Top Banner
Dynamics of spin-triplet and spin-singlet O 2 on clean Ag(100) surfaces Maite Alducin Ricardo Díez Muiño Centro de Física de Materiales CSIC-UPV/EHU Donostia-San Sebastián (Spain) H. Fabio Busnengo Instituto de Física Rosario IFIR CONICET – UNR Rosario (Argentina)
46

Dynamics of spin-triplet and spin-singlet O 2 on clean Ag(100) surfaces

Dec 31, 2015

Download

Documents

Dynamics of spin-triplet and spin-singlet O 2 on clean Ag(100) surfaces. Maite Alducin Ricardo Díez Muiño Centro de Física de Materiales CSIC-UPV/EHU Donostia-San Sebastián ( Spain ). H. Fabio Busnengo Instituto de Física Rosario IFIR CONICET – UNR Rosario (Argentina). M. Alducin - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics of spin-triplet and spin-singlet O2

on clean Ag(100) surfaces

Maite AlducinRicardo Díez MuiñoCentro de Física de MaterialesCSIC-UPV/EHUDonostia-San Sebastián (Spain)

H. Fabio BusnengoInstituto de Física Rosario IFIR

CONICET – UNRRosario (Argentina)

Page 2: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

motivation

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

an important goal is to understand how solid surfaces can be used to promote gas-phase chemical reactions

static properties (equilibrium)

- adsorption sites and energies- chemical bonding- induced reconstructions- self-assembling

experimental techniques: - LEED, STM, PE, etc.

dynamical properties

- reaction rates (adsorption, recombination, …)- diffusion- induced desorption- energy and charge exchange

experimental techniques: - molecular beams, TPD, etc.

dissociative adsorption

molecularadsorption

desorption

Page 3: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

dynamical properties

- reaction rates (adsorption, recombination, …)- diffusion- induced desorption- energy and charge exchange

experimental techniques: - molecular beams, TPD, etc.

dissociative adsorption

motivation

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

an important goal is to understand how solid surfaces can be used to promote gas-phase chemical reactions

static properties (equilibrium)

- adsorption sites and energies- chemical bonding- induced reconstructions- self-assembling

experimental techniques: - LEED, STM, PE, etc.

molecularadsorption

desorption

QEi

adsorption probability depends on: • incidence kinetic energy• initial rovibrational state• incidence angle

dissociative adsorption

Page 4: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

adiabatic approximation

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

Surfac

e

We assume that the time-dependent potential is changing so slowly that the electronic wave function rearranges to

the new ground state at any instant of time:

The system remains in its instantaneous eigenstate.

excited electronic states are not relevant

Page 5: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

electronic excitations

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

Surfac

e

experimental evidence

chemicurrents

Exposure (ML)

Gergen et al., Science 294, 2521 (2001).

vibrational promotion of electron transfer

Huang et al., Science 290, 111 (2000) White et al., Nature 433, 503 (2005)

role of electronic friction

Trail et al., JCP 119, 4539 (2003) Luntz et al., JCP 123, 074704 (2005)Díaz et al., PRL 96, 096102 (2006)

Nieto et al., Science 312, 86 (2006).

stick

ing

coeffi

cien

tinitial kinetic energy (eV)

polar angle of incidence

Qi=0

Qi=45

Qi=60

0.2

0.4

0.2

0.4

0.5 1.0 1.5 2.0 2.50.0

0.1

0.2

0.3

Juaristi et al., PRL 100, 116102 (2008)Luntz et al., PRL 102, 109601 (2009) (comment)

Juaristi et al., PRL 102, 109602 (2009) (reply)

electronic excitations at the surface can be considered as decoupled

Page 6: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

O2 on metal surfaces

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

Surfac

e

electronic excitations are created in the system

Yourdshahyan et al., PRB 65, 075416 (2002)Behler et al., PRL 94, 036104 (2005)

Carbogno et al. PRL 101, 096104 (2008)

non-adiabatic effectsin the incoming O2 molecule

Yourdshahyan et al., PRB 65, 075416 (2002)Behler et al., PRL 94, 036104 (2005)

Carbogno et al. PRL 101, 096104 (2008)

Page 7: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

O2 /Ag

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

QEi

molecular beam experiments on flat Ag surfaces

Ts < 150K: O2 adsorbs only molecularly (Ei < 1eV)

• Ag (100)/Ag(110)

L. Vattuone et al., Surf. Sci. 408, L698 (1998).

A. Raukema et al., Surf. Sci. 347, 151 (1996).

70%

Low probability

dissociation of O2 on Ag(100)

possible ways to enhance dissociation:

role of excited electronic states?

• Ag (111)

Page 8: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

O2/Ag(100) - theoretical calculations

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

QEi

incidence conditions are fixed: (Ei, )Q

Monte-Carlo sampling on the internal degrees of freadom: (X, Y, q, j) and on (parallel velocity)

Born-Oppenheimer approximation

frozen surface approximation 6D PES: V(X, Y, Z, r, q, j)

calculation of the Potential Energy Surface (PES)

classical trajectory calculations

q

j

XY

Z

x

y

z

surface unit cell

r

Page 9: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

building the 6D PES

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

• about 2300 spin-polarized DFT values

• interpolation of the DFT data: Corrugation reducing procedure[Busnengo et al., JCP 112, 7641 (2000)]

numerical procedure

• O2 in vacuum spin-triplet ground state: • DFT - GGA (PW91) calculation with VASP

• plane-wave basis set and US pseudopotentials

• periodic supercell: (2 x 2) and 5-layer slab

DFT energy data

z

top

hollow

bridge

x

y

top view front view

Page 10: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

relevant configurations

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

Molecular potential well

Energy depth: Ewell~ -0.25 eV

Position: Over hollow θ=90o

Z≈1.6 Å r ≈ 1.4 Å

Ag(100) surface unit cell

Dissociative configuration

Energy barrier: E~ 1.1 eV

Position: Over bridge θ=90º

Z≈1.5 Å

Ag(100) surface unit cell

Page 11: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

dissociation probability

=0Q o

Page 12: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

dissociation probability

=0Q o=30Q o

Page 13: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

dissociation probability

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

=45Q o =0Q o=30Q o

=60Q o

2D Potential energy surface

Energy barrier: E~ 1.1 eV

Position: Z≈1.5 Å

General features:

• Activation energy: ~1.1eV

• Low dissociation probability

Reason:

Only configurations around

bridge lead to dissociation

Page 14: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

the question

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

Gas phase O2

3Sg

1 eVsinglet to triplet excitation energy

1Dg

can we enhance O2 dissociation on clean Ag(100) ?

6D PES calculation: Non spin polarized DFT

Page 15: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

differences between SP and NSP PESs

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

Non spin polarized

Spin polarized

1 eVsinglet to triplet excitation energy

Gas phase O2

for Z < 2A, the SP and NSP PESs merge

3Sg

1Dg

q

j

XY

Z

x

y

z

surface unit cell

r

Page 16: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

dissociation is enhanced for singlet O2

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

=0Q o =30Q o =45Q o

spin-triplet O2 spin-triplet O2 spin-triplet O2

spin-singlet O2 spin-singlet O2 spin-singlet O2

dissociation occurs for Ei < 1 eVdissociation can increase in one order of magnitude

Page 17: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

dissociation occurs for Ei < 1 eVdissociation can increase in one order of magnitude

dissociation is enhanced for singlet O2

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

=0Q o =30Q o =45Q o

spin-triplet O2 spin-triplet O2 spin-triplet O2

spin-singlet O2 spin-singlet O2 spin-singlet O2

Gas phase O2

3Sg

1 eVsinglet to triplet excitation energy

1Dg

But there is a trick here!The total energy is 1 eV larger

for the singlet O2

Page 18: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

=0Q o =30Q o =45Q o

spin-triplet O2 spin-triplet O2 spin-triplet O2

spin-singlet O2 spin-singlet O2 spin-singlet O2

1 eV 1 eV 1 eV

dissociation is enhanced for singlet O2

dissociation occurs for Ei < 1 eVdissociation can increase in one order of magnitude

for Q ≠ 0o, singlet-O2 is more efficient than triplet-O2 with the same total energy

Page 19: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

why is that?

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

1 eV

1 eV

spin-triplet O2

spin-singlet O2

Page 20: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

why is that?

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

available paths to dissociation are different(and more!)

spin-triplet O2

spin-singlet O2

Page 21: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

it is not the same road

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

triplet O2 singlet O2

+ 1 eV

tripletO2

singletO2

Page 22: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

conclusions

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

• The low dissociation of O2 on Ag(100) is due to two main factors:- The existence of large activation energy barriers of about 1eV.- Only a small number of configurations in phase space lead to

dissociation.

• Dissociation increases in about one order of magnitud, if singlet–O2 molecular beams are used.

•Under off-normal incidence angles, the efficiency of singlet-O2 to dissociation is remarkable: it exceeds the reactivity of triplet-O2 with an extra kinetic energy of 1eV.

Page 23: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

thank you for your attention

Page 24: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

Page 25: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

it is not the same road

Dynamics of spin-triplet and spin-singlet O2 on clean Ag(100) surfaces

M. AlducinH. F. BusnengoR. Díez Muiño

triplet O2singlet O2

+ 1 eV

tripletO2

singletO2

Page 26: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Why O2 on Ag(100) ?

QEi

Molecular beam experiments on flat Ag surfaces

Ts < 150K: O2 adsorbs only molecularly (Ei < 1eV, )

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

• Ag (100)/Ag(110)

L. Vattuone et al., Surf. Sci. 408, L698 (1998).

A. Raukema et al., Surf. Sci. 347, 151 (1996).

70%

Low probability

Dissociation of O2 on Ag(100)

• reasons for the lack of dissociation

• possible ways to enhance dissociation:

role of excited electronic states?

• Ag (111)

Page 27: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dissociative dynamics of O2/Ag(100): Classical trajectory calculations

Z=3.5 Å

Ag(100) unit cell

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

Ei=1.5 eV Q=0o

3.5 Å

Page 28: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dissociative dynamics of O2/Ag(100): Classical trajectory calculations

Z=2 Å

Z=3.5 Å

Ag(100) unit cell

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

Ei=1.5 eV Q=0o

3.5 Å

2.0 Å

Page 29: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dissociative dynamics of O2/Ag(100): Classical trajectory calculations

Z=2 Å

Z=1.5 Å

Z=3.5 Å

Ag(100) unit cell

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

Ei=1.5 eV Q=0o

3.5 Å

2.0 Å1.5 Å

Page 30: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dissociative dynamics of O2/Ag(100): Classical trajectory calculations

Z=2 Å

Z=1.5 Å

Z=3.5 Å

Ag(100) unit cell

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

Ei=1.5 eV Q=0o Ei=2 eV Q=0o

3.5 Å

2.0 Å1.5 Å

Ag(100) unit cell

Page 31: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Non spin polarized

Spin polarized

Reactivity of spin-singlet O2on the Ag(100) surface

1 eVsinglet to triplet excitation energy

Gas phase O2

PES calculation: Non spin polarized DFT

• Z < 2A: SP and NSP PESs merging

Classical trajectory calculations

NSP PESSurfac

e

SP PES

3Sg

1Dg

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

Page 32: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dissociative dynamics of spin-singlet O2 on Ag(100)

• Dissociation occurs for Ei < 1 eV• Dissociation can increase in one order of magnitud

=0Q o =30Q o =45Q o

spin-triplet O2 spin-triplet O2 spin-triplet O2

spin-singlet O2 spin-singlet O2 spin-singlet O2

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

Page 33: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dissociative dynamics of spin-singlet O2 on Ag(100)

• Dissociation occurs for Ei < 1 eV• Dissociation can increase in one order of magnitud• For Q ≠ 0o, singlet-O2 is more efficient than triplet-O2 with higher Ei

=0Q o =30Q o =45Q o

spin-triplet O2 spin-triplet O2 spin-triplet O2

spin-singlet O2 spin-singlet O2 spin-singlet O2

1 eV 1 eV 1 eV

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

Page 34: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics of spin-triplet versus spin-singlet O2

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

Dissociation is a direct process

spin-triplet O2

num. rebounds >3num. rebounds <3

spin-singlet O2

Dynamic trapping also important

Surfac

edirect

trapping

Page 35: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics of spin-triplet versus spin-singlet O2

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

1 eV

1 eV

Page 36: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics of spin-triplet versus spin-singlet O2

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

1 eV

1 eV

Under off-normal incidence angles, the efficiency of singlet-O2 to dissociation is due to the existence of more paths leading to

dissociation

Page 37: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Thank you for your attention !

Centro de Física de MaterialesCFM

Gas/solid interfaces Group(San Sebastián)

Donostia International Physics Center

Page 38: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Work in progress and open questions

Experimental data from L. Vattuone et al.,

Surf. Sci. 408, L698 (1998)

Molecular trapping vs

Molecular sticking

Molecular potential wellNo energy barriers in the entrance channel !!

Energy depth: Ewell~ -0.25 eV

Position: Over hollow θ=90o

Z≈1.6 Å r ≈ 1.4 Å

Ag(100) surface unit cell

Dynamics of spin-triplet and spin-singlet O2 on Ag(100) UAM, December 2008

Page 39: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces
Page 40: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics on NSP PES

Page 41: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Dynamics on NSP PES

Note: (Different scales in Y-axis)

Page 42: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

NSP vs ‘adiabatic’ singlet O2

Qi=0

Page 43: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Direct vs indirect in ‘adiabatic singlet-PES’

Page 44: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

NSP PES: RPBE vs PW91

Page 45: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Technical details: Ab initio SP PES

Dependence of the difference between NSP and SP energies on the distance from the surface Z

Filled symbols: DFT values Open symbols: Interpolated

values

Page 46: Dynamics of spin-triplet  and spin-singlet O 2 on clean Ag(100) surfaces

Thank you for your attention !

CFMCentro de Física de Materiales,

Centro Mixto CSIC-UPV/EHU