Top Banner
DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela 28. 7. 2011
18

DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Dec 16, 2015

Download

Documents

Dallin Winson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

DYNAMICS OF REACTION-DIFFUSION SYSTEMS

mathematical description, numerical methods, FRAP data and parameter estimation

Alejandro Lara, Jaroslav Kysela28. 7. 2011

Page 2: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Aims of the Project

• Consideration of inward flux boundary conditions

• Use COMSOL optimization module for solving the inverse problem

• Getting to know COMSOL Multiphysics and its features

Page 3: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

• Fluorescence Recovery After Photobleaching

FRAP

Page 4: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Comsol- Optimization Module• Powerful tool that can solve elaborate problems in many fields of

physics• Provides strong tools to optimize parameters• It is able to compute “parameter determination” (inverse

problems)• Last year this project did not have access to the Optimization

Module• Research in forums states that optimization is not possible in

time-dependent problems

Page 5: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.
Page 6: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Experimental Data

• Red algae porphyridium cruentum• He-Ne laser (633 nm)• Observed for 480 seconds, each 8 seconds

Page 7: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Fluorescence

Page 8: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Boundary Conditions

• No flux• Flux as a gradient of concentration on the boundaries• Approximately constant concentration on the boundaries of an

observed area• Flux as a time derivative of experimentally obtained

concentration curve

Page 9: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Total Intensity

• Immobile fraction• Mobile fraction

Page 10: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.
Page 11: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.
Page 12: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Diffusion Dynamics

Page 13: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Alternative Optimization

• Linear interpolation can be assumed at the beginning

• D test can be found• This routine is very to write

and implement• However, it is not very

robust and might have some problems with the experimental data.

Page 14: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Future Approach• Finite Difference Method

2

2

x

cD

t

c

Page 15: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Future Approach

• Computational routine can be arranged• A variable D can be included

Page 16: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Conclusions,Future Goals• Implementation of nonzero inward flux in the model of diffusion

of phycobilisomes in a thylakoid membrane• Alternative procedures were used to solve the inverse problem,

but they proved to be insufficient

• Develop more expertise in the use of COMSOL optimization module

• Use other numerical methods that include the flux and variable diffusion coefficient

Page 17: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

References

• http://www.iiserpune.ac.in/~cathale/lects/201101_bio435/bio435-expt/bio435-FRAP-protocol.html

• http://iws.collin.edu/biopage/faculty/mcculloch/1406/outlines/chapter%2010/chap10.htm

• http://www.comsol.eu/papers/459/chemical-engineering/• http://www.me.ucsb.edu/~moehlis/APC591/tutorials/tutorial5/

node5.html

Page 18: DYNAMICS OF REACTION- DIFFUSION SYSTEMS mathematical description, numerical methods, FRAP data and parameter estimation Alejandro Lara, Jaroslav Kysela.

Acknowledgement

Ing. Štěpán Papáček, PhD.

Thank you for your attention