALL

DO8

10

J=l,

NU

INT

FIF

IIJ

BC

IJ).

GT.

0)

WR

ITE

(9)

IJB

CIJ

),H

BIJ

).IH

U,)

.M

),M

=1.N

MO

)DO

81

0M

=1.

NMO

BII

M)=

BII

M)+

DIM

,,)*

HB

IJ)

DO8

10

N=M

,NM

OB

IIIM

.N)=

BII

IM.N

)+D

IM.J

)*H

LI,

).N

)8

10

BII

IN,M

)=B

II(M

.N)

PRIN

T2

01

0PR

INT

20

50

.IB

I<

I),

1=1.

NM

Dl

PR

WT

20

12

PRIN

T2

05

0.

«([

HI(

LJ)

,I=

l,N

MO

),J=

1.N

MO

lDO

85

01=

1.NM

O8

50

BlI

n.

1)=

1.

+B

II(I

,I)

DO8

70

I=I,

NM

O-

DO8

70

M=l

,NU

MNP

K=3

*MT

ER

M=-

A(K

,Il

*SM

AS

S(K

)+A

IK-2

,I)

*SM

AS

SIK

-2)

87

0B

I(I)

=B

III)

+T

ER

MPR

INT

20

03

CA

LLP

RIN

TA

IBI,

NM

O,l

)PR

INT

20

04

CA

LLPR

INT

AIB

II,N

MO

,NM

O)

2001

FORI

1AT

(II1

*PR

ES.

CO

EFF.

OF

RIG

IDM

OD

E*)

20

02

FORM

AT

(11

1*

PRE

S.C

oEFF

.O

FFL

EXM

oDE

S*)

20

03

FORM

AT

11

/1*

GEN

ERA

LIZE

DFO

RC

EV

ECTO

R(E

XT

)---

A+

BI*

l2

00

4FO

RMA

T(1

11

*G

ENER

ALI

ZED

MA

SSM

ATR

IX(E

XT

)---

M+

BII

*)2

00

6FO

RI1A

T(lH

lIl*

STR

UC

TUR

AL

NO

DA

LPO

INT

SON

THE

I~ATER-TANK*.

1*

INT

ER

FA

CE

*/(1

0I5»

~ooe

FORM

ATC

I/4Q

HWA

TG.R

NPOA

6pg

INT6

ONiH

gFR

gg§V

RFAC

g!<

iQIg

»~olb

~BRHAf

1/I

I!H

81I

20

12

FORM

AT

(11

16

HB

IIj

20

50

FORM

AT

15

X,2

E1

5.6

)R

ETU

RN

END

Page 160: Dynamics Technology, Inc.

SUB

RO

UT

INE

SOL

EX

T7

6/1

76

OPT

::1S

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E5

SYM

BO

LIC

RE

FER

EN

CE

MAP

(R=

2l

ENTR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

SOL

EX

T1

22

3

VA

RIA

BL

ES

SN

TY

PER

EL

OC

AT

ION

0A

REA

LA

RR

AY

F.P

.R

EF

S1

03

34

22

*2

07

DE

FIN

ED

11

43

0A

FR

EAL

RE

FS1

55

15

6D

EFI

NE

D1

54

14

23

A1

REA

LR

EFS

14

81

49

15

41

55

DE

FIN

ED

14

61

40

6A

2R

EAL

RE

FS9

91

06

DE

FIN

ED

97

14

07

A3

REA

LR

EF

S9

91

07

DE

FIN

ED

98

14

24

A4

REA

LR

EF

S1

48

15

01

54

15

6D

EFI

NE

D1

47

14

00

8R

EAL

RE

FS

95

10

5D

EFI

NE

D5

40

81R

EA

LA

RR

AY

F.P

.R

EF

S1

01

94

19

92

08

21

0D

EFI

NE

D1

16

21

94

20

80

BI

IR

EAL

AR

RA

YF

.P

.R

EF

S1

01

96

19

72

01

20

32

12

DE

FIN

ED

11

64

19

61

97

20

31

40

5BR

REA

LR

EF

S1

03

11

2D

EF

INE

D9

51

42

1C

SNR

EAL

RE

FS

15

21

53

DE

FIN

ED

14

30

DR

EAL

AR

RA

YF

.P

.R

EF

S1

02

*4

22

*1

52

2*

15

31

94

19

6D

EFI

NE

D1

33

42

16

91

41

3E

IGR

EAL

RE

FS

10

41

05

11

31

14

DE

FIN

ED

10

31

12

15

05

FKR

EAL

AR

RA

YR

EF

S9

10

42

*1

05

11

33

*1

14

14

45

HR

EAL

AR

RA

YR

EF

S9

66

69

0HB

REA

LA

RR

AY

F,P

,R

EF

S1

01

49

15

01

65

16

61

83

19

21

94

DE

FIN

ED

11

34

14

91

50

17

8.....

.1

46

5H

HR

EAL

AR

RA

YR

EF

S9

69

70

77

DE

FIN

ED

63

69

VI

70

N1

41

4HK

REA

LR

EFS

10

61

07

DE

FIN

ED

10

50

HL

REA

LA

RR

AY

F.

P,

RE

FS

10

15

51

56

16

91

71

18

51

92

19

6D

EFI

NE

D1

13

61

55

15

61

80

0HM

REA

LA

RR

AY

F.P

.R

EF

S1

07

71

06

10

71

65

16

617

1D

EF

INE

D1

517

71

06

10

71

14

12

21

27

12

92

HS

REA

LFC

ON

STR

EF

S1

35

41

14

13

63

IIN

TE

GE

RR

EF

S1

61

73

23

341

42

515

75

85

96

36

83

*6

92

*7

07

37

78

18

21

14

121

13

41

36

13

91

40

14

11

48

2*

14

92

*1

52

2*

15

52

*1

69

17

61

99

20

14

*2

08

2*

20

72

*2

08

DE

FIN

ED

16

17

31

40

49

56

616

77

28

01

10

12

01

33

13

81

67

17

51

99

20

12

02

20

41

36

5II

INT

EG

ER

RE

FS

30

33

58

59

66

75

2*

77

85

86

87

12

21

23

,1

24

12

61

29

17

71

78

18

0D

EF

INE

D2

25

76

47

381

12

11

76

0IJ

BC

INT

EG

ER

AR

RA

YF

,P

,R

EF

S1

01

62

22

51

88

2*

19

2D

EF

INE

D1

0IJ

FS

Ito./T

EGER

AR

RA

YF.

P.

RE

FS

10

17

12

11

76

DE

FIN

ED

11

41

6II

'.IN

TE

GE

RR

EF

S1

27

DE

FIN

ED

12

60

IXIN

TE

GE

RA

RR

AY

F.

P.

RE

FS

10

57

73

75

82

86

87

89

90

92

93

DE

FIN

ED

11

40

211

INT

EG

ER

RE

FS

94

95

99

10

12

*1

06

DE

FIN

ED

86

89

92

14

03

12

INT

EG

ER

RE

FS

94

99

10

22

*1

07

DE

FIN

ED

87

90

Page 161: Dynamics Technology, Inc.

SUB

RO

UTI

NE

SOLE

XT

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E6

VA

RIA

BLE

SSN

TYPE

REL

OC

ATI

ON

93

13

75

JIN

TEG

ERR

EFS

516

33

*6

92

*7

07

57

71

29

13

61

40

14

11

48

2*

15

02

*1

53

2*

15

61

88

4*

19

22

*1

94

2*

19

62

01

DE

FIN

ED

50

62

68

74

12

81

35

13

91

87

19

12

01

13

67

JJ

INTE

GER

RE

FS2

64

26

67

62

*7

7D

EFI

NE

D2

56

57

51

41

1Jl

INTE

GER

RE

FS2

*1

06

DE

FIN

ED

10

11

41

2J2

INTE

GER

RE

FS2

*1

07

DE

FIN

ED

10

21

36

4II.

INTE

GER

RE

FS2

22

32

43

24

*3

52

*3

74

19

79

81

26

12

71

46

14

74

*2

07

DE

FIN

ED

21

96

12

51

45

20

61

37

111

.1IN

TEG

ERR

EFS

33

3*

42

DE

FIN

ED

32

411

36

6KK

INTE

GER

RE

FS2

52

72

*3

7D

EFI

NE

D2

42

71

41

5KM

INTE

GER

RE

FS1

25

DE

FIN

ED

12

41

37

0M

INTE

GER

RE

FS2

*3

34

*4

21

01

10

21

03

11

11

12

2*

15

22

*1

53

2*

15

52

*1

56

16

21

64

2*

16

91

71

18

01

92

3*

19

41

95

3*

19

62

*1

97

20

6D

EFI

NE

D2

91

00

10

91

11

15

11

61

16

81

70

17

91

92

19

32

05

2M

BAND

INTE

GER

CN

TRL

RE

FS1

21

40

1N

INTE

GER

RE

FS5

77

37

58

28

68

78

99

09

29

31

64

3*

19

62

*1

97

DE

FIN

ED

55

16

31

95

1N

AN

GLE

INTE

GER

CN

TRL

RE

FS1

23

NBC

INTE

GER

CN

TRL

RE

FS1

2.....

.0

NEG

INTE

GER

F.P.

RE

FS1

0D

EFI

NE

D1

\M0

NEG

FIN

TEG

ERF.

P.R

EFS

2*

10

49

52

11

01

33

16

51

66

IN1

71

18

318

5.D

EFI

NE

D1

4N

FIN

TEG

ERC

NTR

LR

EFS

12

0N

FBA

r,lD

INTE

GER

F.P.

RE

FS5

01

24

12

81

65

16

61

71

DE

FIN

ED

10

NMO

INTE

GER

F.P.

RE

FS2

*1

02

91

35

15

11

61

16

31

68

17

01

79

18

51

92

19

31

95

19

92

*2

01

20

22

04

21

02

*2

12

DE

FIN

ED

11

41

7NN

INTE

GER

RE

FS1

38

DE

FIN

ED

13

76

NPP

IIN

TEG

ERC

NTR

LR

EFS

12

5N

PPO

INTE

GER

CN

TRL

RE

FS1

21

37

6N

UCO

FIN

TEG

ERR

EFS

79

10

0D

EFI

NE

D5

20

NU

FEL

INTE

GER

F.P.

RE

FS1

05

5D

EFI

NE

D1

0N

UFN

PIN

TEG

ERF.

P.R

EFS

52

53

DE

FIN

ED

10

NU

FSF

ItH

EG

ER

F.P.

RE

FS1

71

20

17

5D

EFI

NE

D1

13

77

NU

FIIN

TEG

ERR

EFS

10

11

02

11

0D

EFI

NE

D5

30

NU

ItH

FIN

TEG

ERF.

P.R

EFS

16

21

23

13

71

67

17

71

87

19

1D

EFI

NE

D1

0NU

MNP

INTE

GER

CN

TRL

RE

FS""

-1

22

05

14

31

NWAL

LIN

TEG

ERR

EFS

18

81

90

DE

FIN

ED

18

61

88

0P

IR

EAL

FCO

NST

RE

FS1

35

40

RR

EAL

ARR

AY

F.P.

RE

FS1

02

*3

52

*3

75

89

52

*1

40

2*

14

81

65

16

61

71

DE

FIN

ED

11

42

5R

FR

EAL

RE

FS1

49

15

01

55

15

6D

EFI

NE

D1

48

14

20

RIJ

REA

LR

EFS

14

21

44

DE

FIN

ED

14

01

R0l

4R

EAL

FCO

NST

RE

FS1

31

48

16

91

43

5RR

REA

LA

RRA

YR

EFS

96

6D

EFI

NE

D5

81

37

4R

SR

EAL

RE

FS4

2D

EFI

NE

D3

91

37

2S

REA

LR

EFS

36

39

DE

FIN

ED

35

36

14

04

SIJ

REA

LR

EFS

10

51

43

14

41

55

15

6

Page 162: Dynamics Technology, Inc.

SUB

RO

UT

INE

SOL

EX

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16.

39

.3

9PA

GE

7

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

ND

EFI

NE

D9

41

42

0SM

ASS

REA

LA

RRA

YF

.P.

RE

FS1

02

*2

07

DE

FIN

ED

11

43

3S

5R

EAL

ARR

AY

RE

FS9

2*

66

97

98

14

61

47

DE

FIN

ED

14

14

22

SSN

REA

LR

EFS

15

21

53

DE

FIN

ED

14

41

37

3S

lR

EAL

RE

FS3

83

9D

EFI

NE

D3

73

81

43

2TE

Rt1

REA

LR

EFS

20

8D

EFI

NE

D2

07

14

26

TI

REA

LR

EFS

15

4D

EFI

NE

D1

52

14

27

TJ

REA

LR

EFS

15

4D

EFI

NE

D1

53

7TR

AC

ER

EAL

CN

TRL

RE

FS1

20

WR

EAL

ARR

AY

F.P

.R

EFS

10

DE

FIN

ED

10

ZR

EAL

ARR

AY

F.P.

RE

FS1

02

*3

52

*3

75

92

*9

42

*9

92

*1

41

DE

FIN

ED

11

41

0Z

IJR

EAL

RE

FS1

05

14

21

43

14

91

50

DE

FIN

ED

99

141

1441

ZZR

EAL

ARR

AY

RE

FS9

66

DE

FIN

ED

59

FIL

EN

AM

ESM

OD

EO

UTP

UT

FMT

WR

ITE

S1

61

71

82

18

41

98

19

92

00

20

12

09

21

1T

APE

9U

NFM

TW

RIT

ES

19

01

92

EX

TE

RN

AL

ST

YPE

AR

G5

RE

FER

EN

CE

SB

AN

SLl

61

65

16

617

1I3

ESN

KS

31

04

11

3C

OS

REA

L1

LIB

RA

RY

10

5FO

Rt1

H5

66

"-PR

INT

A3

18

31

85

21

02

12

~SO

RT

REA

L1

LIB

RA

RY

36

38

14

2'-f

:;.IN

LIN

EFU

NC

TIO

NS

TY

PEA

RG

SD

EFL

INE

RE

FER

EN

CE

SA

BS

REA

L1

INT

RIN

94

MIN

OIN

TE

GE

R0

INT

RIN

12

4

STA

TEM

ENT

LA

BE

LS

DEF

LIN

ER

EFE

RE

NC

ES

36

912

52

84

29

22

92

32

60

93

33

31

65

94

35

30

09

54

34

01

30

96

44

29

34

09

74

521

01

00

514

95

00

15

05

95

60

20

06

361

62

02

50

70

67

68

03

00

716

46

52

63

32

07

87

27

47

60

35

08

38

03

03

37

08

58

23

14

37

18

62

*8

53

22

37

28

98

53

30

37

39

28

53

35

37

59

48

891

03

80

10

89

61

00

04

00

11

51

10

43

46

00

11

65

57

98

4

Page 163: Dynamics Technology, Inc.

SUB

RO

UT

INE

SOL

EX

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.3

9.

39

PAG

E8

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

63

01

27

12

54

63

64

01

28

12

30

65

01

29

12

01

28

07

00

13

61

33

13

50

75

01

57

13

81

45

151

07

70

16

416

11

63

07

80

16

91

67

16

80

79

017

11

70

07

99

18

01

79

72

58

00

18

11

75

17

70

80

51

89

18

70

81

01

97

19

11

93

19

50

85

02

03

20

20

87

02

08

20

42

05

12

75

20

01

FMT

21

31

82

13

02

20

02

FMT

21

41

84

13

07

20

03

FMT

21

52

09

13

15

20

04

FMT

21

62

11

13

23

20

06

FMT

21

71

61

33

42

00

8F

l'lT

21

91

71

34

32

01

0FM

T2

20

19

81

34

62

01

2FM

T2

21

20

01

35

12

05

0FM

T2

22

19

92

01

LO

OPS

LAB

ELIN

DEX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

319

7K

214

51

04

BEX

TR

EFS

NO

TIN

NE

R.....

..4

39

6M

29

44

70

BEX

TR

EFS

NO

TIN

NE

R~ \r

.6

09

3I

313

33B

INST

AC

K1

21

95

I4

04

36B

INST

AC

K1

36

10

0I

49

511

2B

NO

TIN

NE

R1

43

10

0J

50

512B

INST

AC

K1

57

60

0N

55

11

62

60

BEX

TR

EFS

NO

TIN

NE

R1

65

15

0I

56

59

5BIN

STA

CK

17

42

00

I61

63

12

BN

OT

INN

ER

20

02

00

J6

26

32B

INST

AC

K2

07

30

0I

I6

47

13

2B

EXT

RE

FSN

OT

INN

ER

21

03

00

JJ

65

712

7B

EXT

RE

FS

NO

TIN

NE

R2

16

25

0I

67

70

16

BN

OT

INN

ER

22

52

50

J6

87

04B

INST

AC

K2

42

32

0I

72

78

26

BN

OT

INN

ER

25

53

20

J7

47

8lO

BIN

STA

CK

27

33

50

I8

08

3lO

BIN

STA

CK

EX

ITS

34

43

80

K9

61

08

47

BEX

TR

EFS

NO

TIN

NE

R3

55

38

0M

10

01

08

33

BEX

TR

EFS

41

54

00

I1

10

11

51

7B

EXT

RE

FS4

40

65

0I

12

01

29

35

BN

OT

INN

ER4

57

63

0K

12

51

27

3BIN

STA

CK

47

0l:.

50J

12B

12

92

8IN

STA

CK

47

67

00

I1

33

13

61

4B

NO

TIN

NE:

R5

05

70

0J

13

51

36

2BIN

STA

CK

51

57

50

I1

38

15

710

2BEX

TR

EFS

NO

TIN

NE

R53

17

50

K1

45

15

76

3B

NO

TIN

NE

R5

67

75

0M

151

15

72

2B

OPT

62

07

70

M16

11

64

14

BN

OT

INN

ER

62

77

70

N1

63

16

42B

INST

AC

K6

55

78

0I

16

71

69

16

BN

OT

INN

ER

66

57

80

t11

68

16

93

BIN

STA

CK

Page 164: Dynamics Technology, Inc.

... ..."

(1'.,

SUB

RO

UT

INE

SOL

EX

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LEN

GTH

PR

OP

ER

TIE

S6

74

79

0M

17

017

11

43

EXT

RE

FS7

11

80

0I

17

518

11

73

NO

TIN

NE

R7

22

79

9M

17

91

80

23

INST

AC

K7

52

80

5J

18

71

89

43

INST

AC

K7

61

81

0J

191

19

75

73

EXT

RE

FSN

OT

INN

ER

77

2M

19

21

92

11B

EXT

RE

FS1

00

58

10

M1

93

19

730

BN

OT

INN

ER

10

25

81

0I.

19

51

97

53IN

STA

CK

10

66

85

0I

20

22

03

33

INST

AC

K1

07

38

70

I2

04

20

822

BN

OT

INN

ER

11

03

87

01-1

20

52

08

73

INST

AC

K

C0I

1MO

N3L

OC

KS

LEN

GTH

CN

TRL

8FC

ON

ST3

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

17

36

B9

90

SCM

LA

BE

LE

DCO

MM

ON

LEN

GTH

13

311

52

00

0B

SCM

USE

D

03

/16

/81

16

.39

.39

PAG

E9

Page 165: Dynamics Technology, Inc.

SUB

RO

UT

INE

BE

SNK

S7

6'1

76

OPT

=1

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.

39

.3

9PA

GE

5

SUB

RO

UT

INE

BE

SN

KS

CX

,KM

AX

,FK

)C C

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CM

OD

IFIE

DB

ES

SE

LFU

NC

TIO

NS

OF

THE

SEC

ON

DK

IND

(K)

C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*C

DIM

EN

SIO

NF

I(5

0),

FK

(50

)IF

(X-2

.)

2,3

,32

T=.

5*X

10

T=

T*T

FK

(1)=

(C(C

L0

00

00

74

0*

T+

.00

01

07

50

)*T

+.0

02

62

69

8)*

T+

.0

34

88

59

0)*

T+

1.

23

06

97

56

)*T

+.

42

27

84

20

)*T

-.5

77

21

56

6F

K(2

)=C

C-.

00

00

46

86

*T

-.0

01

10

40

4)*

T-.

01

91

94

02

)*T

-.1

81

56

89

7)*

T-

1.

67

27

85

79

)*T

+.

15

44

31

44

)*T

+l.

15

CA

LL

BE

SN

ISC

X,2

0,F

I)T

2=.

5*A

LO

G(T

>F

K(1

)=F

K(I

)-T

2*

FI(

I)F

K(2

)=F

KC

2)/

X+

T2

*F

IC2

)T

=2.

IX2

0G

OTO

53

T=

2.IX

FK

(1)=

«C

(C.0

00

53

20

8*

T-.

00

25

15

40

)*T

+.

00

58

78

72

)*T

-.O

l06

24

46

)*T

+1

.0

21

89

56

8)*

T-.

07

83

23

58

)*T

+l.

25

33

14

14

FK

(2)=

««

C-.

00

06

82

45

*T

+.

00

32

56

14

)*T

-.0

07

80

35

3)*

T+

.0

15

04

26

8)*

T-

25

1.

03

65

56

20

)*T

+.

23

49

86

19

)*T

+l.

25

33

14

14

Tl=

EX

PC

-X)/

SQ

RT

(X)

"FK

C1

)=FK

C1

)*T

1~

FK

(2)=

FK

(2)*

T1

"J

5D

O6

N=

3.K

NA

X3

0D

K=

N-2

6F

K(N

)=T

*D

K*

FK

(N-l

)+F

K(N

-2)

RE

TU

RN

END

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

EN

TR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

BE

St,K

S1

32

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N1

64

DK

REA

LR

EF

S3

1D

EF

INE

D3

01

65

FI

RE

AL

AR

RA

YR

EF

S7

15

17

18

0FK

RE

AL

AR

RA

YF

.P

.R

EF

S7

17

18

27

28

2*

31

DE

FIN

ED

111

13

17

18

22

24

27

28

31

0K

MA

XIN

TE

GE

RF

.P

.R

EF

S2

9D

EF

INE

D1

16

3N

INT

EG

ER

RE

FS

30

3*

31

DE

FIN

ED

29

16

0T

RE

AL

RE

FS

2*

10

6*

11

6*

13

--1

66

*2

26

*2

43

1D

EF

INE

D9

10

19

211

62

Tl

REA

LR

EF

S2

72

8D

EF

INE

D2

61

61

T2

RE

AL

RE

FS

17

18

DE

FIN

ED

16

0X

REA

LF

.P

.R

EF

S8

91

51

81

921

2*

26

DE

FIN

ED

1

Page 166: Dynamics Technology, Inc.

SUB

RO

UT

INE

BE

SNK

S7

6/1

76

OPT

=1S

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

EX

TE

RN

AL

SA

LOG

BE

SN

ISEX

PSO

RT

TY

PER

EAL

REA

LR

EAL

AR

GS

RE

FER

EN

CE

S1

LIB

RA

RY

16

31

51

LIB

RA

RY

26

1L

IBR

AR

Y2

6

STA

TE

ME

NT

LA

BE

LS

o2

47

31

01

5o

6

DE

FL

INE

INA

CT

IVE

921 2

93

1

RE

FER

EN

CE

S8

2*

82

02

9

LO

OPS

LA

BE

L1

06

6IN

DEX

NFR

OM

-TO

29

31

LEN

GTH 6B

PR

OP

ER

TIE

SIN

STA

CK

"<or; 00

ST

AT

IST

ICS

PRO

GR

Af1

LEN

GTH

52

00

0B

SCM

USE

D2

47

B1

67

Page 167: Dynamics Technology, Inc.

SUB

RO

UT

INE

BE

SN

IS7

6/1

76

OPT

=1

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

~ ....r.

5 10

15

20

25

SUB

RO

UT

INE

BE

SN

IS(X

,NM

AX

,FI)

C c***

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

*C

t10D

IFIE

DB

ES

SE

LFU

NC

TIO

NS

OF

THE

FIR

ST

KIN

D(I

)c*

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

***

CD

It1E

NS

ION

FI

(50

),P

I(2

00

)SU

M=O

.I=

X,1

MA

X=

I+21

TZ

=2.

IXJM

2=JM

AX

+2

DO

4,1

=JM

2,N

MA

XP

I<J)

=O

.4

CO

NT

INU

EP

I(,1

MA

X+

l)=

I.E

-20

DO

6,1

=1

,Jt'

1AX

K=,

1MA

X+2

-')D

K=

K-l

PI(

K-l

)=D

K*

TZ

*P

I(K

)+P

I(K

+l)

6S

UM

=S

UM

+P

I(K

)SU

M=S

UM

+SU

MA

=E

XP

(X)/

(PI(

I)+

SU

M)

DO

8N

=L

NM

AX

8F

I(N

)=A

*P

I(N

)R

ET

UR

NEN

D

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

ENTR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

BE

SN

IS1

26

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N7

0A

RE

AL

RE

FS

25

DE

FIN

ED

23

67

DKR

EA

LR

EF

S2

0D

EF

INE

D1

90

FI

RE

AL

AR

RA

YF

.P

.R

EF

S7

DE

FIN

ED

12

56

1I

INT

EG

ER

RE

FS

10

DE

FIN

ED

96

5J

INT

EG

ER

RE

FS

14

18

DE

FIN

ED

13

17

62

,)t1A

XIN

TE

GE

RR

EF

S1

21

61

71

8D

EF

INE

D1

06

4JM

2IN

TE

GE

RR

EF

S1

3D

EF

INE

D1

26

6I'.

IIH

EG

ER

RE

FS

19

3*

20

21D

EF

INE

D1

871

NIN

TE

GE

RR

EF

S2

*2

5D

EF

INE

D2

40

Nr1

AX

INT

EG

ER

F.

P.

RE

FS

13

24

DE

FIN

ED

72

PI

RE

AL

AR

RA

YR

EF

S7

2*

20

21

23

25

DE

FIN

ED

14

16

20

60

SUr1

RE

AL

RE

FS

21

2*

22

23

DEFIt~ED

821

22

63

TZR

EA

LR

EF

S2

0D

EF

INE

D11

0X

RE

AL

F.

P.

RE

FS

911

23

DE

FIN

ED

1

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SEX

PR

EA

L1

LIB

RA

RY

23

Page 168: Dynamics Technology, Inc.

"'­~ ~

SUB

RO

UT

INE

BE

SN

IS7

6/1

76

OP

T=

lS

TA

TIC

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

41

51

30

62

11

70

82

52

4

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LE

NG

TH

PR

OP

ER

TIE

S1

64

J1

31

521

3IN

STA

CK

30

6J

17

21

1013

INST

AC

K5

28

N2

42

531

3IN

STA

CK

ST

AT

IST

ICS

PRO

GRA

T1LE

NG

TH40

213

25

852

0001

3SC

MU

SED

FTN

4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

2

Page 169: Dynamics Technology, Inc.

SU

BR

OU

TIN

EIN

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E

5

10

SU

BR

OU

TIN

EIN

T(R

,Z,

ICO

DE

.IX

,OIL

,DU

MM

Y1,

INT

E,R

OIL

,1

NU

INT

IN,N

UE

LIN

,NU

NP

IN,N

UE

LO

ILl

C c***

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

*C

REA

DA

ND

PR

INT

INT

ER

IOR

FL

UID

SE

LE

ME

NT

PR

OP

ER

TIE

Sc*

****

****

****

****

****

****

****

****

****

****

****

****

****

****

****

***

CD

IME

NS

ION

R(N

UN

PIN

),Z

(NU

NP

IN),

IX(N

UE

LIN

,4l,

OIL

(NU

EL

IN)

DIM

EN

SIO

ND

UM

MY

1(N

UE

LIN

l.IN

TE

(NU

EL

IN)

DIM

EN

SIO

NIC

OD

E(N

UN

PIN

)IN

TE

GE

RD

UM

MY

1L

OG

ICA

LO

IL,

INT

E

.......

25

<7"") .......

30

40

50

35

60

4015

20

45

50

55

C C C C C C C

INP

UT

NO

DA

LP

OIN

TD

AT

A--

IFN

OD

AL

PO

INT

ISO

NST

RU

CT

UR

AL

WA

LL,

TH

EN

ICO

DE

ISN

O.

OF

CO

RR

ESP

ON

DIN

GST

RU

CT

UR

AL

NO

DE;

IFN

OD

AL

PO

INT

ISO

NB

OTH

WA

LLA

ND

INT

ER

FA

CE

,TH

ENIC

OD

EIS

-(N

O.

OF

CO

RR

ESP

ON

DIN

GST

RU

CT

UR

AL

NO

DE

l

L=O

20

REA

D1

00

2,

N,I

CO

DE

(N).

R(N

),Z

(N),

MO

D,N

LIM

,FA

CR

,FA

CZ

Ll=

L+

lIF

(N-L

l)9

0.7

0.3

03

0IF

(L.

LE

.0

)G

OTO

80

DIV

=N

-LD

R=

(R(N

)-R

(L»

/DIV

DZ

=(Z

(N)-

Z(L

»/D

IVM

=N

-lD

O4

0K

=L

1.M

RO

O=

R(K

-l)+

DR

Z(K

)=Z

(K-l

)+D

ZG

OTO

70

Ll=

N+

lIF

(FA

CR

.L

E.O

.0

)F

AC

R=

1.0

IF(F

AC

Z.

LE

.O

.0

)F

AC

Z=

I.0

PR

INT

21

00

.M

OD

,NL

IM,F

AC

R,F

AC

ZN

=N

+l

Nl=t~-MOD

N2=

Nl-

MO

DIF

(N1

.LE

.0.O

R.

N2.

LE

.0

)G

OTO

10

0R

(Nl=

R(N

l)+

FA

CR

*(R

(N1

)-R

(N2

l)Z

(N)=

Z(N

l)+

FA

CZ

*(Z

(N1

)-Z

(N2

»IC

OD

E(N

)=O

IF(N

.L

T.

NL

IM)

GO

TO6

0M

OD

=O7

0L

=N IF(M

OD

.GT

.Ol

GO

TO5

0IF

(N-N

UN

PIN

l2

0,1

20

,1

10

80

PR

INT

21

30

STO

P9

0P

RIN

T2

14

0,

NST

OP

10

0P

RIN

T2

15

0ST

OP

11

0P

RIN

T2

16

0.

N,N

UN

PIN

STO

P1

20

CO

NT

INU

E

Page 170: Dynamics Technology, Inc.

SUB

RO

UT

INE

INT 13

06

01

40

15

01

60

65

C C7

0C

18

0

27

4

75

28

0

PR

INT

10

00

PR

INT

40

0,

RO

ILP

RIN

T6

00

DO

31

0N

OD

=l,

NU

NP

IN3

10

PR

INT

70

0,

NO

D,R

(NO

D),

Z(N

OD

),IC

OD

E(N

OD

)P

RIN

T8

00

DO

32

0N

=l,

NU

EL

IN3

20

PR

ItH

90

0,

N,

(IX

(N,

I),

I=1

,4),

DIL

eN

),IN

TE

(N)

40

0FO

RM

AT

(7X

,*R

OIL

=*

,F1

2.

5,*

---

DE

NS

ITY

OF

OIL

*)

60

0FO

RM

AT

(//6

X,*

NO

DE

*,

15

X,*

R-O

RD

*,

15

X,*

Z-O

RD

*,

15

X,*

ICO

DE

*/)

70

0FOR~AT

(II0

,2F

20

.5

,1

20

)8

00

FOR

MA

T(/

/3X

,*E

LE

ME

NT

*,5

X,*

NO

DE

l*,

SX

,*N

OD

E2

*,5

X,*

NO

DE

3*

,SX

,1

*N

OD

E4

*,1

2X

,*O

IL*

,*IN

TE

RF

AC

E*

/)9

00

FOR

MA

T(S

II0

,5X

,2L

I0)

10

00

FOR

I'JA

T(l

Hl,

*F

INIT

EE

LE

ME

NT

AN

AL

YS

ISO

FTA

NK

INT

ER

IOR

:*//

)1

00

2FO

RM

AT

(2IS

,2F

I0.

0,2

I5,2

FI0

.0)

10

03

FOR

MA

T(1

6IS

)1

02

0FO

RM

AT

(16

IS)

21

00

FOR

MA

T(2

1H

GE

NE

RA

TIO

NW

ITH

MO

D=

I3,3

X,6

HM

LIM

=I4

,3X

,6H

FA

CR

=F

I0.5

,1

3X

,6H

FA

CZ

=F

I0.

S)

21

30

FOR

I1A

T(2

8H

FIR

ST

JOIN

TC

AR

DIS

MIS

SIN

G)

21

40

FOR

MA

T(3

1H

CO

OR

DIN

AT

EC

AR

DFO

RJO

INT

NO

.1

5,

16H

NO

TIN

SEG

UE

NC

E)

21

50

FOR

I1A

T(4

2H

INSU

FFIC

IEN

TIN

FOR

MA

TIO

NTO

GE

NE

RA

TE

ME

SH)

21

60

FOR

MA

T(1

4H

JOIN

TN

UM

BER

15

,21

HE

XC

EE

DS

GIV

EN

NU

NPI

N=

IS)

RET

UR

NEN

D

.......

(j\ ~

80

85

90

9S

10

0

10

5

76

/17

6O

PT

=l

ST

AT

IC

N=O

REA

D1

00

3,

M,

(IX

(M,I

),I=

1,4

)N

=N

+l

IF(M

.E

G.

N)

GO

TO1

60

DO

15

01

=1

,4

IX

( N,

I)=

IX

(N-l

,I)

+1

CO

NT

INU

EIF

(N.E

G.

NU

EL

IN)

GO

TO1

80

IF(N

.EG

.M

)G

OTO

13

0G

OTO

14

0

INIT

IAL

IZE

LO

GIC

AL

AR

RA

YS

DO

27

4N

=1

,NU

EL

INO

ILeN

)=.

FA

LS

E.

INT

E(N

)=.

FA

LS

E.

DO

28

0N

=1

,NU

EL

OIL

DIL

eN)=

.T

RU

E.

REA

D1

02

0,

(DU

MM

Yl(

I),I

=l,

NU

INT

IN)

DO

30

0I=

1,N

UIN

TIN

N=

DU

MM

Yl(

I)IN

TE

(N)=

.T

RU

E.

30

0C

ON

TIN

UE

C CP

RIN

TIN

PU

TPA

RA

ME

TE

RS

C

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

Page 171: Dynamics Technology, Inc.

SUB

RO

UT

INE

INT

76

/17

6O

PT::1

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

3

SYM

BO

LIC

RE

FER

EN

CE

MA

P<

R=

2)

ENTR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

INT

1lO

B

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N5

42

DIV

RE

AL

RE

FS

26

27

DE

FIN

ED

25

54

3D

RR

EAL

RE

FS

30

DE

FIN

ED

26

0DU

MM

Y1

INT

EG

ER

AR

RA

YF

.P

.R

EFS

911

78

DE

FIN

ED

17

65

44

DZ

REA

LR

EFS

31

DE

FIN

ED

27

53

7FA

CR

REA

LR

EFS

34

36

41D

EF

INE

D2

13

45

40

FAC

ZR

EAL

RE

FS

35

36

42

DE

FIN

ED

21

35

55

1I

ItH

EG

ER

RE

FS5

92

*6

37

67

891

DE

FIN

ED

59

62

76

77

91

0IC

OD

EIN

TE

GE

RA

RR

AY

F.

P.R

EF

S1

08

8D

EFI

NE

D1

21

43

0IN

TE

LO

GIC

AL

AR

RA

YF.

P.R

EFS

91

291

DE

FIN

ED

17

37

90

IXIt

HE

GE

RA

RR

AY

F.P.

RE

FS

86

39

1D

EF

INE

D1

59

63

54

6K

INT

EG

ER

RE

FS

2*

30

2*

31

DE

FIN

ED

29

53

3L

INT

EG

ER

RE

FS2

22

42

52

62

7D

EF

INE

D2

04

65

41

L1

INT

EG

ER

RE

FS2

32

9D

EFI

NE

D2

23

35

45

MIN

TE

GE

RR

EFS

29

59

616

6D

EF

INE

D2

85

95

35

MOD

INT

EG

ER

RE

FS3

63

83

94

7D

EF

INE

D21

45

53

4N

INT

EG

ER

RE

FS3

*2

12

32

52

62

72

83

33

73

841

42

43

44

46

48

-51

55

60

61

2*

63

65

66

72

0-..,

73

75

79

4*

91

DE

FIN

ED

21

37

58

\..;

60

717

47

89

05

36

NU

MIN

TE

GE

RR

EF

S3

6·A

4D

EFI

NE

D2

15

52

NO

DIt

'HE

GE

RR

EFS

4*

88

DE

FIN

ED

87

0N

UE

LIN

INT

EG

ER

F.

P.

RE

FS

2*

82

*9

65

719

0D

EF

INE

D1

0N

UE

LO

ILIN

TE

GE

RF

.P

.R

EF

S7

4D

EF

INE

D1

0N

UIN

TIN

INT

EG

ER

F.

P.

RE

FS7

67

7D

EFI

NE

D1

0N

UN

PIN

INT

EG

ER

F.

P.R

EF

S2

*8

10

48

55

87

DE

FIN

ED

15

47

Nl

INT

EG

ER

RE

FS

39

40

2*

41

2*

42

DE

FIN

ED

38

55

0N

2IN

TE

GE

RR

EF

S4

041

42

DE

FIN

ED

39

0O

ILL

OG

ICA

LA

RR

AY

F.

P.

RE

FS8

12

91

DE

FIN

ED

17

27

50

RR

EAL

AR

RA

YF

.P.

RE

FS

82

*2

63

03

*4

18

8D

EF

INE

D1

213

041

0R

OIL

RE

AL

F.

P.

RE

FS8

5D

EF

INE

D1

0Z

RE

AL

AR

RA

YF

.P

.R

EFS

82

*2

73

13

*4

28

8D

EFI

NE

D1

21

31

42

FIL

EN

AM

ESM

OD

EIN

PUT

FMT

RE

AD

S2

15

9f6

OU

TPU

TFM

TW

RIT

ES

36

49

515

35

58

48

58

68

88

99

1

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S11

20

21

48

03

0IN

AC

TIV

E2

42

30

40

31

29

55

50

33

47

67

60

37

44

Page 172: Dynamics Technology, Inc.

SUB

RO

UT

INE

INT

76

/17

6O

PT

=l

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

4

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S1

12

70

46

23

32

12

08

04

92

41

23

90

512

31

26

10

05

34

013

11

10

55

48

13

41

20

57

48

13

51

30

59

66

15

21

40

60

67

01

50

63

62

16

61

60

64

611

72

18

071

65

02

74

73

71

02

80

75

74

03

00

80

77

03

10

88

87

03

20

91

90

41

44

00

FMT

92

85

42

26

00

FMT

93

86

43

17

00

FMT

94

88

4·34

80

0FM

T9

58

94

46

90

0FM

T9

791

45

11

00

0Ft

1T9

88

44

60

10

02

FMT

99

21

...4

64

10

03

FMT

10

05

9~

46

61

02

0n

lT1

01

76

-t:.

47

02

10

0FM

T1

02

36

50

12

13

0FM

T1

04

49

50

62

14

0FM

T1

05

515

15

21

50

FI1T

10

65

35

23

21

60

FMT

10

75

5

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LEN

GTH

PR

OP

ER

TIE

S4

74

0K

29

31

413

INST

AC

K1

40

I5

95

911

13EX

TR

EFS

16

31

50

I6

26

321

3IN

STA

CK

17

72

74

N7

17

321

3IN

STA

CK

20

62

80

N7

47

521

3IN

STA

CK

22

33

00

I7

78

031

3IN

STA

CK

23

53

10

NO

D8

78

813

13EX

TR

EF

S2

52

32

0N

90

91

2413

EXT

RE

FS

NO

TIN

NE

R2

55

I9

19

111

13EX

TR

EF

S

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

5651

33

73

5200

013

SCM

USE

D

Page 173: Dynamics Technology, Inc.

SUB

RO

UTI

NE

BNDW

TH7

6/1

76

OP

T=

lST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

1

1010

C C

15C C

20

20

.......~ \7

-,2

5

30

30

5

35 40 45 50

C C C

SUB

RO

UTI

NE

BN

DW

TH

IR.Z

.IX

.OIL

.IN

TE,N

UM

EL.N

UM

NO

D.N

BA

ND

)D

IME

NSI

ON

R(N

UM

NO

D).Z

(NU

MN

OD

),IX

(NU

ME

L.4

).O

IL(N

UM

EL

),IN

TE

(NU

ME

L)

LOG

ICA

LO

IL,

INT

EI1

AX

DIF

=0DO

10N

=l.N

UM

EL

DO10

1=

1.3

JI'lI

N=

I+1

DO10

J=JM

IN.4

IDIF

=IA

BS

IIX

IN,

l)-I

XIN

,J»

IF(I

DIF

.G

T.M

AX

DIF

)M

AX

DIF

=ID

IFC

ON

TIN

UE

CHEC

KFO

RIN

CR

EASE

INBA

ND

WID

THD

UE

TOIN

TER

ELEM

ENT

CO

MB

INA

TIO

NS

OF

NO

DE

POIN

TS

NEA

RIN

TER

FAC

E

1-11

=0N

2=0

N1=

N1+

1IF

(N1.

GT.

NU

ME

l)GO

TO4

0IF

(.N

OT

.IN

TE

IN1»

GOTO

20

IF(O

IlIN

11=

1IF

(OIL

IN1»

J1=

2IF

(OIL

IN1»

12=

4IF

<.N

OT.

OIL

<N

ll)

11=

4IF

(.N

OT.

OIl

IN1

»Jl=

3IF

I.N

OT.

0IL

<N

1»12

=1

R1 =

RI

IXIN

1,

11)

)Z

1=Z

IIX

IN1,

11»

N2=

N2+

1IF

IN2.

GT

.NU

ME

l)PR

INT

10

0IF

(N2.

GT

.NU

ME

l)ST

OP

R2=

RI

IXIN

2,12

»Z

2=

Z(I

XIN

2.I

IF(R

l.N

E.R

2.O

R.Z

l.N

E.Z

2)GO

TO3

0

"11A

TCH

ING

"EL

EMEN

TA

LON

GIN

TE

RFA

CE

FOU

ND

IDIF

1=IA

BS

(IX

(N1.

11)-

IX(N

2.

1»ID

IF2=

IAB

SI

IXIN

1.1

1)-

IX

(N2.

2)

)ID

IF3=

IAB

SI

IXIN

1,11

)-IX

(N2

.3»

IDIF

4=IA

BSII

X(N

1.11

)-IX

IN2.

4)

)ID

IF5=

IAB

SI

IXIN

1,J1

)-IX

IN2

.1»

IDIF

6=

IAB

SC

IX(N

l,Jl

)-IX

(N2

.2»

IDIF

7=

IAD

S(I

XIN

1.J

l)-I

XIN

2,3

»ID

IF8

=IA

BS

IIX

INl,

Jl)-

IXIN

2.4

»ID

IF=

MA

XO

(ID

IF1,

IDIF

2.

IDIF

3.

IDIF

4.

IDIF

5.

IDIF

6.

IDIF

?ID

IFS

)IF

(ID

IF.

GT.

MA

XD

IF)

MA

XD

IF=I

DIF

N2=

0GO

TO2

04

0C

ON

TIN

UE

NB

AN

D=2

*MA

XD

IF+l

10

0FO

RMA

T1*

ELEM

ENT

NO

TFO

UN

D*)

RETU

RNEN

D

Page 174: Dynamics Technology, Inc.

SUB

RO

UT

INE

BND

WTH

76

/17

6O

PT

=l

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

116

.3

9.

39

PAG

E2

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

ENTR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

BND

WTH

15

3

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N2

27

IIN

TE

GE

RR

EF

S7

9D

EF

INE

D6

23

2IO

IFIN

TE

GE

RR

EF

S2

*1

02

*4

7D

EFI

NE

D9

46

24

4IO

IFl

INT

EG

ER

RE

FS4

6D

EFI

NE

D3

82

45

IOIF

2IN

TE

GE

RR

EF

S4

6D

EF

INE

D3

92

46

IOIF

3IN

TE

GE

RR

EF

S4

6D

EFI

NE

D4

02

47

IOIF

4IN

TE

GE

RR

EF

S4

6D

EFI

NE

D41

25

0IO

IF5

INT

EG

ER

RE

FS

46

DE

FIN

ED

42

25

1ID

IF6

INT

EG

ER

RE

FS

46

DE

FIN

ED

43

25

2IO

IF7

INT

EG

ER

RE

FS

46

DE

FIN

ED

44

25

3ID

IF8

INT

EG

ER

RE

FS

46

DE

FIN

ED

45

0IN

TE

LO

GIC

AL

AR

RA

YF.

P.

RE

FS

23

20

DE

FIN

ED

0IX

I~HEGER

AR

RA

YF.

P.

RE

FS

22

*9

27

28

32

33

2*

38

2*

39

2*

40

2*

41

2*

42

2*

43

2*

44

2*

45

DE

FIN

ED

12

35

I1

INT

EG

ER

RE

FS

27

28

38

39

40

41D

IOFI

NED

21

.,2

42

37

12

INT

EG

ER

RE

FS

32

33

DE

FIN

ED

23

26

.......

23

1J

INT

EG

ER

RE

FS

9D

EF

INE

D8

q..

23

0Jt

1IN

INT

EG

ER

RE

FS

8D

EF

INE

D7

'"2

36

Jl

INT

EG

ER

RE

FS

42

43

44

45

DE

FIN

ED

22

25

22

5M

AX

DIF

INT

EG

ER

RE

FS

10

47

51D

EFI

NE

D4

10

47

22

6N

INT

EG

ER

RE

FS

2*

9D

EF

INE

D5

0N

BAN

OIN

TE

GE

RF

.P

.D

EF

INE

D1

510

NU

MEL

INT

EG

ER

F.P

.R

EF

S3

*2

51

93

03

1D

EF

INE

D1

0N

UM

NO

DIN

TE

GE

RF.

P.

RE

FS

2*

2D

EF

INE

D1

23

3N

lIN

TE

GE

RR

EF

S1

81

92

02

12

22

32

42

52

62

72

83

83

94

0-4

14

24

34

44

5D

EFI

NE

D1

61

82

34

N2

I~HEGER

RE

FS

29

30

31

32

33

38

39

40

414

24

34

45

DE

FIN

ED

17

29

48

0O

ILL

OG

ICA

LA

RR

AY

F.

P.

RE

FS

2...

..3

21

22

23

24

25

26

DE

FIN

ED

10

RR

EAL

AR

RA

YF

.P.

RE

FS

22

73

2D

EFI

NE

D2

40

Rl

REA

LR

EF

S3

4D

EFI

NE

D2

72

42

R2

REA

LR

EF

S3

4D

EFI

NE

D3

20

ZR

EAL

AR

RA

YF.

P.

RE

FS

22

83

3D

EFI

NE

D1

24

1Z

lR

EA

LR

EF

S3

4D

EFI

NE

D2

82

43

Z2

RE

AL

RE

FS

34

DE

FIN

ED

33

FIL

EN

AM

ESt1

0DE

OU

TPU

TFM

TW

RIT

ES

30

INL

INE

.FU

NC

TIO

NS

TY

PEA

RG

SD

EF

LIN

ER

EFE

RE

NC

ES

lAB

SIN

TE

GE

R1

INT

RIN

93

83

94

041

42

43

44

45

MA

XO

INT

EG

ER

0IN

TR

IN4

6

Page 175: Dynamics Technology, Inc.

....... "" ""-.I

SUB

RO

UT

INE

BND

WTH

76

/17

6O

PT

=l

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.

39

.3

9PA

GE

3

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

10

115

68

42

20

18

20

49

10

63

02

93

42

07

40

50

19

22

01

00

FMT

52

30

LO

OPS

LA

BE

LIN

DEX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

12

10

N5

1127

BN

OT

INN

ER

13

10

I6

1123

BN

OT

INN

ER

25

10

..J8

116B

.INST

AC

K

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

26

0B

17

65

20

00

BSC

MU

SED

Page 176: Dynamics Technology, Inc.

SUB

RO

UT

INE

SOL

INT

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E

20

..... ...., ~2

5

52

30

60

65

35 40

68

70

5 10

15 45 50

55

SUB

RO

UTI

NE

SO

LIN

T(A

,BI,

BII

.R,Z

,IC

OD

E.IX

.D,H

M,H

B,H

L,

1R

01,N

UM

EL

,NB

AN

D,N

P,N

EG

,NM

O,N

UE

LO

IL)

CD

IME

NSI

ON

A(N

EG

,1

).B

I(N

MO

),B

II

(NM

O,N

MO

),IX

(NU

MEL

,4

).R

(NP

),Z

(NP

),1

ICO

DE

(NP

),H

M(N

P,N

BA

ND

),H

B(N

P).

HL

(NP

.NM

O),

D(N

MO

,l)

DIM

EN

SIO

NR

R(4

).Z

Z(4

),H

H(4

,4

),H

(4,

4),

58

(2).

IJ(3

)CO

MM

ONIF

CO

NS

TI

PI,

RO

W,H

SD

ATA

SS1

-.5

77

35

02

69

18

96

3,

.5

77

35

02

69

18

96

31

DO3

01=

1.N

PHB

(I)

=0

.DO

22

M=l

,NM

OD

(M,

1)=

0.

22

HL

(1.

M)=

O.

DO3

0J=

1.

NBA

ND

30

HM

(1

.J)

=O

.DO

10

0N

=l.N

UM

EL

IJ(l

)=O

IJ(2

)=0

IJ(3

)=0

11-\=

0RO

=RO

WIF

(N.L

E.N

UE

LO

IL)

RO

=R01

*RO

WDO

60

1=

1,4

II=

IX(N

,I)

IF(I

CO

DE

(II)

.EG

.0

)GO

TO52

11-\=

11-\+

1IJ

(II-

\)=

IIR

R(I

)=R

(II)

ZZ

(I)=

Z(I

IlDO

65

1=

1,4

DO6

5J=

1,4

HH

(1

.J)

=O

.DO

70

11

=1

,2DO

70

JJ=

1,2

CA

LLF

OR

MH

(8S

(II)

.SS

(JJ)

,RR

.ZZ

,H)

DO6

81=

1.4

DO6

8J=

1.

4H

H(I

,J)=

HH

(I,J

)+H

(I,J

)H

H(J

,I

)=H

H(

1.J)

CO

NTI

NU

EDO

80

1=1.

4I

I=IX

(N,

I)DO

80

J=1

,4JJ

=IX

(N,J

)-II

+l

IF(J

J.L

T.

1)

GOTO

80

HM

(II,

JJ)=

HM

CII

.JJ)

+H

H(I

,J)/

RO

80

CO

NTI

NU

EIF

(IK

.LT

.2)

GOTO

10

0N

N=

II-\

-lDO

85

I=l,

NN

II=

IJ(I

)JJ

=IJ

CI+

l)Il

=IA

BS

(IC

OD

E(I

I»J1

=IA

BS

CIC

OD

E(J

J»R

IJ=

-R(I

I)+

RC

JJ)

ZIJ

=Z

(II)

-Z(J

J)8I

J=S

GR

TC

RIJ

**

2+

ZIJ

**

2)*

SIG

N(

1.

,Z

IJ)

Page 177: Dynamics Technology, Inc.

SUB

RO

UT

INE

SOL

INT

76

/17

6O

PT=1

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

­<l'-.. --('

\

60

65

70

75

80 85

90

95

10

0

10

5

CS

N=

-ZIJ

/SIJ

S5

N=

-RIJ

/SIJ

C51~=A13S(C

SN)

IFIZ

IJ.

GT

.O.)

SS

N=

-S5N

ZIJ

=A

135(

ZIJ

)DO

85

K=1

>2

Al=

l1.

-65

IK)

)/2

.A

4=I1

.+

6SIK

))1

2.

RF

=R

lIl)

*A

l+R

CJJ

)*A

4R

RR

=R

F*S

IJ*C

SN

/2.

HB

III)

=H

13

(II)

+R

RR

*A

lH

l3(J

J)=

H13

(JJ)

+R

RR

*A4

DO8

511

=1,

NMO

TI=

AI3

*II

-2,M

)*C

SN

+A

(3*

Il-l

,M)*

S6

NT

J=A

(3*

JI-2

,M)*

CS

N+

A(3

*Jl

-l,M

)*S

SN

AF

=IT

I*A

l+T

J*A

4)*

SIJ

/2.

*RF

HL

III,

M)=

HL

III,

M)+

AF

*A

lH

LIJ

J,M

)=H

LIJ

J,M

)+A

F*

A4

DIM

,I

I)=

DIM

,I

I)+

AF

*Al

DIM

,JJ)

=D

IM,J

J)+

AF

*A

48

5C

ON

TIN

UE

10

0C

ON

TIN

UE

CA

LLB

AN

SL1(

R,N

P,N

BA

ND

,HM

.HB

.1

)C

ALL

13A

NSL

IIR

,N

P.N

BA

ND

,HM

,HB

.2

)DO

11

011

=1.

NMO

11

0C

ALL

BA

NS

LII

R,N

P,N

BA

ND

,HM

,HL

(1.M

),2)

NW

ALL

=ODO

13

0I=

I.N

P1

30

IF(I

CO

DE

(I).

NE

.O)

NW

ALL

=NW

ALL

+lW

RIT

E(9

)N

WA

LLPR

INT

10

20

DO2

00

I=l,

NP

IF(I

CO

DE

(I).

EG

.O)

GOTO

20

0W

RIT

E(9

)IA

BS

(IC

OD

E(I

»,H

B(I

),(H

UI.

M),

M=

I,N

MO

)P

RIN

T1

02

5,

LH

B(I

),(H

UI,

M),

M=

1,N

MO

)DO

15

0M

=1,

NMO

BI

<l1)

=BI

(M)+

D(M

,I

)*H

B(

I)DO

15

0N

=M,N

MO

81

I(M

.N

)=B

II(M

,N

)+D

CM

,I

)*H

L<

I,N

)1

50

BII

(N,M

)=B

II(M

,N)

20

0C

ON

TIN

UE

PRIN

T1

03

0C

ALL

PR

INT

A(B

I,NM

O,1

)PR

INT

1031

CA

LLP

RIN

TA

(BII

,NM

O,N

MO

)1

02

0FO

RMA

T(I

HI/

6X

,4H

NO

DE.

5X.*

PR

ES

.C

OE

FF.

UN

DER

RIG

IDM

OD

E*,

6X,

1*P

RE

S.C

OE

FF.

UN

DER

FLEX

MO

DE

S*/)

10

25

FORM

AT

(5X

.14

,15

X,

EtO

.3

,15

X,

5E15

.3

,1

(49

X,

5E15

.3»

10

30

FORM

AT

(111

5X.*

GE

NE

RA

LIZ

ED

FOR

CE

VEC

TOR

(EX

T+

INT

)---

A+

BI*

)10

31FO

RMA

T(1

115X

.*G

EN

ER

AL

IZE

DM

ASS

MA

TRIX

(EX

T+

INT

)---

M+

BII

*)R

ETU

RN

END

Page 178: Dynamics Technology, Inc.

SUB

RO

UT

INE

SO

LIN

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16.

39

.3

9PA

GE

3

SYM

BO

LIC

RE

FER

EN

CE

MAP

(R=

2)

ENTR

YP

OIN

TS

DEF

LIN

ER

EFE

RE

NC

ES

3S

OL

INT

11

08

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AR

EAL

ARR

AY

F.

P.R

EFS

42

*7

12

*7

2D

EFI

NE

D1

70

4A

FR

EAL

RE

FS7

47

57

67

7D

EFI

NE

D7

36

76

Al

REA

LR

EFS

66

68

73

74

76

DE

FIN

ED

64

67

7A

4R

EAL

RE

FS6

66

97

37

57

7D

EFI

NE

D6

50

DI

REA

LA

RRA

YF

.P

.R

EFS

49

41

00

DE

FIN

ED

19

40

BII

REA

LA

RRA

YF.

P.R

EFS

49

69

71

02

DE

FIN

ED

19

69

76

73

CSN

REA

LR

EFS

60

67

717

2D

EFI

NE

D5

86

00

DR

EAL

ARR

AY

F.

P.R

EFS

47

67

79

49

6D

EFI

NE

D1

12

76

77

73

6H

REA

LA

RRA

YR

EFS

63

53

80

HBR

EAL

ARR

AY

F.

P.R

EFS

46

86

98

08

191

92

94

DE

FIN

ED

11

06

86

97

16

HH

REA

LA

RRA

YR

EFS

63

83

94

6D

EFI

NE

D3

23

8.....

39

"-.i

0H

LR

EAL

ARR

AY

F.

P.R

EFS

47

47

58

391

92

96

~D

EFI

NE

D1

13

74

75

0Ht

1R

EAL

ARR

AY

F.

P.R

EFS

44

68

081

83

DE

FIN

ED

11

54

62

HS

REA

LFC

ON

STR

EFS

76

55

IIN

TE

GE

RR

EFS

10

12

13

15

24

28

29

32

37

3*

38

2*

39

42

46

515

28

69

03

*9

13

*9

22

*9

42

*9

6D

EFI

NE

D9

23

30

36

415

08

58

90

ICO

DE

INT

EG

ER

ARR

AY

F.

P.R

EFS

42

55

35

48

69

091

DE

FIN

ED

16

63

II

INT

EG

ER

RE

FS

25

27

28

29

35

44

2*

46

53

55

56

66

2*

68

2*

74

2*

76

DE

FIN

ED

24

33

42

517

60

IJIN

TE

GE

RA

RRA

YR

EFS

6.5

1.5

2D

EFI

NE

D1

71

81

92

76

61

IKIN

TE

GE

RR

EFS

26

27

48

49

DE

FIN

ED

20

26

0IX

INT

EG

ER

AR

RA

YF

.P.

RE

FS

42

44

24

4D

EFI

NE

D1

66

61

1IN

TE

GE

RR

EFS

2*

71

DE

FIN

ED

53

65

7J

INT

EG

ER

RE

FS1

53

23

*3

62

*3

94

44

6D

EFI

NE

D1

43

13

74

36

64

JJ

INT

EG

ER

RE

FS3

54

52

*4

65

45

55

66

62

*6

92

*7

52

*7

7D

EFI

NE

D3

44

45

26

67

Jl

INT

EG

ER

RE

FS2

*7

2D

EFI

NE

D5

46

75

KIN

TE

GE

RR

EF

S6

46

5D

EFI

NE

D6

36

56

MIt

HE

GE

RR

EFS

12

13

2*

71

2*

72

2*

74

2*

75

2*

76

2*

77

83

919

23

*9

49

53

*9

62

*9

7D

EFI

NE

D11

70

82

919

29

36

60

NIN

TE

GE

RR

EFS

22

24

42

44

3*

96

2*

97

DE

FIN

ED

16

95

0N

BAN

DIN

TE

GE

RF

.P.

RE

FS4

14

80

818

3D

EFI

NE

D1

Page 179: Dynamics Technology, Inc.

SU8R

OU

TIN

ES

OlI

NT

76

/17

6O

PT=

lST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

4

VA

RIA

BLE

SS

NTY

PER

ELO

CA

TIO

N0

NEG

INTE

GER

F.P.

RE

FS4

DE

FIN

ED

10

NMO

ItH

EG

ER

F.P.

RE

FS5

*4

11

70

82

91

92

93

95

10

02

*1

02

DEF

INED

16

65

NNIN

TEG

ERR

EFS

50

DEF

INED

49

0N

PIN

TEG

ERF.

P.R

EFS

6*

49

80

81

83

85

89

DEF

INED

10

NU

ELO

ILIN

TEG

ERF.

P.R

EFS

22

DE

FIN

ED

10

NU

t'lE

lIN

TEG

ERF.

P.R

EFS

41

6D

EFI

NE

D1

70

5N

WA

LlIN

TEG

ERR

EFS

86

87

DE

FIN

ED

84

86

'0

PI

REA

LFC

ON

STR

EFS

70

RR

EAL

ARR

AY

F.P.

RE

FS4

28

2*

55

2*

66

80

81

83

DE

FIN

ED

17

00

RF

REA

LR

EFS

67

73

DEF

INED

66

67

0R

IJR

EAL

RE

FS5

75

9D

EFI

NE

D5

56

62

RORE

AL

RE

FS4

6D

EFIN

ED2

12

21

ROW

REA

LFC

ON

STR

EFS

72

12

20

RO

IR

EAL

F.P.

RE

FS2

2D

EFIN

ED1

70

6RR

REA

LA

RRA

YR

EFS

63

5D

EFI

NE

D2

87

01

RRR

REA

LR

EFS

68

69

DE

FIN

ED

67

67

25

1J

REA

LR

EFS

58

59

67

73

DE

FIN

ED

57

75

6SS

REA

LA

RRA

YR

EFS

62

*3

56

46

5D

EFI

NE

D8

67

4S

SN

REA

LR

EFS

61

71

72

DE

FIN

ED

59

61

70

2T

IRE

AL

RE

FS7

3D

EFI

NE

D7

17

03

TJ

REA

LR

EFS

73

DEF

INED

72

'-0

ZR

EAL

ARR

AY

F.P.

RE

FS4

29

2*

56

DEF

INE;

O1

.....;

67

1Z

IJR

EAL

RE

FS2

*5

75

86

16

2D

EFI

NE

D5

66

2

--7

12

ZZR

EAL

ARR

AY

RE

FS6

35

DE

FIN

ED

29

FIL

EN

Ar1

ESM

ODE

OU

TPU

TFM

TW

RIT

ES8

89

29

91

01

TAPE

9U

NFt

1TW

RIT

ES8

79

1

EXTE

RN

ALS

TYPE

ARG

SR

EFER

ENC

ESB

AN

Sl1

68

08

18

3FO

RM

H5

35

PRIt-

lTA

31

00

10

2SQ

RT

REA

L1

LIB

RA

RY

57

INL

INE

FUN

CTI

ON

STY

PEA

RGS

DEF

LIN

ER

EFER

ENC

ESA

SS

REA

L1

lNT

RlN

60

62

lAS

SltH

EG

ER

1IN

TRIN

53

54

91

SIG

NR

EAL

2IN

TR

IN5

7

STA

TEM

ENT

LAB

ELS

DEF

LIN

ER

EFER

ENC

ES0

22

13

110

30

15

91

46

65

22

82

50

60

29

23

06

53

2~O

310

68

39

36

37

07

04

03

33

41

65

80

47

41

43

450

85

78

50

63

70

31

61

00

79

16

48

01

10

83

82

01

30

86

85

01

50

97

93

95

Page 180: Dynamics Technology, Inc.

SUB

RO

UT

INE

SO

LIN

T7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16.

39

.3

9PA

GE

5

STA

TE

ME

NT

LA

BE

LS

DEF

LIN

ER

EFE

RE

NC

ES

46

62

00

98

89

90

61

31

02

0FM

T1

03

88

62

51

02

5Ft

1T1

05

92

63

21

03

0FM

T1

06

99

64

11

03

1FM

T1

07

101

LO

OPS

LA

BE

LIN

DEX

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

15

30

I9

15

26B

NO

TIN

NE

R2

62

2M

111

32

8IN

STA

CK

36

30

,.J1

41

52B

INST

AC

K4

41

00

N1

67

925

5BEX

TR

EF

SN

OT

INN

ER

62

60

I2

32

9lO

BIN

STA

CK

75

65

I3

03

21

28

NO

TIN

NE

R1

01

65

,.J3

13

22

8IN

STA

CK

11

07

0II

33

40

32

8EX

TR

EF

SN

OT

INN

ER

11

17

0,.J

J3

44

02

78

EXT

RE

FS

NO

TIN

NE

R1

17

68

I3

63

91

68

NO

TIN

NE

R1

26

68

J3

73

94

8IN

STA

CK

14

38

0I

41

47

27

8N

OT

INN

ER

15

68

0J

43

47

11

8IN

STA

CK

17

68

5I

50

78

120B

EXT

RE

FS

NO

TIN

NE

R2

26

85

K6

37

86

58

NO

TIN

NE

R2

65

85

M7

07

823

BO

PT3

42

11

0M

82

83

14B

EXT

RE

FS

36

31

30

I8

58

63B

INST

AC

K-,

37

32

00

I8

99

876

BEX

TR

EFS

NO

TIN

NE

R""

-J4

03

M91

91ll

BEX

TR

EF

S~

42

3t1

92

92

llB

EXT

RE

FS

43

61

50

M9

39

730

BN

OT

INN

ER

45

61

50

N9

59

75B

INST

AC

K

COM

MO

NB

LO

CK

SLE

NG

THFC

ON

ST3

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

10

53

B5

55

SCM

LA

BE

LE

DCO

MM

ON

LEN

GTH

3B3

52

00

0B

SCM

USE

D

Page 181: Dynamics Technology, Inc.

SUB

RO

UTI

NE

PRIN

TA

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E

:;

10 15

SUB

RO

UTI

NE

PR

INT

A(A

,NR

,NC

)C c*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CPR

INT

MA

TRIX

A.C

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*C

DIM

ENSI

ON

A(N

R,

1)

DO10

0J=

1.N

C.8

JH=

J+7

IF(J

H-N

C)

75

.75

,50

50

JH=N

C7

5PR

INT

1000

,(N

.N

=J,

JH)

DO10

01=

1,NR

10

0PR

INT

IDO

l,I.

(A(

I,K

).K

=J,

JH)

10

00

FORM

AT

(1/1

81

14

)10

01FO

RMA

T(I

4.4

X.8

E1

4.

5)

RET

UR

NEN

D

SYM

BO

LIC

REF

EREN

CE

MAP

(R=

2)'-

- ~EN

TRY

POIN

TS

DEF

LIN

ER

EFER

ENC

ES3

PRIN

TA

117

VA

RIA

BL'

ESSN

TYPE

REL

OC

ATI

ON

0A

REA

LA

RRA

Y/

F.P.

RE

FS7

14D

EFI

NE

D1

101

IIN

TEG

ERR

EFS

2*

14

DE

FIN

ED

137

6J

I~HEGER

RE

FS9

1214

DE

FIN

ED

87

7JH

INTE

GER

RE

FS10

1214

DE

FIN

ED

911

102

KIN

TEG

ERR

EFS

14D

EFI

NE

D14

100

NIN

TEG

ERR

EFS

12D

EFI

NE

D12

0NC

INTE

GER

F.P.

RE

FS8

1011

DE

FIN

ED

0NR

INTE

GER

F.P.

RE

FS7

13D

EFI

NE

D1

FIL

EN

AM

ESt1

0DE

OU

TPU

TFM

TW

RIT

ES

12

14

STA

TEM

ENT

LAB

ELS

DEF

LIN

ER

EFE

RE

NC

ES

05

0IN

AC

TIV

E11

1015

7512

2*

10

010

014

813

711

00

0FM

T15

1273

1001

FMT

1614

LOO

PSLA

BEL

INDE

XFR

Ot1

-TO

L.EN

GTH

PRO

PER

TIE

S11

100

J8

1441

13EX

TR

EF'S

NO

TIN

NER

21N

1212

413

EXT

RE

FS2

71

00

I13

1421

13EX

TR

EFS

NO

TIN

NER

33

K14

1411

13EX

TR

EFS

ST

AT

IST

ICS

PRO

GRA

MLE

NG

TH11

013

72

5200

013

SCM

USE

D

Page 182: Dynamics Technology, Inc.

SUB

RO

UT

INE

FOR

MH

76

/17

6O

PT

=l

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

- -....j -{::,

5

10 15

20

25

30

35

40

SUB

RO

UT

INE

FO

RM

H(S

,T,R

R,

ZZ

,H)

c C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CFO

RM

FL

UID

EL

EM

EN

TM

AT

RIX

HC*********************~*****************************************

CD

IME

NSI

ON

RR

(4),

ZZ

(4),

H(4

,4),

A(4

),A

S(4

),A

T(4

),A

R(4

),A

Z(4

)SM

=1.

-SS

P=

1.

+ST

M=1

.-T

TP

=1.

+T

A(

1)=

SM

*TM

/4.

A(2

)=

SP

*H

l/4

.A

(3)=

SP

*T

P/4

.A

(4)=

St1

*T

P/4

.A

S(

1)=

-TM

/4.

AS

(2)=

-AS

(1)

AS

(3)=

TP

/4.

AS

(4)=

-AS

(3)

AT

(1

)=-S

M/4

.A

T(2

)=-S

P/4

.A

T(3

)=-A

T(2

)A

T(4

)=-A

T(1

)P

ZT

=A

T(1

)*Z

Z(1

)+A

T(2

)*Z

Z{

2)+

AT

(3)*

ZZ

(3)+

AT

(4)*

ZZ

(4)

PZ

S=

AS

(1)*

ZZ

(1)+

AS

(2)*

ZZ

(2)+

AS

(3)*

ZZ

(3)+

AS

(4)*

ZZ

(4)

PR

S=

AS

(1)*

RR

(1)+

AS

(2)*

RR

(2)+

AS

(3)*

RR

(3)+

AS

(4)*

RR

(4)

PR

T=

AT

(1)*

RR

(1)+

AT

(2)*

RR

(2)+

AT

(3)*

RR

(3)+

AT

(4)*

RR

(4)

XJ=

PR

S*

PZ

T-P

RT

*P

ZS

R=

A(1

)*R

R(1

)+A

(2)*

RR

(2)+

A(3

)*R

R(3

)+A

(4)*

RR

(4)

FA

C=

XJ*

RP

SR

=P

ZT

/XJ

PT

R=

-PZ

S/X

JP

SZ

=-P

RT

/XJ

PT

Z=

PR

S/X

JD

O5

01

=1

,4A

R(I

)=A

S(I

)*P

SR

+A

T(I

)*P

TR

50

AZ

(I)=

AS

(I)*

PS

Z+

AT

(I)*

PT

ZDO

10

01

=1

,4

DO

10

0J=

I,4

H(I

,J)=

FA

C*

(AR

(I)*

AR

(J)+

AZ

(I)*

AZ

(J»

+X

J/R

*A

(I)*

A(J

)1

00

H(J

,I)

=H

(I,J

)R

ETU

RN

END

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

EN

TR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

FOR

r'lH

14

2

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N2

04

AR

EA

LA

RR

AY

RE

FS

74

*2

92

*4

0D

EF

INE

D1

21

31

41

56'

;R

EA

LA

RR

AY

RE

FS

72

*4

0D

EF

INE

D3

6.

Page 183: Dynamics Technology, Inc.

SUB

RO

UT

INE

FOR

MH

76

/17

6O

PT

=l

ST

AT

ICFT

N4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

2

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N2

10

AS

REA

LA

RR

AY

RE

FS7

17

19

4*

25

4*

26

36

37

DE

FIN

ED

16

17

18

192

14

AT

REA

LA

RR

AY

RE

FS7

22

23

4*

24

4*

27

36

37

DE

FIN

ED

20

212

22

32

24

AZR

EAL

AR

RA

YR

EF

S7

2*

40

DE

FIN

ED

37

17

5FA

CR

EAL

RE

FS4

0D

EFI

NE

D3

00

HR

EAL

AR

RA

YF

.P

.R

EFS

741

DE

FIN

ED

14

041

20

2I

INT

EG

ER

RE

FS3

*3

63

*3

73

94

*4

02

*4

1D

EF

lNE

D3

53

82

03

JIN

TE

GE

RR

EF

S4

*4

02

*4

1D

EFI

NE

D3

91

71

PRS

REA

LR

EF

S2

83

4D

EFI

NE

D2

61

72

PRT

REA

LR

EF

S2

83

3D

EFI

NE

D2

71

76

PSR

REA

LR

EFS

36

DE

FIN

ED

31

20

0PS

ZR

EAL

RE

FS3

7D

EFI

NE

D3

31

77

PTR

REA

LR

EFS

36

DE

FIN

ED

32

20

1P

TZR

EAL

RE

FS

37

DE

FIN

ED

34

17

0P

ZS

REA

LR

EF

S2

83

2D

EFI

NE

D2

51

67

PZT

REA

LR

EF

S2

83

1D

EFI

NE

D2

41

74

RR

EAL

RE

FS3

04

0D

EFI

NE

D2

90

RRR

EAL

AR

RA

YF

.P.

RE

FS7

4*

26

4*

27

4*

29

DE

FIN

ED

10

SR

EAL

F.

P.R

EFS

89

DE

FIN

ED

11

63

SMR

EAL

RE

FS1

21

52

0D

EFI

NE

D8

16

4SP

REA

LR

EFS

13

14

21D

EFI

NE

D9

0T

REA

LF

.P

.R

EFS

10

11D

EFI

NE

D1

16

5TM

REA

LR

EF

S1

21

31

6D

EFI

NE

D1

0'-

.1

66

TPR

EAL

RE

FS1

41

51

8D

EFI

NE

D11

~1

73

XJ

REA

LR

EFS

30

31

32

33

34

40

DE

FIN

ED

28

0ZZ

REA

LA

RR

AY

F.P.

RE

FS7

4*

24

4*

25

DE

FIN

ED

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

50

37

35

01

00

413

83

9

LO

OPS

LAB

ELIN

DEX

FRot~-TO

LEN

GTH

PR

OP

ER

TIE

S1

07

50

I3

53

7lO

BIN

STA

CK

12

11

00

I3

841

30

8N

OT

INN

ER

13

51

00

..J3

94

11

18

INST

AC

K

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

23

3B

15

55

20

00

BSC

MU

SED

Page 184: Dynamics Technology, Inc.

SUB

RO

UT

INE

MSO

LVE

76

/17

6O

PT=1

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

..... ~ It)

5

10

15

20

25

30

SUB

RO

UT

INE

MS

OL

VE

CA

,B,N

N,K

K)

C C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*C

KK

=OT

RIA

NG

LA

RIZ

ES

MA

TRIX

AA

ND

RE

DU

CE

S,B

AC

KSV

aST

ITU

TE

SV

ECTO

RB

CK

K=1

RE

DC

ES

AN

DB

AC

KSU

BST

ITU

TE

SV

ECTO

RB

ON

LYC

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CD

IME

NSI

ON

AC

NN

,1),

BC

l)DO

45

0N

=1

,NN

Nl=

N+

1B

CN

)=B

(N)/

AC

N,N

)IF

CN

.EG

.NN

)G

OTO

50

0IF

CK

K.

GE.

1)

GO

TO3

50

DO

25

0J=

N1,

NN

25

0A

CN

,J)=

AC

N,v

)/A

CN

,N)

DO3

00

I=N

l,N

ND

O3

00

J=I,

NN

A(I

,J)=

AC

I,v

)-A

CI,

N)*

AC

N,J

)3

00

A(J

,I)

=A

CI,

v)

35

0C

ON

TIN

UE

DO4

00

I=N

1,N

N4

00

B(I

)=B

CI)

-AC

I,N

)*B

(N)

45

0C

ON

TIN

UE

50

0N

l=N

N=

N-l

IF(N

.EQ

.OI

RET

UR

ND

O6

00

J=N

l,N

N6

00

BC

N)=

B(N

)-A

(N,J

)*B

(J)

GOTO

50

0EN

D

SYM

BO

LIC

RE

FER

EN

CE

MA

PC

R=

2)

ENTR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

MSO

LVE

12

6

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AR

EAL

AR

RA

YF.

P.R

EFS

811

2*

15

3*

18

19

22

28

DE

FIN

ED

11

51

81

90

BR

EAL

AR

RA

YF

.P.

RE

FS8

11

2*

22

2*

28

DE

FIN

ED

11

12

22

81

16

IIN

TE

GE

RR

EF

S1

73

*1

82

*1

93

*2

2D

EFI

NE

D1

62

11

15

JIN

TE

GE

RR

EFS

2*

15

3*

18

2*

19

2*

28

DE

FIN

ED

14

17

27

0KK

INT

EG

ER

F.P.

RE

FS

13

DE

FIN

ED

11

13

NIN

TE

GE

RR

EFS

10

4*

11

12

4*

15

2*

18

2*

22

24

25

26

3*

28

DE

FIN

ED

92

50

NN

INT

EG

ER

F.P.

RE

FS

89

12

14

16

17

212

7D

EFI

NE

D1

11

4N

lIt

HE

GE

RR

EFS

1416

212

7D

EFI

NE

D1

02

4

Page 185: Dynamics Technology, Inc.

SUB

RO

UT

INE

MSO

LVE

STA

TE

ME

NT

LA

BE

LS

o2

50

o3

00

56

35

0o

40

0o

45

07

35

00

o6

00

76

/17

6O

PT=1

ST

AT

IC

DE

FL

INE

RE

FER

EN

CE

S1

51

41

91

61

72

01

32

221

23

92

41

22

92

82

7

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E2

" '...J -.J

LO

OPS

LA

BE

LIN

DEX

114

50

N2

72

50

J3

43

00

I4

63

00

J6

54

00

I1

05

60

0J

ST

AT

IST

ICS

PRO

GR

Ar1

LEN

GTH

52

00

0B

SCM

USE

D

FRO

M-T

OLE

NG

THP

RO

PE

RT

IES

92

362

BE

XIT

SN

OT

INN

ER

14

15

3BIN

STA

CK

16

19

2213

NO

TIN

NE

R1

71

94B

INST

AC

K2

12

23B

INST

AC

K2

72

83

8IN

STA

CK

14

18

97

Page 186: Dynamics Technology, Inc.

SUB

RO

UTI

NE

BA

NSL

17

6/1

76

OP

T:!

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16.

39.

39

PAG

E

5

SUB

RO

UTI

NE

BA

NSL

1(N

A,N

EG

,MB

AN

D,A

,B,K

K)

DIM

ENSI

ON

NAC

1)

DIM

ENSI

ON

AC

NE

G,l

),B

(l)

NEG

G=

NEG

-1

MBA

A=

MBA

ND-

1IF

(KK

.EG

.2

)GO

TO2

50

RED

UC

EM

ATR

IXA

10

NADR

:1

DO1

40

N=2

,MB

AA

NADR

:N

AD

R+

NEG

JAD

R=

NADR

N1

:N

-1

15DO

130

1=1,

N1

IF(A

CJA

DR

).N

E.O

.)

GO

TO1

40

130

JAD

R==

JAD

R-

NEG

GI=

N1

14

0N

A(N

)==

I2

0M

==0

NADR

==N

EG*M

BAA

DO1

60

N==

MBA

ND

.NEG

M:

M+

1NA

DR:

NADR

+1

......

25

JAD

R=

NADR

""'-J

N1=:

N-

1,

DO1

50

I:M

.N1

IF(A

CJA

DR

).N

E.0

.)GO

TO1

60

15

0JA

DR

:JA

OR

-N

EQQ

30

I==N

11

60

NA

(N):

IN

A(

1)==

1JI

:0

DO2

00

J=2.

NE

G3

5IF

:N

A(J

)IF

l:

IF+

1IL

:J

-1

JI

=JI

+N

EGJK

=JI

+N

EG4

0IF

N==

IF*N

EG

GIF

CIF

!.G

T.lU

GOT

O1

85

JIA

:JI

-IF

N+

1DO

18

0I=

lFl.

ILK

F-

MA

XO

CN

AC

l).IF

)4

5K

L=:I-I

KFN

:K

F*N

EGG

JKA

:JK

-K

FNIK

A=

:I*

NE

G-

KFN

AA=:

A(J

IA)

50

DO1

70

K==

KF.

KL

AA=:

AA-

A(J

KA

)*A

(IK

A)

JKA

:JK

A-

NEG

G1

70

IKA

=:

IKA

-N

EGG

A(J

IA)

=:AA

55

18

0JI

A'"

JlA

-N

EGG

185

JKA

:JK

-IF

NA

A:

A(J

)

Page 187: Dynamics Technology, Inc.

SUB

RO

UT

INE

BA

NS

Ll

76

/17

6O

PT

=l

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.

39

.3

9PA

GE

2

DO1

90

K=

IF.

ILCC

=A

(JK

A)/

A(K

)6

0AA

=A

A-

A(J

KA

)*C

CA

(JK

A)

=CC

19

0"0

KA

=JK

A-

NEQ

QA

(J)

=A

A2

00

CO

NT

INU

E6

5G

OTO

50

0C C

RE

DU

CE

VE

CT

OR

BA

ND

BA

CK

SU

BS

TIT

UT

EC

25

0D

O2

70

N=

l.N

EG

G7

0IF

(B(N

).N

E.O

.)

GO

TO2

80

27

0C

ON

TIN

UE

N=N

EGQ

28

0N

l=

N+

1N

AD

R=

Nl*

NE

G7

5D

O2

90

I=N

1,N

EG

KF

=M

AX

O(N

A(I

).N

)K

L=

I-

1JA

DR

=N

AD

R-

KF*

NE

GG

BI3

=B

(1

)

80

DO

28

5K

=K

F.K

LBB

=B

B-

A(J

AD

R)*

B(K

)

-2

85

JAD

R=

JAD

R-

NEG

G

"'JB

(I)

=B

B

~2

90

NA

DR

=N

AD

R+

NEG

85

DO

30

0I=

N,N

EG

30

0B

(I)

=B

(I)/

A(I

)N

N=

NEG

NA

DR

=N

N*N

EG

DO

40

0N

=1,

NE

GG

90

KF

=N

A(N

N)

KL

=N

N-

1JA

DR

=N

AD

R-

KF*

NE

GG

BB=

B(N

N)

DO

39

0K

=K

F.K

L9

5B

(K)

=B

(K)

-A

(JA

DR

)*B

B3

90

JAD

R=

JAD

R-

NEG

GN

AD

R=

NA

DR

-N

EG4

00

NN

=N

N-

15

00

RE

TU

RN

10

0EN

D

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

EN

TR

YP

OIN

TS

DE

FL

INE

RE

FER

EN

CE

S3

B/I

NS

Ll

19

9

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AR

[::A

LA

RR

AY

F.

P.

RE

FS

31

66

08

18

66

3

28

95

49

DE

FIN

ED

2*

51 1

57

54

2*

59

61

Page 188: Dynamics Technology, Inc.

SUB

RO

UT

INE

BA

NS

l17

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16.

39

.3

9PA

GE

3

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N3

13

AAR

EAL

RE

FS51

54

60

63

DE

FIN

ED

49

515

76

00

BR

EAL

AR

RA

YF.

P.R

EFS

37

07

981

86

93

95

DE

FIN

ED

18

38

69

53

16

BBR

EAL

RE

FS8

18

39

5D

EFI

NE

D7

981

93

31

5CC

REA

LR

EFS

60

61D

EFI

NE

D5

92

74

IIN

TE

GE

RR

EFS

19

314

44

54

87

67

77

98

33

*8

6D

EFI

NE

D1

51

82

73

04

37

58

53

00

IFIN

TE

GE

RR

EFS

36

40

44

58

DE

FIN

ED

35

30

4IF

NIN

TE

GE

RR

EFS

42

56

DE

FIN

ED

40

30

1IF

lIN

TE

GE

RR

EFS

414

3D

EFI

NE

D3

63

12

IKA

INT

EG

ER

RE

FS51

53

DE

FIN

ED

48

53

30

2IL

INT

EG

ER

RE

FS4

14

35

8D

EFI

NE

D3

72

77

JIN

TE

GE

RR

EFS

35

37

57

63

DE

FIN

ED

34

27

2JA

DR

INT

EG

ER

RE

FS1

61

72

82

98

18

29

59

6D

EFI

NE

D1

31

72

52

97

88

29

29

62

76

JI

INT

EG

ER

RE

FS3

83

94

2D

EFI

NE

D3

33

83

05

JIA

INT

EG

ER

RE

FS4

95

45

5D

EFI

NE

D4

25

53

03

JKIN

TE

GE

RR

EFS

47

56

DE

FIN

ED

39

31

1JK

AIN

TE

GE

RR

EFS

515

25

96

061

62

DE

FIN

ED

47

52

56

62

31

4K

INT

EG

ER

RE

FS5

981

2*

95

DE

FIN

ED

50

58

80

.....".

94

~3

06

KF

INT

EG

ER

RE

FS4

65

07

88

09

29

4D

EFI

NE

D4

47

69

03

10

KFN

INT

EG

ER

RE

FS4

74

8D

EFI

NE

D4

60

KKIN

TE

GE

RF.

P.R

EFS

6D

EFI

NE

D1

30

7K

LIN

TE

GE

RR

EFS

50

80

94

DE

FIN

ED

45

77

912

75

MIN

TE

GE

RR

EFS

23

27

DE

FIN

ED

20

23

26

7M

BAA

I~nEGER

RE

FS11

21D

EFI

NE

D5

0M

BAN

DIN

TE

GE

RF

.P.

RE

FS5

22

DE

FIN

ED

12

71

NIN

TE

GE

RR

EFS

14

19

26

31

70

73

76

85

DE

FIN

ED

112

26

97

28

90

NAIN

TE

GE

RA

RR

AY

F.P.

RE

FS2

35

44

76

90

DE

FIN

ED

11

931

32

27

0N

AD

RIN

TE

GE

RR

EFS

12

13

24

25

78

84

92

97

DE

FIN

ED

10

12

212

47

48

48

89

70

NEG

INT

EG

ER

F.P

.R

EFS

34

12

212

23

43

83

94

87

47

58

48

58

78

89

7D

EFI

NE

D1

26

6N

EGQ

INT

EG

ER

RE

FS1

72

94

04

65

25

35

56

26

97

27

88

28

99

29

6D

EFI

NE

D4

31

7N

NIN

TE

GE

RR

EFS

88

90

919

39

8D

EFI

NE

D8

79

82

73

N1

INT

EG

ER

RE

FS1

51

82

73

07

47

5D

EFI

NE

D1

42

67

3

INL

INE

FUN

CT

ION

ST

YPE

AR

GS

DE

FL

INE

RE

FER

EN

CE

SM

AX

OIN

TE

GE

R0

INT

RIN

44

76

STA

TE

ME

NT

lAB

EL

SD

EF

LIN

ER

EFE

RE

NC

ES

01

30

17

15

32

14

01

911

16

Page 189: Dynamics Technology, Inc.

SUB

RO

UT

INE

BA

NSL

17

6/1

76

OP

T=

1S

TA

TIC

FTN

4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

4

STA

TE

t1E

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

15

02

92

75

71

60

31

22

28

01

70

53

50

01

80

55

43

13

51

85

56

410

19

06

25

80

20

06

43

41

61

25

06

96

02

70

71

69

16

72

80

73

70

02

85

82

80

02

90

84

75

03

00

86

85

03

90

96

94

04

00

98

89

26

55

00

99

65

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LE

NG

TH

PR

OP

ER

TIE

S1

61

40

N11

19

2013

NO

TIN

NE

R2

31

30

I1

51

751

3IN

STA

CK

EX

ITS

43

16

0N

22

31

2013

NO

TIN

NE

R5

01

50

I2

72

951

3IN

STA

CK

EX

ITS

66

20

0J

34

64

7213

NO

TIN

NE

R1

01

18

0I

43

55

3413

NO

TIN

NE

R1

21

17

0K

50

53

413

.IN

STA

CK

14

61

90

K5

86

251

3IN

STA

CK

.....1

62

27

0N

69

71

413

INST

AC

KE

XIT

SDo

17

32

90

I7

58

427

13N

OT

INN

ER

.......

21

02

85

K8

08

241

3IN

STA

CK

23

03

00

I8

58

621

3IN

STA

CV

,2

37

40

0N

89

98

2613

NO

TIN

NE

R2

52

39

0K

94

96

413

INST

AC

K

ST

AT

IST

ICS

PRO

GR

AM

LE

NG

TH

3561

32

38

5200

013

SCM

USE

D

Page 190: Dynamics Technology, Inc.

SUB

RO

UT

INE

QU

AK

E7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E

SUB

RO

UT

INE

GU

AK

E(T

,XF

H,K

,DT

,FH

,NX

)

'" ~

5

10

15

20

25

CD

IME

NSI

ON

FH

(l)

DIM

EN

SIO

NT

(l).

XF

H(l

)D

O3

J=l.

K3

FH

(J)=

O.

PR

INT

47

,D

T*

(K-l

)1

=0

J=

lT

E=O

.5

1=

1+

1IF

(I.

GT.

NX

)R

ETU

RN

10

IF<

T(

I)-

TE

)1

1,

14

,1

211

IF(2

.*

(TE

-T(I

l)-D

TI

14

.5,5

12

IF(J

.GT

.1

)F

H(J

l=«

T(I

)-T

E)*

FH

(J-l

)+D

T*

XF

H(I

»/(

T(I

)-T

E+

DT

)J=

J+l

IF(J

.G

T.K

)R

ETU

RN

TE

=T

E+

DT

GOTO

10

14

FH

(J)=

XF

H(I

)J=

J+

lIF

(J.

GT

.K)

RET

UR

NT

E=

TE

+D

TG

OTO

54

7FO

RM

AT

(/1

*T~UNCATED

EAR

THQ

UA

KE

DA

TALE

NG

THT

=*

,FI0

.4

,*S

EC

*/)

END

22

RE

FS

71

42

*1

51

82

3D

EF

INE

D1

RE

FS

31

5D

EFI

NE

D1

61

52

0R

EF

S11

12

13

14

3*

15

20

DE

FIN

ED

811

RE

FS

63

*1

51

61

72

021

22

DE

FIN

ED

::;9

16

21

RE

FS

57

17

22

,D

EFI

NE

DR

EF

S1

2D

EFI

NE

D1

RE

FS

41

31

42

*1

5D

EFI

NE

DR

EF

S1:

314

::!*

Hl

18

~3

OE

F'IN

E:l)

10

Hi

2~

FH?:F

S4

15

20

ObF

INli

t>1

7

RE

FER

EN

CE

S5

2*

14

24

WR

ITE

S

RE

LO

CA

TIO

NF

.P

.

DEF

LIN

E6 11

F.

P.

F.

P.

AR

RA

YF.

P.

AR

RA

YF

.P.

AR

RA

YF

.P

.

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

RE

FER

EN

CE

S1

21

7EN

TRY

PO

INT

SD

EF

LIN

E3

QU

AV

.E1

VA

RIA

BL

ES

SNT

YPE

0D

TR

EA

L

0FH

RE

AL

10

6I

INT

EG

ER

10

5J

INT

EG

ER

0K

INT

EG

ER

0NX

INT

EG

ER

0T

REA

L1

07

TERE

AL

0X

FHfH

::AL

FIL

EN

AM

ESM

OnE

OU

TPU

TFM

T

STA

TE

ME

NT

LA

BE

LS

03

24

5

Page 191: Dynamics Technology, Inc.

SUB

RO

UT

INE

QU

AK

E7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.

8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

2

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S2

71

01

31

90

11IN

AC

TIV

E1

41

33

61

21

51

35

71

42

01

31

47

54

7FM

T2

57

LO

OPS

LA

BE

L11

3IN

DEX

JFR

OM

-TO

56

LEN

GTH 2B

PR

OP

ER

TIE

SIN

STA

CK

...... ~

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

52

00

0B

SCM

USE

D1

10

B7

2

Page 192: Dynamics Technology, Inc.

PF

LST

OR

AG

EA

LL

OC

AT

ION

.

AD

DR

ESS o1

5

LE

NG

TH 15

CO

MPA

SS3

.6

-49

8.

BIN

AR

YC

ON

TRO

LC

AR

DS.

!DE

NT

PF

LEN

D

EN

TR

YP

OIN

TS

.

03

/16

/81

16

.40

.14

.PA

GE

'- ~ -r;.

PF

L2

+

Page 193: Dynamics Technology, Inc.

PF

LC

OM

PASS

3.

6-4

98

.0

3/1

6/8

11

6..4

0.1

4.

PAG

E2

*

IDE

NT

PF

LEN

TRY

PF

L

7SY

MB

OLS

15

RE

FER

EN

CE

S

·W

AIT

FOR

RA

+l

TOC

LEA

R

.FO

RM

THE

MEM

RE

QU

EST

TOA

SS

ER

TA

IN.

PRE

SEN

TF

IEL

DL

EN

GT

H

·PL

AC

ET

HE

CA

LL

AN

DW

AIT

FOR

RA

+l

·TO

CLE

AR

·F

IEL

DL

EN

GT

H

27

STA

TE

ME

NT

SO

.0

24

SEC

ON

DS

24

/3L

PF

L,3

6/P

FL

1 Xl

1 Xl.

WA

ITl

FOR

Mo IF

LA

6X

l+X

21 A

6X

l,W

AIT

2IF

L3

0X

l13

1B

O,P

FL

.R

ETU

RN

18

/3L

ME

M,2

/3,4

0/0

1

VFD

BSS

Z51

31S

Al

NZ

SA

lM

X6

SA

bS

X2

BX

6S

A6

SA

lN

ZS

Al

AX

lB

X6

SA

6EO V

FDB

SSZ

END

WA

ITI

WA

IT2

FORt~

IFL

*F

IND

THE

MA

XIM

UM

FIE

LD

LE

NG

TH

* NA

ME

SAV

EP

FL

5100

013

SCM

STO

RA

GE

USE

DM

OD

EL1

76

ASS

EM

BL

Y

02

00

61

40

00

00

00

00

00

00

2+

10

00

00

00

00

00

00

00

00

01

21

36

31

10

45

11

00

00

00

10

31

10

00

00

4+

55

11

00

00

01

3+

43

60

06

51

60

00

00

14

+7

42

60

12

61

27

51

60

00

00

01

10

54

16

00

31

10

00

01

0+

115

11

00

00

01

4+

21

13

61

06

11

12

56

61

00

40

00

00

00

2+

13

15

05

15

60

00

00

00

00

00

00

"1

41

~1

5

Page 194: Dynamics Technology, Inc.

"- <>0

<h

PF

LC

OM

PASS

3.

6-4

98

.0

3/1

6/8

11

6.4

0.

14

.PA

GE

3SY

MB

OL

ICR

EFE

RE

NC

ET

AB

LE

.

FOR

M1

3PR

OG

RA

M*

2/1

22

/25

LIF

L1

4PR

OG

RA

M*

2/1

4S

2/2

02

/26

LN

AM

E0

PRO

GR

AM

*2

/06

LP

FL

2PR

OG

RA

M*

2/0

2E

2/0

62

/08

L2

/24

SAV

E1

PRO

GR

AM

*2

/07

LW

AIT

l4

PRO

GR

AM

*2

/10

L2

/11

WA

IT2

10

PRO

GR

AM

*2

/18

L.2

/19

Page 195: Dynamics Technology, Inc.

SUB

RO

UTI

NE

TST

EP

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E1

5 10 15

SUB

RO

UTI

NE

TS

TE

P(W

,BI.

BII

,DA

MP

,XF

H,

XT

,C4.

C5.

Y,V

EL

,AC

EL

.YB

UF

,FH

,1

AB

UF.

TE

M,N

MO

,NT

,DT

,NX

FH.N

BU

F,M

BU

F,N

BL

OC

K.N

GR

D,N

TA

PE,N

G,P

LO

TT

)C C

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

CSO

LVE

MO

DA

LEQ

UA

TIO

NO

FM

OTI

ON

USI

NG

ST

EP

-BY

-ST

EP

TIM

EC

INT

EG

RA

TIO

NT

EC

HN

IQU

ES.

C*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*C

DIM

EN

SION

\H1

),B

I(1

),B

II

(NM

O,

1).

DAM

P(1

),X

FH(1

),FH

(1

),C

4(1

).C

5(1

),1

Y(1

),A

BUF

(1),

VEL

<1

),A

CEL

<1

),Y

BUF

(1),

XT<

1),

TEM

(NM

O.

1)

DIM

EN

SIO

NA

LIN

E(8

)LO

GIC

AL

PLO

TT

RE\

HN

DN

TAPE

DO1

01=

1,NM

ODO

10J=

1,

NMO

10

TE

M(I

,J)=

BII

(I,J

)IF

<t-o

lGRD

.EG

.2.

AN

D.

NG

.EQ

.1

)GO

TO1

5

20

C C CRE

AD

AND

PRIN

TM

ODAL

DA

MPI

NG

RA

TIO

S

REA

D1

00

0,

<D

AM

P(I

),I=

1,N

MO

)PR

INT

20

00

,(I

,DA

MP

(I),

I=I.

NM

O)

15

FA

C=

32.2

~ OQ "J

25

30

35 40 45

C CRE

AD

AND

PRIN

TTI

ME

HIS

TO

RY

OF

GRO

UN

DA

CC

ELER

ATI

ON

CRE

AD

20

40

,A

LIN

EPR

INT

20

45

,A

LIN

EIF

(AL

INE

(I).

NE.

10H

CO

NST

AN

T)

GOTO

30

CC

ON

STA

NT

FREQ

UEN

CY

REA

D2

02

0,

TL

AT

E,O

ME

GA

.HIG

HDO

25

K=

l,N

XF

HX

TC

K)=

CK

-l)*

TL

AT

E/(

NX

FH

-l)

XFH

CK

)=SI

N(X

TC

K'*

OM

EG

A)

*H

IGH

25

CO

NTI

NU

EGO

TO3

53

0RE

AD

10

01

,(X

TO

\),

XF

H(K

),K

=1,

NX

FH)

35

CO

NTI

NU

EP

RH

n2

00

1,

(XT

(K),

XF

H(K

),K

=1,

NX

FH)

IF(.

NO

T.PL

OT

T)

GOTO

90

CA

LLO

PLT

CA

LLG

RA

Fl1

CXT,

XFH

,N

XFH

,1,

"TIM

E(S

EC

.)"

,"G

RN

D.

AC

C.

II)

CA

LLPL

OT

(0.

,0.

,99

9)

90

DO10

0K

=l,

NX

FH1

00

XFH

CK

)=X

FH(K

l*FA

C

50

55

c C C C

GRO

UN

DA

CC

ELER

ATI

ON

REC

OR

DIS

INTE

RPO

LATE

DBY

EQU

AL

TH

1E-I

NC

RE

ME

NT

CA

LLG

UA

KE

(XT

,XF

H,N

T,D

T,F

H,N

XF

H)

WR

ITE

(9)

CF

H(K

),K

=1,

NT

l

Cl=

DT

/2.

C2=

C1*

DT

/3.

C3=

C2*

2DO

26

0I=

l,N

MO

C4

(I)"

,W(I

)**

2C

5CIl

"'2.

*DA

MP

(I)*

W(I

)

Page 196: Dynamics Technology, Inc.

SUB

RO

UT

INE

TS

TE

P7

6/1

76

OPT~l

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

2

~ ~

60

65

70

75

80

85

90

95

10

0

10

5

11

0

TE

M(

I.I

)=T

EM

(I,

I)+

C5

(I

)*C

1+

C4

(I

)*C

2A

CE

L(I

)=-F

H(l

)*B

I(I)

26

0C

ON

TIN

UE

CA

LL

NS

OL

VE

(TE

M.A

CE

L.N

MO

,O)

M=O

MC

=lN

BL

OC

K=O

DO

26

51

=1

.NM

OY

(I)=

O.O

VEL

<I

)=0

.0M

=M+l

YB

UF

(~1>~Y

(I)

AB

UF

(M)=

AC

EL

(I)

26

5C

DtH

INU

EC

27

0~1C=MC+l

DO

28

0I=

l,N

MO

Y(I

)=Y

CI)

+D

T*

VE

L(I

)+C

3*

AC

EL

(I)

VE

LC

I)=

VE

L(I

)+C

l*A

CE

L(I

)A

CE

LC

I)=

-FH

(MC

)*B

I(I)

-C5

(I)*

VE

L(I

)-C

4(I

)*Y

(I)

28

0C

ON

TIN

UE

CA

LL

MS

OL

VE

(TE

M.A

CE

L.N

MO

.1

)D

O3

50

I=l.

NM

OV

EL

(I)=

VE

L(I

)+C

l*A

CE

L(I

)Y

(I)=

Y(I

)+C

2*

AC

EL

(I)

C CI~RITE

ON

TA

PE

2O

RT

AP

E?

(IN

BL

OC

KS)

OF

DIS

PLA

CE

ME

NT

DA

TAC

M=M

+lY

BU

F<

l1)=

Y(

I)A

BU

F(M

)=A

CE

L<

I)IF

(MC

.EQ

.N

T.A

ND

.I.

EQ

.NM

O)

GO

TO3

40

IF(M

.LT

.NB

UF

)G

OTO

35

0I~R

ITE

(NT

AP

E)

(YB

UF

(J).

J=

l,N

BU

F)W

RIT

E(N

TA

PE

)(A

BU

F(J

).J=

l.N

BU

F)

NB

LO

CK

=NB

LO

CK

+lM

=OG

OTO

35

03

40

NB

LO

CK

=NB

LO

CK

+lt1

BU

F=M

WR

ITE

(NT

AP

E)

(YB

UF

(J),

J=l.

MB

UF

)W

RIT

E(N

TA

PE

)(A

BU

F(J

),J=

l.M

BU

F)

t1=0

35

0C

ON

TIN

UE

IF(M

C-N

T)

36

0.4

00

,40

03

60

GO

TO2

70

40

0C

ON

TIN

UE

10

00

FOR

MA

T(7

FI0

.0)

10

01

FOR

MA

T(6

(F6

.3

.F6

.4»

20

00

FOR

MA

T(//

*M

OD

EM

OD

AL

DA

MPI

NG

RA

TIO

*/(

I4.

IOX

.FI0

.3»

20

01

FOR

MA

T(//

*E

AR

TH

QU

AK

ED

ATA

*//

(2X

.6(F

8.4

.E1

2.4

»)

20

20

FOR

MA

T(3

FI0

.0)

20

40

FOR

MA

T(S

AIO

)2

04

5FO

RM

AT

(lH

1.

lX.

8A

I0)

RE

TU

RN

END

Page 197: Dynamics Technology, Inc.

SUB

RO

UT

INE

TS

TE

P7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E3

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

EN

TR

YP

OIN

TS

DEF

LIN

ER

EFE

RE

NC

ES

3T

ST

EP

11

12

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AB

UF

RE

AL

AR

RA

YF

,P

.R

EF

S9

92

99

DE

FIN

ED

17

08

80

AC

ELR

EAL

AR

RA

YF

.P

.R

EF

S9

61

70

75

76

79

818

28

8D

EF

INE

D1

59

77

57

6A

LIN

ER

EAL

AR

RA

YR

EF

S11

28

29

DE

FIN

ED

27

0B

IR

EAL

AR

RA

YF

.P

.R

EF

S9

59

77

DE

FIN

ED

0B

II

REA

LA

RR

AY

F.

P.

RE

FS9

16

DE

FIN

ED

15

71

C1

REA

LR

EF

S5

35

87

681

DE

FIN

ED

52

57

2C

2R

EAL

RE

FS

54

58

82

DE

FIN

ED

53

57

3C

3R

EAL

RE

FS

75

DE

FIN

ED

54

0C

4R

EAL

AR

RA

YF

.P

.R

EF

S9

58

77

DE

FIN

ED

15

60

C5

REA

LA

RR

AY

F.

P.

RE

FS9

58

77

DE

FIN

ED

15

70

DA

MP

REA

LA

RR

AY

F.

P.

RE

FS9

22

57

DE

FIN

ED

121

0D

TR

EAL

F.

P.

RE

FS

49

52

53

75

DE

FIN

ED

15

64

FAC

REA

LR

EF

S4

5D

EF

INE

D2

30

FHR

EAL

AR

RA

YF

.P

.R

EF

S9

49

50

59

77

DE

FIN

ED

15

67

HIG

HR

EAL

RE

FS3

4D

EF

INE

D3

15

62

IIN

TE

GE

RR

EF

S2

*1

621

2*

22

2*

56

3*

57

6*

58

2*

59

66

67

69

70

4*

75

3*

76

6*

77

3*

81

"'3

*8

28

78

88

9DEFIt~ED

14

212

2~

55

65

74

80

'-Q5

63

JIN

TE

GE

RR

EF

S2

*1

69

19

29

89

9D

EF

INE

D1

5,3

19

29

89

95

70

KIN

TE

GE

RR

EF

S2

*3

3'2

*3

42

*3

72

*3

92

*4

55

0D

EF

INE

D3

23

73

94

45

05

74

MIN

TE

GE

RR

EF

S6

86

97

08

68

78

89

09

7D

EFI

NE

D6

26

88

69

41

00

0M

BUF

INT

EG

ER

F.

P.

RE

FS

98

99

DE

FIN

ED

19

75

75

MC

INT

EG

ER

RE

FS

73

77

89

10

2D

EF

INE

D6

37

30

NB

LOC

KIN

TE

GE

RF

.P

.R

EF

S9

39

6D

EFI

NE

D1

64

93

96

0N

BU

FIN

TE

GE

RF

.P

.R

EF

S9

091

92

DE

FIN

ED

10

NGIN

TE

GE

RF

.P

.R

EFS

17

DE

FIN

ED

10

NG

RDIN

TE

GE

RF

.P

.R

EF

S1

7D

EF

INE

D1

0N

t10

INT

EG

ER

F.

P.

RE

FS

2*

91

41

521

22

55

616

57

47

98

08

9D

EF

INE

D1

0N

TIN

TE

GE

RF

.P

.R

EFS

49

50

89

10

2D

EF

INE

D1

0N

TA

PEIN

TE

GE

RF

.P

.D

EF

INE

D1

I/O

RE

FS

13

919

29

89

90

NX

FHIN

TE

GE

RF

.P

.R

EF

S3

23

33

73

94

24

44

9D

EF

INE

D1

56

6O

MEG

AR

EA

LR

EF

S3

4D

EF

INE

D3

10

PLO

TT

LO

GIC

AL

F.

P.

RE

FS

12

40

DE

FIN

ED

10

TEM

REA

LA

RR

AY

F.

P.

RE

FS

95

861

79

DE

FIN

ED

11

65

85

65

TL

AT

ER

EAL

RE

FS

33

DE

FIN

ED

31

0V

ELR

EAL

AR

RA

YF

.P

.R

EF

S9

75

76

77

81

DE

FIN

ED

16

77

681

0W

REA

LA

RR

AY

F.

P.

RE

FS

95

65

7D

EFI

NE

D1

0X

FHR

EAL

AR

RA

YF

.P

.R

EFS

93

94

24

54

9D

EF

INE

D1

34

37

45

0X

TR

EAL

AR

RA

YF

.P

.R

EF

S9

34

39

42

49

Page 198: Dynamics Technology, Inc.

SUB

RO

UT

INE

TST

EP

76

/17

6O

PT

=l

ST

AT

ICFT

N4

.8

+4

98

03

/16

/81

16

.3

9.

39

PAG

E4

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

ND

EF

INE

D1

33

37

0Y

REA

LA

RR

AY

F.

P.R

EF

S9

69

75

77

82

87

DE

FIN

ED

16

67

58

20

YB

UF

REA

LA

RR

AY

F.

P.

RE

FS

991

98

DE

FIN

ED

16

98

7

FIL

EN

AM

ES11

0DE

INPU

TFM

TR

EAD

S2

12

73

13

7O

UTP

UT

FMT

WR

ITE

S2

22

83

9T

AP

E9

UN

FMT

WR

ITE

S5

0V

AR

IAB

LE

SU

SED

AS

FIL

EN

AM

ES,

SE

EA

BO

VE

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SG

RA

Fll

64

2M

SOLV

E4

617

9O

PLT

041

PLO

T3

43

QU

AK

E6

49

SIN

REA

L1

LIB

RA

RY

34

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

10

16

14

15

55

15

23

17

02

53

53

2

"-

10

23

03

72

9...s

:J1

16

35

38

36

'::>1

44

90

44

40

01

00

45

44

02

60

60

55

02

65

71

65

25

12

70

73

10

30

28

07

87

43

43

34

09

68

93

62

35

01

01

80

90

95

03

60

INA

CT

IVE

10

31

02

37

04

00

10

42

*1

02

52

21

00

0FM

T1

05

215

24

10

01

FMT

10

63

75

27

20

00

FI1T

10

72

25

35

20

01

FMT

10

83

95

43

20

20

FMT

10

93

15

45

20

40

FMT

11

02

75

47

20

45

FI1T

11

12

8

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LEN

GTH

PR

OP

ER

TIE

S1

31

0I

14

16

1513

NO

TIN

NE

R2

21

0J

15

16

213

INST

AC

K4

5I

22

22

713

EXT

RE

FS

67

25

K3

23

513

13EX

TR

EF

S1

05

K3

73

710

13EX

TR

EF

S1

21

K3

93

9lO

BEX

TR

EF

S1

50

10

0K

44

45

313

INST

AC

K2

11

26

0I

55

60

1113

INST

AC

K2

43

26

5I

65

71

413

INST

AC

K2

65

28

0I

74

78

1213

INST

AC

K3

06

35

0I

80

10

157

13EX

TR

EF

S

Page 199: Dynamics Technology, Inc.

SUB

RO

UT

INE

TS

TE

P7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E5

- -Q "

ST

AT

IST

ICS

PRO

GR

AM

LEN

GTH

52

00

0B

SCM

USE

D6

66

B4

38

Page 200: Dynamics Technology, Inc.

SUB

RO

UTI

NE

RES

PON

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E

C c***

****

****

****

****

****

****

****

****

****

****

****

****

****

**R

****

****

****

*C

SUPE

RPO

SIT

ION

OF

MO

DES

AND

TIM

ER

ESP

ON

SES

OF

DIS

PLA

CE

ME

NT

SC

AND

STR

ESS

ES

c***

****

****

****

****

****

****

****

****

****

****

****

****

****

**R

****

****

****

*C

CO

MM

ON

/LS

4AR

G/L

M(1

2),S

S(6

,1

2),

XC

,YC

,EL

MA

SS

(4).

S(1

2,

12

),M

TY

PE

,OI1

2)

1.C

(6,6

)D

It1E

NS

ION

WI

1),

AIN

EG,

1),

I..IN

DI1

).I.

.IE

U1

),X

BUF

11),

YSU

F11

).XM

(1),

1Y

Mll

),X

INE

G),

YIN

EG

),S

IGX

(6),

SIG

YI6

),S

TR

ES

X(N

UM

),S

TR

ES

YIN

UM

),2

LMt1

112.

10

),SS

MI6

,12

.1

0),

XANG

I1),

Xi'1

AX

(1),

YMAX

(1),

STRM

AX

(1),

3S

TT

MA

Xll

).T

Xll

),T

ST

ll),

TY

(l),

TT

T(l

)D

IME

NSI

ON

STR

EST

(NU

M),

XST

INE

G)

DIM

EN

SIO

NH

B(N

UM

NP

).H

L(N

UM

NP

.NM

O),

FH

X(N

T),

FH

Y(N

T)

DIM

EN

SIO

NA

XB

UFI

NB

UF)

,AY

BU

F(N

BU

F),A

XM

INM

O).A

YM

INM

O)

DA

TAP

liO

.0

17

45

29

31

It1A

X=3

*NU

f1N

PDO

51=

1.H

1AX

TX

II)=

O.

5TY

II

)=0.

PRIN

T2

00

5,

(W(I

),I-

l,N

MO

)'" "-\) ~

5 10

15

20

25

30

35

40 45

50 55

C C C c C C C c

SUB

RO

UT

INE

RE

SPO

NIX

AN

G.W

,A,S

TR

ESX

,IJ

ND

,IJ

EL

,XB

UF

,YB

UF

,XM

,YM

,X,Y

,1

SIG

X,S

IGY

.LM

M,

SSM

.ST

RE

ST.

XST

,X

MA

X,S

TRM

AX

.T

X.T

ST,Y

MA

X,S

TT

MA

X.

TY.

2T

TT

,ST

RE

SY

,HB

,HL

.FH

X.

FHY

.AX

BU

F,A

YB

UF.

AX

M,A

YM

,3

NMO,

NEO

,N

AN

GL

E,N

PRIN

T,N

NO

DE

,NN

EL

,NU

MN

P.N

UM

EL,N

UM

,4

NB

LO

CK

.NB

UF,

MB

UF,

IGR

AV

,DT

,NT

,NG

RD

)

OU

TPU

TA

NG

LES

REA

D1

00

2,

IXA

NG

IN).

N=

I,N

AN

GL

E)

PRIN

T2

00

2,

IXA

NG

IN),

N=1

.N

AN

GLE

)

REA

DA

ND

PR

INT

SELE

CTE

DN

OD

EC

IRC

LE

SA

ND

ELEM

ENTS

FOR

OU

TPU

TPR

INT

ING

IFIN

NO

DE.

EG.

0)

GOTO

12

IFIN

NO

DE.

GE.

NU

MN

P)GO

TO11

REA

D1

01

0,

II..

IND

(I).

!=1.

NN

OD

E)

PRIN

T2

01

0,

IIJN

DI

1).

1=

1.

NN

OD

E)GO

TO1

211

PR

INT

20

12

NNODE=t~UMNP

12

IF<N

NEL

.EG

.0

)GO

TO1

8IF

INN

EL.

GE.

NU

MEL

)GO

TO1

5RE

AD

10

10

.II

JEL

II).

I=l.

NN

EL

)PR

INT

20

20

.I

IJE

Ll1

),1

=1

.N

NE

UGO

TO1

81

5PR

INT

20

22

NN

EL=N

UI1

EL1

8C

ON

TIN

UE

REW

IND

3DO

20

I=l.

NU

M2

0ST

RE

STII

)=0.

DO21

1=1.

NEG

21X

ST<Il

=0.

IFII

GR

AV

.N

E.2

)GO

TO2

4

Page 201: Dynamics Technology, Inc.

SUB

RO

UT

INE

RES

PON

76

/17

6O

PT

=l

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16.

39

.3

9PA

GE

2

C CRE

AD

FRO

MT

APE

3TH

EST

AT

ICR

ESP

ON

SES

60

CRE

AD

(3)

XST

REA

D(3

)ST

RE

STW

RIT

E(3

)N

UM

NP,

NU

ME

L,N

MO

,DT

.NT

,NPR

INT

.IG

RA

V.N

GR

DW

RIT

E(3

)X

ST6

5W

RIT

E(3

)ST

RE

STGO

TO2

52

4PR

INT

20

08

I~RITE

(3)

NU

MN

P,N

UM

EL,

Nt1

0,D

T,N

T.N

PRIN

T,

IGR

AV

.N

GRD

25

DO2

8t1

N=

I,1

07

0DO

28

J=I.

12

LM

M(J

,MN

)=O

DO2

81

=1

,6SS

M(

I.J.

MN

)=O

.2

8C

ON

TIN

UE

75

MN

=OREI~IND

1R

EWIN

D4

DO4

0N

=l,N

UM

EL

CA

LLR

EA

Dl(

LM

.283

,N,N

UM

EL

)8

0t1

N=t

1N+l

DO31

J=1

.1

2

'"L

MM

(J,M

N)=

LM

(J)

~DO

311=

1,6

SS

M(I

,J.M

N)=

SS

(I,J

)8

531

CO

NTI

NU

EIF

(N.

EQ

.NU

ME

L)

GOTO

32

IF<t

1N.L

T.

10

)GO

TO4

03

2W

RIT

E(4

)LM

MW

RIT

E(4

)SS

M9

0M

N=O

40

CO

NTI

NU

EDO

50

I=I,

NE

GYt

1AX

(I)=

0.Y

(I

)=0

.9

550

XI1A

X(

I)=

0.0

DO6

01=

1.NU

t1ST

TMA

X(I

)=0.

60

STRM

AX

(I)=

0.C

10

0R

EIH

ND

9DO

90

1=1,

NUM

NPH

B(I

)=O

.DO

90

11N=

1.NM

O9

0H

L(I,

MN

)::;:O

,10

5DO

100

1=

1,2

READ

(9)

NWAL

LIF

(NW

ALL

.L

E.

0)

GOTO

10

0DO

95

J=

l,N

WA

LL9

5RE

AD

(9)

N.H

B(N

).(H

L(N

.MN

).M

N=

I.N

MO

)1

10

10

0C

ON

TIN

UE

REA

D(9

)FH

XIF

(NG

RD

.EQ

.2)

REA

D(9

)FH

YC C

REA

DFR

OM

TA

PE2

AND

TA

PE7

THE

MO

DA

LR

ESP

ON

SES

Page 202: Dynamics Technology, Inc.

SUB

RO

UT

INE

RES

PON

76

/17

6O

PT=1

STA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E3

12

0

20

0

12

5

13

02

05

13

52

10

11

5C

REI

HN

D2

REI

HN

D7

IBLO

CK

=OTS

=O.

IT=

1NB=r~BUF

M=O

IBL

OC

K=I

BL

OC

K+1

IF(I

BL

OC

K.

EG.

NB

LOC

K)

NB=

MBU

FRE

AD

(2)

(XB

UF

(J),

J=1

,NB

)RE

AD

(2)

(AX

BU

F(J

),J=

1.N

B)

IF(N

GR

D.

EG.

2)

REA

D(7

)(Y

BU

F(J

),J=

1,N

B)

IF(N

GR

D.

EG

.2)

REA

D(7

)(A

YB

UF

(J),

J=1

,NB

)DO

21

01=

1.NM

OM

=M+1

IF(N

GR

D.E

G.2

)Y

M(I

)=Y

BU

F(M

)IF

(NG

RD

.EG

.2

)A

YM

(I)=

AY

BU

F(M

)A

XM

(I)=

AX

BU

F(M

)X

M(I

)=X

BU

F(M

)IF

(NN

OD

E.N

E.O

.OR

.N

NEL

.N

E.O

)PR

INT

20

50

,TS

"-1

40

~ ~

14

5

22

0

15

0

15

5

16

0

16

5

17

0

C CC

OM

PUTE

DIS

PLA

CE

ME

NT

CIF

(NN

OD

E.N

E.0

)PR

INT

20

51

DO2

50

I=l,N

UM

NP

SUM

1=0.

SUt1

2=0.

SUt1

3=0.

DO2

20

MN

=l,N

MO

SUM

1=SU

M1+

XM

(MN

)*A

(3*I

-2,M

N)

SUM

2=SU

M2+

XM

(MN

)*A

(3*I

-1,M

N)

SUM

3=SU

M3+

XM

(MN

)*A

(3*I

,MN

)X

(3*

I-2

)=S

UM

1*

12

.X

(3*

I-1

)=S

UM

2*

12

.X

(3*

I)=

SUM

3*12

.DO

23

0J=

1,3

II=

3*

I-3

+J

XA

BS=

AB

S(X

(II

))

XX

=AB

S(X

MA

X(I

I»IF

(XX

.GE

.X

AB

S)GO

TO2

30

XM

AX

(II)

=X

(II)

TX

(II)

=T

S2

30

CO

NTI

NU

EIF

(NG

RD

.EG

.1

)GO

TO2

34

SUM

1=0.

Sut

12=

0.SU

t13=

0.DO

23

2M

N=1

.NM

OSU

M1=

SUM

1+Y

M(M

N)*

A(3

*I-2

,MN

)SU

M2=

SUM

2+Y

M(M

NI*

A(3

*I-1

,MN

I2

32

SUM

3=SU

M3+

YM

(MN

)*A

(3*I

,MN

)Y

(3*

I-2

)=S

UM

1*

12

.Y

(3*

I-l)

=S

UM

2*

12

.Y

(3*

I)=

SU

t13*

12.

DO2

33

J=

1.

3II

=3

*I-

3+

J

Page 203: Dynamics Technology, Inc.

SUB

RO

UT

INE

RE

SPO

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

.PA

GE

4

-.,

.....s} CJ

i

17

5

18

0

18

5

19

0

19

5

20

0

20

5

XA

BS

=A

BS

(Y(I

I»X

X=

AB

S(Y

MA

X(I

I»IF

(XX

.G

E.X

AB

S)G

OTO

23

3Y

MA

X(I

I)=

Y(I

I)T

Y(I

I)=

TS

23

3C

ON

TIN

UE

23

4C

ON

TIN

UE

IF(N

NO

DE

.EG

.O)

GO

TO2

50

IF(N

UM

NP.

EG

.N

NO

DE

)G

OTO

23

7D

O2

35

II=

l.N

NO

DE

23

5IF

(1.

EG.

I.)N

D(I

I»G

OTO

23

7G

OTO

25

0C C

CO

MPU

TEP

RE

SS

UR

EC

23

7C

ON

TIN

UE

SU

MX

P=

FH

X(I

T)*

HB

(I)

SUI1

YP=

0.IF

(NG

RD

.E

G.

2)

SU

MY

P=

FH

Y(I

T)*

HB

(I)

DO

23

8M

N=

l.NM

OS

UM

XP

=S

UM

XP

+A

XM

(MN

)*H

L(I

,MN

)IF

(NG

RD

.EG

.2

)S

UM

YP

=S

UM

YP

+A

YM

(MN

)*H

L(I

,MN

)2

38

CO

NT

INU

EC C

CO

MPU

TEA

ND

PR

INT

FOR

DIF

FE

RE

NT

AN

GL

ES

CD

O2

40

')=

l,N

AN

GL

ET

HE

TA

=X

AN

G(J

)*P

IS

UM

l=X

(3*

I-2

)*C

OS

(TH

ET

A)+

Y(3

*I-

2)*

SIN

(TH

ET

A)+

XS

T(3

*I-

2)

SUM

2=X

(3*

I-l)

*C

OS

(TH

ET

A)+

Y(3

*I-

l)*

SIN

(TH

ET

A)+

XS

Y(3

*I-

l)SU

M3=

X(3

*I)

*S

IN(T

HE

TA

)+Y

(3*

I)*

CO

S(T

HE

TA

)+X

ST

(3*

I)SU

M4=

SU

MX

P*C

OS

(TH

ET

A)+

SU

MY

P*S

IN(T

HE

TA

)2

40

PR

INT

20

60

,I,

SU

Ml,

SUM

2.SU

M3,

SUM

4,X

AN

G(J

)2

50

CO

NT

INU

E

21

0

21

5

22

0

22

5

C C C C C C

WR

ITE

ON

TA

PE

3D

ISP

LA

CE

ME

NT

SO

FA

LL

NO

DA

LC

IRC

LE

S

WR

ITE

(3)

XIF

(NG

RD

.EG

.2)

WR

ITE

(3)

Y

CO

MPU

TEE

LE

ME

NT

ST

RE

SS

ES

REW

IND

4IF

(NN

EL

.NE

.0

)P

RIN

T2

10

0N

=O3

05

REA

D(4

)LM

MR

EAD

(4)

SSM

DO

39

0M

N=1

.1

0N

=N

+l

IF(N

.GT

.NU

ME

L)

GO

TO4

00

DO

35

01

=1

,6

SIG

X(I

)=O

.S

IGY

(I

)=0

.D

O3

50

J=

1.

12

.)J=

LM

M(J

,MN

)IF

(NG

RD

.EG

.1

)G

OTO

35

0S

IGY

(I)=

SIG

Y(I

)+S

SM

(I,J

,MN

)*Y

(J.)

Page 204: Dynamics Technology, Inc.

SUB

RO

UT

INE

RE

SPO

N7

6/1

76

OP

T=

1S

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.3

9.

39

PAG

E5

" ~ \l)

23

0

23

5

24

0

24

5

25

0

25

5

26

0

26

5

27

0

27

5

28

0

28

5

35

0S

IGX

{I)

=S

IGX

{I)

+S

SM

{I,

J,M

N)*

X{

JJ)

DO3

60

J=1

,6IF

(NG

RD

.EG

.1

)G

OTO

36

0S

IGY

{J)

=0

.57

87

0*

SIG

Y{

J)3

60

SIG

X{

J)=

O.

57

87

0*

SIG

X(J

)N

N=

6*N

DO3

65

1=

1,6

II=

NN

-6+

IS

TR

ES

X(I

I)=

SIG

X(I

)S

AB

S=

AB

S(S

IGX

(I»

SM

AB

=A

BS

(ST

RM

AX

(II»

IF(S

MA

B.G

E.S

AB

S)

GO

TO3

65

ST

RM

AX

(II)

=S

TR

ES

X(I

I)T

ST

(II)

=T

S3

65

CO

NT

INU

EIF

(NG

RD

.EG

.1

)G

OTO

36

7DO

36

61

=1

,6II

=N

N-6

+1

ST

RE

SY

(II)

=S

IGY

{I)

SA

BS

=A

BS

(SIG

Y(I

»S

MA

B=

AB

S{S

TT

MA

X{I

I»IF

(SM

AB

.G

E.S

AB

S)

GO

TO3

66

ST

TM

AX

(II)

=S

TR

ES

Y(I

I)T

TT

{II

)=T

S3

66

CO

NT

INU

E3

67

CO

NT

INU

EIF

(NN

EL

.EG

.O)

GO

TO3

90

IF(N

UM

EL.

EG

.NN

EL

)G

OTO

36

9D

O3

68

II=

l.N

NE

L3

68

IF(N

.EG

.IJ

EL

<II»

GO

TO3

69

GO

TO3

90

36

9D

O3

70

J=l,

NA

NG

LE

TH

ET

A=

XA

NG

(J)*

PI

SU

Ml=

SIG

X(1

)*C

OS

(TH

ET

A)+

ST

RE

ST

{NN

-5)+

SIG

Y(1

)*S

IN{T

HE

TA

)S

UM

2=

SIG

X(2

)*C

OS

(TH

ET

A)+

ST

RE

ST

{NN

-4)+

SIG

Y(2

)*S

IN(T

HE

TA

)S

UM

3=

SIG

X(3

)*C

OS

(TH

ET

A)+

ST

RE

ST

{NN

-3)+

SIG

Y(3

)*S

IN{T

HE

TA

)S

UI1

4=

SIG

X(4

)*C

OS

{TH

ET

A)+

ST

RE

ST

{NN

-2)+

SIG

Y{4

)*S

IN{T

HE

TA

)S

UM

5=

SIG

X(5

)*S

IN(T

HE

TA

)+S

TR

ES

T(N

N-l

)+S

IGY

{5)*

CO

S(T

HE

TA

)S

UM

6=

SIG

X(6

)*S

IN(T

HE

TA

)+S

TR

ES

T{N

N)+

SIG

Y(6

)*C

OS

(TH

ET

A)

37

0P

RIN

T2

11

0,

N.S

UM

l.S

UM

2,S

UM

3,S

UM

4,S

UM

5,S

UM

6,X

AN

G(J

)3

90

CO

NT

INU

EIF

(N.

LT

.N

UM

EL)

GO

TO3

05

C CW

RIT

EO

NT

AP

E3

ST

RE

SS

ES

OF

AL

LE

LE

ME

NT

SC

40

0W

RIT

E(3

)ST

RE

SXIF

(NG

RD

.EG

.2)

WR

ITE

(3)

ST

RE

SY

TS

=T

S+

DT

*NP

RIN

TIT

=IT

+N

PR

INT

M=

M+

{NP

RIN

T-1

)*N

MO

IF((

M+

NM

O).

GT

.NB

)G

OTO

50

0G

OTO

20

55

00

IF(I

BL

OC

K.G

E.N

BL

OC

K)

GO

TO5

50

M=1

1-N

BGO

TO2

00

55

0A

NG

LE

=O.

PR

INT

22

00

,A

NG

LE

Page 205: Dynamics Technology, Inc.

SUB

RO

UT

INE

RE

SPO

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E6

"~l ."'""S

29

0

29

5

30

0

30

5

31

0

31

5

32

0

32

5

33

0

DO

57

01

=1

,N

UM

NP

57

0P

RIt

H2

20

5,

1,

(TX

l3*

I-3

+J)

.X

MA

Xl3

*I-

3+

J).J=

l.3

)P

RIN

T2

21

0.

AN

GLE

DO

58

0N

=l.

NU

ME

L5

80

PRIt

H2

21

5,

N.

<T

STl6

*N

-6+

I),

STR

t1A

Xl6

*N

-6+

I).

1=

1.

6)

IFlN

GR

D.

NE.

2)

RE

TU

RN

AN

GL

E=

90.

PR

INT

22

00

,A

NG

LED

O5

85

I=l.

NU

MN

P5

85

PR

INT

22

05

.1

,lT

Y(3

*I-

3+

J).Y

MA

X(3

*I-

3+

J).J

=1

.3)

PR

INT

22

10

.A

NG

LED

O5

90

N=

l.N

UM

EL

59

0P

RIN

T2

21

5,

N.

(TT

Tl6

*N

-6+

I),S

TT

MA

X(6

*N

-6+

I).

1=

1.6

)1

00

2FO

RM

AT

l8F

l0.0

)1

01

0FO

RM

AT

(16

15

)2

00

2FO

RM

AT

11

11

4H

AN

GLE

OU

TPU

T./

(10

X.F

l0.

0»2

00

5FO

RM

AT

(II*

FR

EQ

OF

SYST

EM

INR

AD

/SE

C*

/15

X.

10

F1

0.

20

08

FO

RM

AT

(lH

l/5

0H

ST

AT

ICR

ES

PO

NS

ES

AR

EN

OT

INC

LU

DE

DIN

Tlt

1EH

IST

OR

Y)

20

10

FOR

MA

T1

11

22

HN

OD

AL

PT

SFO

RO

UT

PUT

1(5

X,

10

11

20

12

FOR

MA

T11

141H

OU

TPU

TS

AR

EP

RIN

TE

DFO

RA

LL

NO

DA

LP

OIN

TS

I)2

02

0FO

RM

AT

11

12

3H

EL

EM

EN

TN

OFO

RO

UT

PUT

11

5X

.1

01

10

»2

02

2FO

RM

AT

11

13

7H

OU

TPU

TS

AR

EP

RIN

TE

DFO

RA

LL

EL

EM

EN

TS

I)2

05

0FO

RM

AT

11

11

14

HT

=,F

l0.4

.5H

SE

C.

)2

05

1FO

RM

AT

l11

10

X,2

4H

DIS

PLA

CE

ME

NT

ININ

CH

ES

1I1

8X

.2H

NP

.lO

X.

lHR

,18

X.

1HZ

.1

8X

.lH

T.

15X

,8H

PR

ES

SU

RE

.2

16

X.

lSH

AN

GL

EID

EG

RE

ES

)I)

20

60

FOR

MA

T11

SX

.I5

.4(4

X.E

1S

.8).

10

X.F

l0.

4)

21

00

FOR

MA

T(1

11

0X

.lS

HS

TR

ES

SIN

PS

I1

/1S

X.6

HE

L.

NO

6XS

HS

IGR

7X5H

SIG

Z7X

SHSI

.·G..T

6X6H

TA

UR

Z26

X6H

TA

UR

T6X

6HT

AU

ZT7X

15H

AN

GL

ElD

EG

RE

ES

)I)

21

10

FOR

MA

Tl1

5X

.I5

.6E

12

.4.5

X.F

l0.4

)2

20

0FO

RM

AT

llH

1/4

1H

DY

NA

MIC

DIS

PLA

CE

ME

NT

EN

VE

LO

PEIN

INC

HE

SIII

164

H-D

UE

TOH

OR

IZO

NT

AL

GR

OU

ND

MO

TIO

NA

LON

GT

HE

DIR

EC

TIO

NO

FA

NG

LE2

=,F

5.

1,II

1I

13

X.2

HN

P,

6X.

4HT

IME

.l1

X.

lHR

.6X

.4H

TIM

E,

llX

.lH

Z.6

X.4

HT

IME

.llX

.lH

T)

22

05

FOR

MA

T(I

5,3

12

X.F

8.2

,E1

2.

22

10

FOR

MA

Tll

H1

/32

HD

YN

AM

ICS

TR

ES

SENV~LOPE

INP

SI

III

16

4H

-DU

ETO

HO

RIZ

ON

TA

LG

RO

UN

DM

OTI

ON

ALO

NG

TH

ED

IRE

CT

ION

OF

AN

GLE

2=

.F5

.1.1

11

11

lX,

5HE

L.

NO

.4X

.4H

TIM

E,5

X.

5H

SIG

R.4

X.4

HT

IME

.5X

.5H

SIG

Z.4

X.4

HT

IME

.2

5X

.5H

SIG

T.4

X.4

HT

IME

,4X

.6H

TA

UR

Z.4

X.4

HT

IME

.4X

.6H

TA

UR

T.4

X,4

HT

lt1

E.

34X

.6H

TA

UZ

Tl

22

15

FOR

MA

TlI

6.6

IF8

.2.E

l0.

RETURt~

END

SYM

BO

LIC

RE

FER

EN

CE

MA

P(R

=2

)

EN

TR

YP

OIN

TS

3R

ESP

ON

DE

FL

INE 1

RE

FER

EN

CE

S2

91

32

9

Page 206: Dynamics Technology, Inc.

SUB

RO

UT

INE

RE

SPO

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E7

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

AR

EAL

AR

RA

YF.

P.R

EFS

14

14

51

46

14

71

64

16

51

66

DE

FIN

ED

12

21

6A

NG

LER

EAL

RE

FS2

85

28

82

93

29

6D

EFI

NE

D2

84

29

20

AX

BU

FR

EAL

AR

RA

YF.

P,R

EF

S2

01

33

DE

FIN

ED

11

26

0AX

MR

EAL

AR

RA

YF.

P.R

EFS

20

19

2D

EFI

NE

D1

13

30

AY

BU

FR

EAL

AR

RA

YF.

P.R

EFS

20

13

2D

EFI

NE

D1

12

80

AYM

REA

LA

RR

AY

F.P

.R

EF

S2

01

93

DE

FIN

ED

11

32

36

7C

REA

LA

RR

AY

LS4

AR

GR

EFS

12

0D

TR

EAL

F.P.

RE

FS6

36

82

76

DE

FIN

ED

12

6EL

MA

SSR

EAL

AR

RA

YL

S4A

RG

RE

FS1

20

FHX

REA

LA

RR

AY

F.P.

RE

FS1

91

88

DE

FIN

ED

111

10

FHY

REA

LA

RR

AY

F.P.

RE

FS1

91

90

DE

FIN

ED

11

12

0H

BR

EAL

AR

RA

YF

.P

.R

EFS

19

18

81

90

DE

FIN

ED

11

02

10

90

HL

REA

LA

RR

AY

'F.

P.R

EFS

19

19

21

93

DE

FIN

ED

11

04

10

92

16

4I

INT

EG

ER

RE

FS

24

25

26

38

39

45

46

54

56

73

2*

84

93

94

95

97

98

10

21

04

131

13

21

33

13

41

45

14

61

47

14

81

49

15

01

52

16

41

65

16

61

67

16

81

69

171

18

21

88

19

01

92

19

33

*2

00

3*

20

13

*2

02

20

42

23

22

43

*2

28

3*

22

92

36

23

72

38

24

62

47

24

83

*2

87

2*

29

03

*2

95

2*

29

8D

EFI

NE

D2

32

63

83

94

54

65

35

57

28

39

29

61

01

10

51

29

14

02

22

23

52

45

28

62

90

29

42

98

""2

17

1IB

Loe

ll,

INT

EG

ER

RE

FS

12

31

24

28

1D

EFI

NE

D1

18

12

3'-

Q0

IGR

AV

INT

EG

ER

F.P.

RE

FS

57

63

68

DE

FIN

ED

1

tv2

20

1I

IIt

HE

GE

RR

EFS

15

31

54

2*

15

61

57

17

21

73

2*

17

51

76

18

22

37

.2

39

2*

24

121

122

47

24

92

*2

51

25

22

58

DE

FIN

ED

15

21

71

181

23

62

46

25

70

IJE

LIN

TE

GE

RA

RR

AY

F.P

.R

EFS

14

46

25

8D

EFI

NE

D1

45

0IJ

ND

ItH

EG

ER

AR

RA

YF.

P.R

EF

S1

43

91

82

DE

Fm

ED

13

82

16

3IM

AX

It-H

EG

ER

.R

EFS

23

DE

FIN

ED

22

21

73

ITIt

HE

GE

RR

EF

S1

88

19

02

77

DE

FIN

ED

12

02

77

21

67

JIN

TE

GE

RR

EF

S7

17

32

*8

22

*8

41

25

12

61

27

12

81

52

17

11

99

20

42

26

22

82

29

2*

23

22

*2

33

26

12

68

2*

28

72

*2

95

DE

FIN

ED

70

81

10

81

25

12

61

27

12

81

51

17

01

98

22

52

30

26

02

87

29

52

21

0JJ

INT

EG

ER

RE

FS

22

82

29

DE

FIN

ED

22

60

LMIN

TE

GE

RA

RR

AY

LS4

AR

GR

EF

S1

27

98

20

U1M

INT

EG

ER

ARR

AY

F.

P.

RE

FS

14

88

22

6D

EFI

NE

D1

71

82

21

72

17

5M

ItH

EG

ER

RE

FS1,

301

31

13

21

33

13

42

78

27

92

82

DE

FIN

ED

12

21

30

27

82

82

0M

BU

FIN

TE

GE

RF.

P.R

EF

S1

24

DEFn~ED

12

16

6M

NIN

TE

GE

RR

EFS

71

73

80

82

84

87

10

41

09

2*

14

52

*1

46

2*

14

72

*1

64

2*

16

52

*1

66

2*

19

22

*1

93

22

62

28

22

9D

EFI

NE

D6

97

58

09

01

03

10

91

44

16

319

12

19

35

2M

TYPE

INT

EG

ER

LS4

AR

GR

EF

S1

22

16

5N

INT

EG

ER

RE

FS

30

31

79

86

2*

10

92

20

22

12

34

25

82

68

27

03

*2

90

3*

29

8D

EFI

NE

D3

03

17

81

09

21

62

20

28

92

97

Page 207: Dynamics Technology, Inc.

SUB

RO

UT

INE

RE

SPO

N7

6/1

76

OPT

""l

ST

AT

ICFT

N4

.8+

49

80

3/1

6/8

11

6.3

9.3

9PA

GE

8

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N0

NA

NG

LEIN

TE

GE

RF

.P

.R

EF

S3

03

11

98

26

0D

EFI

NE

D1

21

74

NB

IIH

EG

ER

RE

FS

12

51

26

12

71

28

27

92

82

DE

FIN

ED

121

12

40

NB

LOC

KIN

TE

GE

RF

.P

.R

EF

S1

24

28

1D

EFI

NE

D0

NB

UF

IIH

EG

ER

F.P

.R

EF

S2

*2

01

21

DE

FIN

ED

0N

EGIN

TE

GE

RF

.P.

RE

FS

3*

14

18

55

92

DE

FIN

ED

10

NG

RDIN

TE

GE

RF.

P.

RE

FS

63

68

11

21

27

12

813

11

32

15

91

90

19

32

10

22

72

31

24

42

75

29

1D

EFI

NE

D1

0NM

OIN

TE

GE

RF

.P

.R

EF

S1

92

*2

02

66

36

81

03

10

91

29

14

41

63

19

12

78

27

9D

EF

INE

D1

22

11

NN

INT

EG

ER

RE

FS

23

62

46

26

22

63

26

42

65

26

62

67

DE

FIN

ED

23

40

NN

ELIN

TE

GE

RF

.P

.R

EF

S4

34

44

54

61

35

21

52

55

25

62

57

DE

FIN

ED

14

90

NN

OD

EIN

TE

GE

RF

.P

.R

EF

S3

63

73

83

91

35

13

91

79

18

01

81

DE

FIN

ED

14

20

NP

RII

HIN

TE

GE

RF

.P

.R

EF

S6

36

82

76

27

72

78

DE

FIN

ED

10

NT

INT

EG

ER

F.

P.

RE

FS

2*

19

63

68

DE

FIN

ED

10

NUM

INT

EG

ER

F.

P.

RE

FS

2*

14

18

53

96

DE

FIN

ED

10

NU~lEL

INT

EG

ER

F.

P.

RE

FS

44

49

63

68

78

79

86

22

12

56

27

02

89

29

7D

EFI

NE

D1

'-....

0N

IJM

NP

INT

EG

ER

F.

P.

RE

FS

2*

19

22

37

42

63

68

10

1

-....\

)1

40

18

02

86

29

4D

EFI

NE

D1

~j

21

70

NW

ALL

INT

EG

ER

RE

FS

10

71

08

DE

FIN

ED

10

61

41

6P

IR

EA

LR

EF

S1

99

26

1D

EFI

NE

D2

13

53

GR

EA

LA

RR

AY

LS4

AR

GR

EF

S1

21

32

SR

EAL

AR

RA

YL

S4A

RG

RE

FS

12

22

12

SAE

SR

E'A

LR

EF

S2

40

25

0D

EF

INE

D2

38

24

80

SIG

XR

EAL

AR

RA

YF

.P

.R

EF

S1

42

29

23

32

37

23

82

62

26

32

64

26

52

66

26

7D

EFI

NE

D1

22

32

29

23

30

SIG

YR

EA

LA

RR

AY

F.

P.

RE

FS

14

22

82

32

24

72

48

26

22

63

26

42

65

26

62

67

DE

FIN

ED

12

24

22

82

32

22

13

SMA

BR

EA

LR

EF

S2

40

25

0D

EFI

NE

D2

39

24

91

4S

SR

EAL

AR

RA

YL

S4A

RG

RE

FS

12

84

0SS

MR

EAL

AR

RA

YF

.P

.R

EF

S1

48

92

28

22

9D

EFI

NE

D1

73

84

21

80

ST

RE

ST

RE

AL

AR

RA

YF

.P

.R

EF

S1

86

52

62

26

32

64

26

52

66

26

7D

EFI

NE

D1

54

62

0ST

RE

SXR

EA

LA

RR

AY

F.

P.

RE

FS

14

24

12

74

DE

FIN

ED

12

37

0ST

RE

SYR

EAL

AR

RA

YF

.P

.R

EF

S1

42

51

27

5D

EFI

NE

D1

24

70

STR

MA

XR

EAL

AR

RA

YF

.P

.R

EF

S1

42

39

29

0D

EFI

NE

D1

98

24

10

STTM

AX

REA

LA

RR

AY

F.

P.

RE

FS

14

24

92

98

DE

FIt-.

lED

19

72

51

22

04

sur1

XP

REA

LR

EF

S1

92

20

3D

EFI

NE

D1

88

19

22

20

5S

UIW

PR

EA

LR

EF

S1

93

20

3D

EFI

NE

D1

89

19

01

93

21

76

SUM

lR

EA

LR

EF

S1

45

14

81

64

16

72

04

26

8D

EF

INE

D1

41

14

51

60

16

42

00

26

22

17

75U

M2

REA

LR

EF

S1

46

14

91

65

16

82

04

26

8D

EF

INE

D1

42

14

61

61

16

52

01

26

32

20

0SU

t13

REA

LR

EF

S1

47

15

01

66

16

92

04

26

8D

EFI

NE

D1

43

14

71

62

16

62

02

26

42

20

7SU

M4

REA

LR

EF

S-2

042

68

DE

FIN

ED

20

32

65

22

14

SUt1

5R

EAL

RE

FS

26

8D

EFI

NE

D2

66

Page 208: Dynamics Technology, Inc.

SUB

RO

UT

INE

RE

SPO

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E9

VA

RIA

BL

ES

SNT

YPE

RE

LO

CA

TIO

N2

21

5SU

r16

REA

LR

EFS

26

8D

EFI

NE

D2

67

22

06

THET

AR

EAL

RE

FS2

*2

00

2*

20

12

*2

02

2*

20

32

*2

62

2*

26

32

*2

64

2*

26

52

*2

66

2*

26

7D

EFI

NE

D1

99

26

12

17

2T

SR

EAL

RE

FS1

35

15

71

76

24

22

52

27

6D

EFI

NE

D1

19

27

60

TST

REA

LA

RR

AY

F.P

.R

EFS

14

29

0D

EFI

NE

D1

24

20

TT

TR

EAL

AR

RA

YF.

P.

RE

FS1

42

98

DE

FIN

ED

12

52

0TX

REA

LA

RR

AY

F.P

.R

EF

S1

42

87

DE

FIN

ED

12

41

57

0TY

REA

LA

RR

AY

F.P

.R

EF

S1

42

95

DEFIt~ED

12

51

76

0W

REA

LA

RR

AY

F.P.

RE

FS

14

26

DE

FIN

ED

10

XR

EAL

AR

RA

YF.

P.R

EFS

14

15

31

56

20

02

01

20

22

09

22

9D

EFI

NE

D1

14

81

49

15

02

20

2X

AB

SR

EA

LR

EF

S1

55

17

4D

EFI

NE

D1

53

17

20

XA

NG

RE

AL

AR

RA

YF.

P.

RE

FS

14

31

19

92

04

26

12

68

DE

FIN

ED

13

00

XB

UF

REA

LA

RR

AY

F.

P.R

EFS

14

13

4D

EF

INE

D1

12

51

24

XCR

EAL

LS4

AR

GR

EF

S1

20

nl

REA

LA

RR

AY

F.P.

RE

FS

14

14

51

46

14

7D

EFI

NE

D1

13

40

XMAX

RE

AL

AR

RA

YF

.P

.R

EF

S1

41

54

28

7D

EFI

NE

D1

95

15

60

XST

REA

LA

RR

AY

F.

P.

RE

FS

18

64

20

02

01

20

2D

EF

INE

D1

56

61

22

03

XXR

EAL

RE

FS

15

51

74

DE

FIN

ED

15

41

73

0Y

REA

LA

RR

AY

F.P

.R

EF

S1

41

72

17

52

00

20

12

02

21

02

28

DE

FIN

ED

19

41

67

16

81

69

'f-.0

YB

UF

RE

AL

AR

RA

YF.

P.

RE

FS

14

13

1D

EF

INE

D1

12

71

25

YCR

EAL

LS4

AR

GR

EF

S1

2~

0YM

REA

LA

RR

AY

F.P.

RE

FS

14

16

41

65

16

6D

EFI

NE

D1

13

1(Y

0YM

AXR

EAL

AR

RA

YF.

P.R

EF

S1

41

73

29

5D

EFI

NE

D1

93

17

5,_

.-,

FIL

EN

AM

ESM

OD

EIN

PUT

Ft1T

REA

DS

30

38

45

OU

TPU

TFM

TW

RIT

ES

26

31

39

41

46

48

67

13

51

39

20

42

15

26

82

85

28

72

88

29

02

93

29

52

96

29

8T

AP

El

MO

TIO

N7

6T

AP

E2

UN

Ft1T

REA

DS

12

51

26

MO

TIO

N1

16

TA

PE

3U

NFf

1TW

RIT

ES

63

64

65

68

20

92

10

27

42

75

REA

DS

61

62

MO

TIO

N5

2T

AP

E4

UN

FMT

WR

ITE

S8

88

9R

EAD

S2

17

21

8M

OTI

ON

77

21

4T

AP

E7

UN

FMT

REA

DS

12

71

28

MO

TIO

N1

17

TA

PE

9U

NFM

TR

EAD

S1

06

10

911

11

12

MO

TIO

N1

00

EX

TE

RN

AL

ST

YPE

AR

GS

RE

FER

EN

CE

SC

OS

REA

L1

LIB

RA

RY

20

02

01

20

22

03

26

22

63

26

42

65

26

62

67

RE

AD

l4

79

SIN

REA

L1

LIB

RA

RY

20

02

01

20

22

03

26

22

63

26

42

65

26

62

67

INL

INE

FUN

CT

ION

ST

YPE

AR

GS

DEF

LIN

ER

EFE

RE

NC

ES

AB

SR

EAL

1IN

TR

IN1

53

15

41

72

17

32

38

23

92

48

24

9

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S0

52

52

36

211

413

76

61

24

33

64

01

06

15

48

44

Page 209: Dynamics Technology, Inc.

SUB

RO

UT

INE

RE

SPO

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E1

0

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S1

12

18

50

43

47

02

05

45

30

21

56

55

16

62

46

75

71

72

25

69

66

02

87

46

97

07

20

31

85

81

83

25

73

28

88

62

64

40

91

78

87

05

09

59

20

60

98

96

09

01

04

10

11

03

09

51

09

10

83

61

10

01

10

10

51

07

41

22

00

12

32

83

45'3

20

51

29

28

00

21

01

34

12

90

22

01

47

14

45

54

23

01

58

151

15

50

23

21

66

16

36

23

23

31

77

17

01

74

62

62

34

17

81

59

02

35

18

21

81

~6

37

23

71

87

18

01

82

02

38

19

41

91

02

40

20

41

98

........

74

32

50

20

51

40

17

91

83

77

13

05

21

72

70

10

25

35

02

29

22

22

25

22

71

04

53

60

23

32

30

23

11

07

03

65

24

32

35

24

01

11

13

66

25

32

45

25

01

11

43

67

25

42

44

03

68

25

82

57

11

25

36

92

60

25

62

58

03

70

26

82

60

12

20

39

02

69

21

92

55

25

91

22

54

00

27

42

21

12

56

50

02

81

27

91

26

35

50

28

42

81

05

70

28

72

86

05

80

29

02

89

05

85

29

52

94

05

90

29

82

97

17

55

10

02

FMT

29

93

01

75

71

01

0FM

T3

00

38

45

17

61

20

02

FMT

30

13

11

76

62

00

5FM

T3

02

26

17

74

20

08

FMT

30

36

72

00

32

01

0FM

T3

04

39

20

10

20

12

FMT

30

541

20

16

20

20

FMT

30

64

62

02

32

02

2FM

T3

07

48

20

31

20

50

FMT

30

81

35

20

35

20

51

FMT

30

91

39

20

50

20

60

FMT

31

22

04

20

54

21

00

FMT

31

32

15

Page 210: Dynamics Technology, Inc.

SUB

RO

UT

INE

RE

SPO

N7

6/1

76

OP

T=

lS

TA

TIC

FTN

4.8

+4

98

03

/16

/81

16

.39

.39

PAG

E11

STA

TE

ME

NT

LA

BE

LS

DE

FL

INE

RE

FER

EN

CE

S2

07

12

11

0FM

T3

16

26

82

07

52

20

0FM

T3

17

28

52

93

21

20

22

05

Ft1T

32

12

87

29

52

12

32

21

0FM

T3

22

28

82

96

21

54

22

15

FMT

32

82

90

29

8

LO

OPS

LA

BE

LIN

DE

XFR

OM

-TO

LEN

GTH

PR

OP

ER

TIE

S2

05

I2

32

52B

INST

AC

K1

20

.20

I5

35

42B

INST

AC

K1

27

21

I5

55

62B

INST

AC

K1

73

28

MN

69

74

24B

NO

TIN

NE

R1

74

28

J7

07

420

BN

OT

INN

ER

20

72

8I

72

74

2BIN

STA

CK

22

44

0N

78

9143

BEX

TR

EF

SN

OT

INN

ER

23

13

1J

818

52

2B

NO

TIN

NE

R2

46

31

I8

38

52B

INST

AC

K2

75

50

I9

29

52B

INST

AC

K3

05

60

I9

69

82B

INST

AC

K3

13

90

I1

01

10

41

48

NO

TIN

NE

R3

22

90

MN

10

31

04

2BIN

STA

CK

33

01

00

I1

05

11

034

BEX

TR

EF

SN

OT

INN

ER

33

59

5J

10

81

09

24

8EX

TR

EFS

NO

TIN

NER

34

4M

N1

09

10

9I1

BEX

TR

EFS

46

62

10

I1

29

13

41

08

INST

AC

K

~5

11

25

0I

14

02

05

2351

3EX

TR

EF

SN

OT

INN

ER

Q5

22

22

0M

N1

44

14

77B

INST

AC

K

~5

46

23

0J

15

11

58

lOB

INST

AC

K5

71

23

2M

N1

63

16

67B

INST

AC

K6

15

23

3J

17

01

77

lOB

INST

AC

K6

32

23

5I

I18

11

82

5BIN

STA

CK

EX

ITS

65

62

38

MN

19

11

94

7BIN

STA

CK

66

72

40

J1

98

20

454

BEX

TR

EF

S7

76

39

0M

N2

19

26

922

5BEX

TR

EFS

EX

ITS

NO

TIN

NE

R1

00

23

50

I2

22

22

933

BN

OT

INN

ER

10

21

35

0J

22

52

29

11

8IN

STA

CK

10

42

36

0J

23

02

33

6BIN

STA

CK

10

61

36

5I

23

52

43

lIB

INS

TA

Ck

11

02

36

6I

24

52

53

11

8IN

STA

CK

11

20

36

8I

I2

57

25

858

INST

AC

KE

XIT

S1

12

63

70

J2

60

26

87

28

EXT

RE

FS

12

67

57

0I

28

62

87

21B

EXT

RE

FS

NO

TIN

NE

R1

27

2J

28

72

87

12B

EXT

RE

FS

13

12

58

0t~

28

92

90

21

8EX

TR

EF

SN

OT

INN

ER

13

15

I2

90

29

01

2B

EX

TR

EFS

13

41

58

5I

29

42

95

21

8EX

TR

EF

SN

OT

INN

ER

13

44

J2

95

29

51

28

EXT

RE

FS

13

64

59

0N

29

72

98

21B

EXT

RE

FSN

OT

INN

ER

13

67

I2

98

29

812

BEX

TR

EF

S

COr"

,MO

NB

LO

C}'

.SLE

NG

THL

S4A

RG

28

3

ST

AT

IST

ICS

PRO

GR

Af1

LEN

GTH

24

07

8·1

28

7SC

ML

AB

EL

ED

COM

MO

NLE

NG

TH4

33

B2

83

52

00

08

SCt1

USE

D

Page 211: Dynamics Technology, Inc.

LOA

DM

AP

-E

RST

CY

BER

LOA

DER

1.5

-49

80

3/1

6/8

11

6.

40

.2

5.

PAG

E

FWA

OF

THE

LOA

D1

11

LW

A+l

OF

THE

LOA

D1

73

11

3

TR

AN

SFE

RA

DD

RE

SS--

ER

ST2

27

60

PRO

GR

AM

ENTR

YP

OIN

TS

--

ER

ST

22

76

0

PRO

GR

AM

AN

DB

LOC

KA

SSIG

NM

EN

TS.

BLO

CK

AD

DR

ESS

LE

NG

TH

FIL

ED

ATE

PRO

CSS

RV

ERL

EV

EL

HA

RD

WA

RE

CO

MM

ENTS

IFC

ON

STI

11

13

ICN

TR

LI

11

41

1E

RST

12

52

47

65

LGO

03

/16

/81

FTN

4.8

49

87

67

XI

PRO

GR

AM

OPT

='l

ST

AT

ICM

SCH

ECK

25

11

241

LGO

03

/16

/81

FTN

4.8

49

876

7XI

SUB

RO

UT

INE

OPT

='l

ST

AT

ICLA

YO

UT

25

15

33

36

4LG

O0

3/1

6/8

1FT

N4

.84

98

7b

7X

ISUBROUTINEOPT~1

ST

AT

ICIL

S4

AR

G/

30

53

74

33

.EL

EMEN

T3

11

72

20

3LG

O0

3/1

6/8

1FT

N4

.84

98

767X

ISUBROUTINEOPT~l

ST

AT

ICSS

LAW

31

37

54

06

LGD

03

/16

/81

FTN

4.8

49

876

7XI

SUBROUTINEOPT~1

ST

AT

ICS

TR

AIN

32

00

33

03

LGO

03

/16

/81

FTN

4.8

49

876

7XI

SUBROUTINEOPT~l

ST

AT

IC

NM

AST

IF3

23

06

16

27

LGO

03

/16

/81

FTN

4.

84

98

767X

ISUBROUTINEOPT~l

ST

AT

IC/B

UF

/3

41

35

54

16

\)W

RIT

El

41

55

35

4LG

O0

3/1

6/8

1FT

N4

.84

98

76

7X

JSU

BR

OU

TIN

EO

PT=

'lS

TA

TIC

t.vTO

TAL

41

62

74

00

LGO

03

/16

/81

FTN

4.8

49

87

67

XI

SU

BR

OU

TIN

EO

PT

=l

ST

AT

ICR

EAD

14

22

27

61

LGO

03

/16

/81

FTN

4.

84

98

767X

IS

UB

RO

UT

INE

OP

T=

lS

TA

TIC

HY

DR

OST

42

31

02

71

LGO

03

/16

/81

FTN

4.8

49

8.,

.7

67

XI

SUBROUTINEOPT~l

ST

AT

ICS

TA

TIC

42

60

13

65

LGO

03

/16

/81

FTN

4.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=l

ST

AT

ICB

AN

SOL

43

16

62

21

LGO

03

/16

/81

FTN

4.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=l

ST

AT

ICB

NE

IGN

43

40

71

32

7LG

O0

3/1

6/8

1FT

N4

.84

98

76

7X

IS

UB

RO

UT

INE

OP

T=

lS

TA

TIC

EIG

EN

44

73

61

07

41

LGO

03

/16

/81

FTN

4.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=l

ST

AT

ICEX

T5

56

77

64

6LG

O0

3/1

6/8

1FT

N4

.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=l

ST

AT

ICSO

LE

XT

56

54

51

73

6LG

O0

3/1

6/8

1FT

N4

.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=l

ST

AT

ICB

ESN

KS

60

50

32

47

LCD

03

/16

/81

FTN

4.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=l

ST

AT

ICB

ES

NIS

60

75

24

02

LGO

03

/16

/81

FTN

4.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=l

ST

AT

ICIN

T6

13

54

56

5LG

O0

3/1

6/8

1FT

N4

.8

49

87

67

XI

SUBROUTINEOPT~l

ST

AT

ICBN

DW

TH6

21

41

26

0LG

O0

3/1

6/8

1FT

N4

.84

98

767X

ISU

BR

OU

TIN

EO

PT=1

ST

AT

ICS

OL

INT

62

42

11

05

3LG

O0

3/1

6/8

1FT

N4

.84

98

767X

IS

UB

RO

UT

INE

OP

T=

lS

TA

TIC

PR

INT

A6

34

74

11

0LG

O0

3/1

6/8

1FT

N4

.84

98

76

7X

IS

UB

RO

UT

INE

OP

T=

lS

TA

TIC

FOR

MH

63

60

42

33

LGO

03

/16

/81

FTN

4.

84

98

767X

IS

UB

RO

UT

INE

OP

T=

lS

TA

TIC

MSO

LVC:

64

03

71

41

LGO

03

/16

/81

FTN

4.

84

98

767X

IS

UB

RO

UT

INE

OP

T=

lS

TA

TIC

BA

NSL

I6

42

00

35

6LG

O0

3/1

6/8

1FT

N4

.84

98

76

7X

IS

UB

RO

UT

INE

OP

T=

lS

TA

TIC

QU

AK

E6

45

56

11

0LG

O0

3/1

6/8

1FT

N4

.84

98

767X

IS

UB

RO

UT

INE

OP

T=

lS

TA

TIC

PF

L6

46

66

15

LGO

03

/16

/81

CO

MPA

SS3

.64

98

TS

TE

P6

47

03

66

6LG

O0

3/1

6/8

1FT

N4

.84

98

'76

7XI

SU

BR

OU

TIN

EO

PT

=l

ST

AT

ICR

ESPO

N6

55

71

24

07

LGO

03

/16

18

1F

TN

4.6

498

76

7X

IS

UB

RO

UT

INE

OP

T=

lS

TA

TIC

/OO

11

Z2

B/

70

20

03

AX

IS7

02

03

50

5U

L-D

TC

PL

O't

08

/13

/80

FrN

4.(

34

9(3

76

7X

IS

UB

RO

UT

INE

OP

T=

lTR

AC

ED

ASH

70

71

04

53

UL

-DT

CPL

OT

08

/13

/80

FTN

4.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=l

TRA

CE

/JB

L/

71

36

36

ST

AT

J7

13

71

7U

L-D

TC

PLO

T0

8/1

3/8

0C

OM

PASS

3.

64

98

NEW

PEN

71

40

03

5U

L-D

TC

PLO

T0

8/1

3/8

0FT

N4

.84

98

767X

ISUBROUTINEOPT~l

TRA

CE

/OO

I1Z

2A

/7

14

35

4O

FF

SE

T7

14

41

16

UL

-DT

CPL

OT

08

/13

/80

FTN

4.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=l

TRA

CE

QIJ

,l\D

AX

71

45

74

20

UL

-DT

CPL

OT

08

/13

/80

FTN

4.

84

98

76

7X

ISU

BR

OU

TIN

EO

PT=1

TRA

CE

Page 212: Dynamics Technology, Inc.

LO

/,DM

AP

-E

RST

CV

BER

LOA

DER

1.5

-49

80

3/1

6/8

11

6.4

0.2

5.

PAG

E2

BLO

CK

AD

DR

ESS

LE

NG

TH

FIL

ED

ATE

PRO

CSS

RV

ERL

EV

EL

HA

RD

WA

RE

CO

MM

ENTS

SCA

LE

72

07

71

70

UL

-DT

CP

LO

T0

8/1

3/8

0FT

N4

.84

98

767X

ISU

BR

OU

TIN

EO

PT=

1TR

AC

ES

ET

AX

IS7

22

67

22

5U

L-D

TC

PL

OT

08

/13

/80

FTN

4.8

49

876

7XI

SUB

RO

UT

INE

OPT

=1

TRA

CE

SYM

BO

L7

25

14

74

7U

L-D

TC

PL

OT

08

/13

/80

FTN

4.8

49

876

7XI

SUB

RO

UT

INE

OPT

=1

TRA

CE

PDl1

P7

34

63

47

1U

L-D

TC

PL

OT

10

/22

/80

FTN

4.8

49

876

7XI

SUB

RO

UT

INE

OPT

=1

BU

FF7

41

54

72

0U

L-D

TC

PL

OT

10

/22

/80

FTN

4.8

49

876

7XI

SUB

RO

UT

INE

OPT

"'1

/DE

VIC

E/

75

07

43

PLO

TS

75

07

73

6U

L-D

TC

PL

OT

10

/28

/80

FTN

4.8

49

876

7XI

SUB

RO

UT

INE

OPT

=1

RST

R7

51

35

42

UL

-DT

CP

LO

T1

0/2

8/8

0FT

N4.

84

98

767X

ISU

BR

OU

TIN

EO

PT=

1G

RA

F11

75

17

72

61

UL

-DT

CP

LO

T0

8/1

3/8

0FT

N4.

84

98

767X

ISU

BR

OU

TIN

EO

PT=

1TR

AC

EJS

TA

T7

54

60

44

UL

-DT

CP

LO

T0

8/1

3/8

0FT

N4

.84

98

767X

ISU

BR

OU

TIN

EO

PT=

1TR

AC

EN

Ut1

BER

75

52

42

43

UL

-DT

CP

LO

T0

8/1

3/8

0FT

N4

.84

98

767X

ISU

BR

OU

TIN

EO

PT=

1TR

AC

EW

HER

E7

57

67

32

UL

-DT

CP

LO

T0

8/1

3/8

0FT

N4.

84

98

767X

IS

UB

RO

UT

INE

OP

T=

1TR

AC

ES

LIN

E7

60

21

12

1U

L-D

TC

PL

OT

08

/21

/80

FTN

4.8

49

876

7XI

SU

BR

OU

TIN

EO

PT

=1

TRA

CE

IMU

LP

LO

TI

76

14

22

MU

LPLT

76

14

45

06

UL

-DT

CP

LO

T0

8/2

1/8

0FT

N4

.84

98

767X

IS

UB

RO

UT

INE

OP

T=

lT

RA

CE

PAC

KI

76

65

21

4U

L-D

TC

PL

OT

10

/22

/80

CO

MPA

SS3

.64

98

OPL

T7

66

66

13

5U

L-D

TC

PL

OT

10

/28

/80

FTN

4.

84

98

767X

ISU

BR

OU

TIN

EO

PT=

1PL

OT

77

02

34

14

UL

-DT

CP

LO

T1

0/2

8/8

0FT

N4

.84

98

767X

ISU

BR

OU

TIN

EO

PT=

1A

LO

GI0

77

43

76

SL

-FO

RT

RA

N0

9/2

0/7

9C

OM

PASS

3.6

49

8C

AL

L-B

Y-R

EF

ER

EN

CE

LIN

KTO

AL

OG

10.

ITO

J.7

74

45

32

SL

-FO

RT

RA

N0

9/2

0/7

9C

OM

PASS

3.

64

98

INT

EG

ER

TOIN

TE

GE

RE

XP

ON

EN

TIA

TIO

N.

OPT

=AL

LS

IN7

74

77

6S

L-F

OR

TR

AN

09

/20

/79

CO

MPA

SS3

.64

98

FC

L4

-E

VA

LU

AT

ES

INE

FUN

CT

ION

.C

AL

L-B

Y-R

EF

ER

SIN

CO

S.7

75

05

60

SL

-FO

RT

RA

N0

9/2

0/7

9C

OM

PASS

3.6

49

8T

RIG

ON

OM

ET

RIC

SIN

EO

RC

OS

INE

OF

X.O

PT=A

LL

.~

SGR

T7

75

65

6S

L-F

OR

TR

AN

09

/20

/79

CO

MPA

SS3

.64

98

CA

LL

-BY

-RE

FE

RE

NC

EL

INK

TOSG

RT

.~

SY

SA

ID=

77

57

31

SL

-FO

RT

RA

N0

9/2

0/7

9C

OM

PASS

3.6

49

8L

INK

BET

WEE

NS

YS

=A

IDA

ND

INIT

IAL

IZA

TIO

NC

OD

~S

YS

=A

ID7

75

74

7S

L-F

OR

TR

AN

09

/20

/79

CO

MPA

SS3

.64

98

AU

XIL

IAR

Y·M

ATH

LIB

RA

RY

LIN

KFO

RE

RR

OR

S.TAr~.

77

60

33

6S

L-F

OR

TR

AN

09

/20

/79

CO

MPA

SS3

.6

49

8T

RIG

ON

OM

ET

RIC

TAN

GEN

T.O

PT=

AL

L.

XT

OI*

77

64

111

SL

-FO

RT

RA

N0

9/2

0/7

9C

OM

PASS

3.

64

98

CA

LL

-BY

-RE

FE

RE

NC

EL

INK

TOX

TO

I.B

AC

KSP

=7

76

52

55

SL

-FO

RT

RA

N0

4/1

5/B

OC

OM

PASS

3.6

49

8B

AC

KSP

AC

EL

OG

ICA

LR

ECO

RD

./G

B.

10

./

77

72

71

35

/FC

L=

EN

T/

10

00

64

42

/FC

L.

C.

/1

00

12

62

6C

OM

IO=

10

01

54

10

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8CO

MM

ON

CO

DED

I/O

RO

UT

INE

SA

ND

CO

NST

AN

TS.

EN

CO

DE

=1

00

16

41

26

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8FO

RM

AT

TE

DW

RIT

EIN

TO

CO

RE.

FC

L=

FD

L1

00

31

24

0S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

FCL

CA

PSU

LE

LO

AD

ING

FE

IFS

T=

10

03

52

3S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

CO

NV

ER

TE

DD

ATA

STO

RA

GE

FLT

OU

T=

10

03

55

31

5S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS~.6

49

8CO

MM

ON

FLO

AT

ING

OU

TPU

TC

OD

EFO

RSY

S=1

00

67

24

64

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8FO

RT

RA

NO

BJE

CT

LIB

RA

RY

UT

ILIT

IES

.IN

CO

t1=

10

13

56

14

5S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

COM

MO

NIN

PU

TFO

RM

AT

TIN

GC

OD

EIN

PC

=1

01

52

32

07

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8FO

RM

AT

TE

DR

EAD

FOR

TR

AN

RE

CO

RD

.K

OD

ER

=1

01

73

24

76

SL'-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

OU

TPU

TFO

RM

AT

INT

ER

PRE

TE

R.

NA

MO

UT=

10

24

30

26

7S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

NA

t1E

LIS

TO

UT

PUT

RO

UT

INE

.1

1O

.3U

F./

10

27

17

22

7O

UT

B=

10

31

46

20

5S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

BIN

AR

YW

RIT

EFO

RT

RA

NR

ECO

RD

.O

UTC

OM

=1

03

35

32

04

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8CO

MM

ON

OU

TPU

TC

OD

ER

EW

IND

=1

03

55

73

3S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

99

-'P

OS

ITIO

NF

ILE

AT

BE

GIN

NIN

G-O

F-I

NF

OR

MA

TIO

N.

STL

CR

M=

10

36

12

31

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.

64

98

ST

AT

ICL

OA

DIN

GO

FFC

LC

APS

UL

ES

ST

LlB

I.1

03

64

32

4S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

ST

AT

ICLO

AD

FOR

BIN

AR

YIN

PU

T.

ST

LIC

O.

10

36

67

16

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8S

TA

TIC

LOA

DFO

RC

OD

EDIN

PU

T.

STL

RE

W.

10

37

05

14

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8S

TA

TIC

LOA

DFO

RR

EWIN

D.

CL

OC

K=

10

37

21

53

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8A

CC

ESS

SY

Srt

MC

LO

CK

SFO

RFO

RT

RA

N.

GO

rOE

R=

10

37

74

14

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8C

OM

PUTE

DG

OTO

ERR

OR

PRO

CE

SSO

R.

ALO

G.

10

40

10

63

SL

-FO

RT

RA

N0

9/2

0J7

9C

OM

PASS

3.6

49

8C

OM

PUTE

COM

MO

NA

ND

NA

TUR

AL

LO

GA

RIT

HM

S.O

PT=

EX

P.1

04

07

37

3S

L-F

OR

TR

AN

09

/20

/79

CO

MPA

SS3

.64

98

EX

PON

EN

TIA

LFU

NC

TIO

N.

ETO

POW

ERX.

OPT

=AL

LE

XP.

11SG

10

41

66

16

SL

-FO

RT

RA

N0

9/2

0/7

9C

OM

PASS

3.

64

98

COM

MO

NER

RO

RM

ESS

AG

ES

FOR

EX

PON

EN

TIA

TIO

N.

ITO

J*1

04

20

411

SL

-FO

RT

RA

N0

9/2

0/7

9C

OM

PASS

3.

64

98

CA

LL

-BY

-RE

FE

RE

NC

ELIN~

TOIT

OJ.

Page 213: Dynamics Technology, Inc.

LOA

DM

AP

-E

RS

TC

YB

ERLO

AD

ER1

.5-4

98

03

/16

/81

16

.4

0.2

5.

PAG

E3

BLO

CK

AD

DR

ESS

LE

NG

TH

FIL

ED

ATE

PRO

CSS

RV

ERL

EV

EL

HA

RD

WA

RE

CO

Mt1

ENTS

CO

S1

04

21

56

SL

-FO

RT

RA

N0

9/2

01

79

CO

MPA

SS3

.64

98

FC

L4

-E

VA

LU

AT

EC

OS

INE

FU

NC

TIO

N.

CA

LSQ

RT

.1

04

22

33

2S

L-F

OR

TR

AN

09

/20

17

9C

OM

PASS

3.6

49

8C

OM

PUTE

THE

SQU

AR

ER

OO

TO

FX

.O

PT

=A

LL

.S

YS

=lS

T1

04

25

56

5S

L-F

OR

TR

AN

09

/20

17

9C

OM

PASS

3.

64

98

MA

THL

IBR

AR

YL

INK

TOER

RO

RM

ESS

AG

EPR

OC

ESS

OTA

N1

04

34

26

SL

-FO

RT

RA

N0

9/2

01

79

CO

MPA

SS3

.6

49

8C

AL

L-B

Y-R

EF

ER

EN

CE

LIN

KTO

TAN

.X

TO

I.1

04

35

06

3S

L-F

OR

TR

AN

09

/20

/79

CO

MPA

SS3

.6

49

8R

EA

LTO

INT

EG

ER

EX

PO

NE

NT

IAT

ION

./S

TP

.EN

D/

10

44

33

1G

2NT

RY

=1

04

43

41

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8FC

LIN

ITIA

LIZ

AT

ION

RO

UT

INE

.FE

CI1

SK=

10

44

35

41

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8IN

ITIA

LIZ

EC

ON

STA

NT

S.F

LT

IN=

10

44

76

15

6S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

COM

MO

NF

LO

AT

ING

INPU

TC

ON

VE

RT

ER

.FM

TA

P=1

04

65

43

77

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8C

RA

CK

AP

LIS

TA

ND

FOR

MA

TFO

RK

OD

ER

/KR

AK

ER

.FO

RU

TL

=1

05

25

34

7S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

FCL

MIS

C.

UT

ILIT

IES

.G

ET

FIT

=1

05

32

26

1S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

LO

CA

TE

AN

FIT

GIV

EN

AF

ILE

NA

ME.

INP

B=

10

54

03

40

6S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

BIN

AR

YR

EAD

FOR

TR

AN

RE

CO

RD

.V

.RA

KER

=1

06

01

14

54

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8P

RO

CE

SS

FOR

MA

TT

ED

FOR

TR

AN

INP

UT

.N

At1

IN=

10

64

65

52

7S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

NA

ME

LIS

TIN

PU

TR

OU

TIN

E.

OU

TC

=1

07

21

41

50

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8FO

Rt1

AT

TE

DW

RIT

EFO

RT

RA

NR

EC

OR

D.

SP

A=

10

73

64

11S

L-F

OR

TR

AN

04

/15

/80

CO

MPA

SS3

.64

98

SP

A=

-S

UB

ST

ITU

TE

PAR

AM

ETER

AD

DR

ES

SE

S.

STL

BA

K.

10

73

75

12

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8S

TA

TIC

LOA

DFO

RB

AC

KSP

AC

E.

ST

LO

BI.

10

74

07

15

SL

-·FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8S

TA

TIC

LOA

DFO

RB

INA

RY

OU

TPU

T.

ST

Lo

eo.

10

74

24

12

SL

-FO

RT

RA

N0

4/1

5/8

0C

OM

PASS

3.6

49

8S

TA

TIC

LOA

DFO

RC

OD

EDO

UT

PUT

.

~C

PU.

SYS

10

74

36

40

SL

-SY

SL

IB0

9/2

0/7

9C

OM

PASS

3.

54

70

PR

OC

ES

SSY

STE

MR

EQ

UE

ST.

cr·lM

.K

IL1

07

47

61

2S

L-S

YS

LIB

09

/20

/79

CO

MPA

SS3

.64

98

CMM

V1.

1-

DE

AC

TIV

AT

ECM

M.

C)

CT

L$P

TL

10

75

10

34

SL

-SY

SL

IB1

2/1

1/7

9C

OM

PASS

3.6

49

8CR

MC

ON

TR

OL

LE

R-

PA

RT

IAL

GE

T/P

UT

.V

,C

TL

$SII

.P1

07

54

45

7S

L-S

YS

LIB

12

/11

/79

CO

MPA

SS3

.64

98

CRM

CO

NT

RO

LL

ER

-S

KIP

PH

YS

ICA

L/F

ILE

.L

IST

$RM

10

76

23

67

SL

-SY

SL

IB1

2/1

1/7

9C

OM

PASS

3.6

49

8CR

M-

AL

LO

CA

TE

SPA

CE

FOR

LIS

TO

FF

ILE

SR

M$S

YS=

10

77

12

5S

L-S

YS

LIB

12

/11

/79

CO

MPA

SS3

.64

98

CRM

-P

OS

TR

A+

lR

EQ

UE

STC

TL

$RM

10

77

17

57

6S

L-S

YS

LIB

12

/11

/79

CO

MPA

SS3

.64

98

CRM

CO

NT

RO

LL

ING

RO

UT

INE

.C

TL

$WR

11

05

15

40

SL

-SY

SL

IB1

2/1

1/7

9C

OM

PASS

3.6

49

8CR

MC

ON

TR

OL

LE

R-

WEO

X,

RE

WIN

DE

RR

$RM

11

05

55

25

SL

-SY

SL

IB1

2/1

1/7

9C

OM

PASS

3.6

49

8CR

ME

RR

OR

PRO

CE

SSO

RE

NT

RY

.E

RR

CA

P=1

10

60

23

24

SL

-FO

RT

RA

N0

4/1

5/8

0LO

AD

ER1

.5

49

8R

BL

$RI'i

11

06

02

oS

L-S

YS

LIB

12

/11

/79

CO

MPA

SS3

.64

98

CRM

-M

AN

IFE

ST

BA

ML

IB/A

AM

LIB

FOR

ST

AT

ICLO

AF

ER

CA

P=

11

11

26

22

7S

L-F

OR

TR

AN

04

/15

/80

LOA

DER

1.

54

98

CH

EK

$SQ

11

13

55

77

SL

-BA

ML

IB1

2/1

1/7

9LO

AD

ER1

.5

49

8C

LS

V$S

Q1

11

45

42

22

SL

-BA

t1L

IB1

2/1

1/7

9LO

AD

ER1

.5

49

8D

F$C

RI'I

11

16

76

22

6S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

EH

CR

I'i

11

21

24

44

5S

L-B

At1

LIB

12

/11

/79

LOA

DER

1.

54

98

GE

T$W

11

25

71

51S

L-B

At1

LIB

12

/11

/79

LOA

DER

1.

54

98

GE

UW

A1

12

64

21

75

SL

-BA

ML

IB1

2/1

1/7

9LO

AD

ER1

.5

49

8P

UT

$SQ

11

30

37

57

1S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

PUT$(~

11

36

30

21

3S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

PUT$L~A

11

40

43

17

2S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

RE

W$S

Q1

14

23

51

25

SL

-BA

ML

IB1

2/1

1/7

9LO

AD

ER1

.:5

49

8S

K3L

$SG

11

43

62

75

2S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

SK

IP$

SQ

11

53

34

23

4S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

WA

R$S

Q1

15

57

01

62

SL

-BA

t1L

IB1

2/1

1/7

9LO

AD

ER1

.54

98

CL

SF

$RM

11

57

52

42

5S

L-B

At'I

LIB

12

/11

/79

LOA

DER

1.5

49

8CO

I1M

$LJA

11

63

77

30

6S

L-I

lAM

LIB

12

/11

/79

LOA

DER

1.5

49

8G

ET

$SQ

11

67

05

61

6SL

.-B

AM

LIB

12

/11

/79

LOA

DER

1.5

49

8G

ET

$FU

11

75

23

11

7S

L-B

At1

LIB

12

/11

/79

LOA

DER

1.

54

98

GE

T$S

11

76

42

50

5S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

GE

T$Z

12

03

47

16

6S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

GPT

M$S

Q1

20

53

54

42

SL

-BA

ML

IB1

2/1

1/7

9LO

AD

ER1

.5

49

8L

BU

F$R

M1

21

17

71

34

SL

-BA

ML

IB1

2/1

1/7

9LO

AD

ER1

.5

49

8O

PEN

$Rt1

12

13

33

13

32

SL

-BA

t'IL

IB1

2/1

1/7

9LO

AD

ER1

.5

49

8P

UH

CI

12

26

65

65

SL

-BA

ML

IB1

2/1

11

79

LOA

DER

1.5

49

8

Page 214: Dynamics Technology, Inc.

~ \» 0',

LOA

DM

AP

-E

RST

CY

BER

LOA

DER

1.5

-49

80

3/1

6/8

11

6.

40

.25

.PA

GE

4

BLO

CK

AD

OR

ESS

LE

NG

TH

FIL

ED

ATE

PRO

CSS

RV

ERL

EV

EL

HA

RD

WA

RE

C0I

1ME

NT

S

PU

T$S

12

27

52

35

7S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

PUT

$Z1

23

33

17

5S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.5

49

8R

PE

$SQ

12

34

26

16

6S

L-B

AM

LIB

12

/11

/79

LOA

DER

1.

54

98

SK

FL

$SQ

12

36

14

36

SL-1

3AM

LIB

12

/11

17

9LO

AD

ER1

.5

49

8W

EOX

$SQ

12

36

52

13

7S

L-B

Af1

LIB

12

/11

/79

LOA

DER

1.

54

98

FCL

$RM

12

40

11

42

SL

-BA

MU

B1

2/1

1/7

9C

OM

PASS

3.6

49

8L

INK

/DE

LIN

KS

TA

TIC

CA

PSU

LE

S.PL

G$R

t11

24

01

1o

SL-B

AM

LI1

31

2/1

1/7

9C

OM

PASS

3.6

49

8II

12

40

53

47

04

0

.41

0C

PSE

CO

ND

S14

4500

13CM

STO

RA

GE

USE

D1

76

TA

BL

EM

OV

ES

Page 215: Dynamics Technology, Inc.

N C::>

"'J

UD

SU

CS

-17

6N

OS

/BE

1.3

RE

L4

99

-14

03

/16

/81

16

.39

.36

.K

CC

AN

RE

FRO

MIA

NA

TP

31

6.3

9.3

6.I

P0

00

09

02

4W

OR

DS

-F

ILE

INPU

T•

DC

04

16

.39

.36

.K

CC

.P3

,TI0

.*

**

**

**

**

.**

**

*.*

*.*

*,E

RS

TL

GO

16

.39

.36

.B

UIL

D1

6.3

9.3

8.

PU

RG

E.A

,ER

ST

LG

O.

IO=D

YN

AT

EC

H.

16

.39

.3

9.P

R1

0=

DY

NA

TEC

HP

FN

=E

RS

TL

GO

16

.3

9.3

9.P

RC

Y=

00

10

00

13

44

0W

OR

DS.

16

.39

.39

.R

ET

UR

N,A

.1

6.3

9.3

9.

EX

IT,

U.

16

.39

.39

.R

EG

UE

ST

,LG

O,*

PF

.1

6.

39

.3

9.F

TN

,R,A

,ST

AT

IC.

16

.40

.1

8.

4.

13

5C

PSE

CO

ND

SC

OM

PIL

AT

ION

TIM

E1

6.4

0.

18

.C

AT

AL

OG

.LG

O,

ER

ST

LG

o.ID

=DY

NA

TE

CH

.1

6.4

0.

19

.IN

ITIA

LC

AT

AL

OG

16

.40

.19

.R

P=

99

9D

AY

S1

6.4

0.

19

.CT

ID=

DY

NA

TE

CH

PF

N=

ER

ST

LG

O1

6.4

0.

19

.C

TC

Y=

00

10

00

13

44

0W

OR

DS.

16

.40

.19

.M

AP.

PAR

T.

16

.40

.1

9.

AT

TA

CH

.D

TC

PLO

T.

ID=

DY

NA

TE

CH

.MR

=l.

16

.40

.19

.P

FN

IS1

6.4

0.

19

.D

TC

PLO

T1

6.4

0.

20

.PF

CY

CL

EN

O.

=0

04

16

.4

0.

20

.LIB

RA

RY

.DT

CP

Lo

T.

16

.4

0.

20

.L

OA

D.L

GO

.1

6.

40

.2

0.

NO

Go.

16

.40

.26

.E

XIT

.U

.1

6.

40

.2

6.

DA

YC

OPY

.1

6.4

0.2

9.0

P0

00

43

00

8W

OR

DS

-F

ILE

OU

TP

UT

,D

C4

01

6.4

0.2

9.M

S5

37

60

WO

RD

S(

96

76

8M

AXU

SE

D)

16

.40

.30

.CP

A4

.60

5S

EC

.1

6.

40

.3

0.

10

20

.5

61

SE

C.

16

.40

.30

.CM

51

4.6

98

KW

S.1

6.

40

.3

0.

SRU

16

.0

00

16

.40

.30

.EJ

END

OF

JOB

.A

N

Page 216: Dynamics Technology, Inc.