Top Banner
1 Dynamics of Cold Atoms in Moving Optical Lattices by Nadal Sarkytbayev, BSc Physics Supervisor: Dr Alexander Balanov Senior Lecturer in Physics
42

Dynamics of cold atoms in moving optical lattices (Version Dek8)

Jan 22, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dynamics of cold atoms in moving optical lattices (Version Dek8)

1

Dynamics of Cold Atoms in Moving

Optical Lattices

by

Nadal Sarkytbayev, BSc Physics

Supervisor: Dr Alexander Balanov

Senior Lecturer in Physics

Page 2: Dynamics of cold atoms in moving optical lattices (Version Dek8)

2

Content

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory 2.1 de Broglie Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

2.2 Band Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Bloch Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Kronig and Penny Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

3 Methods of Cooling 3.1 Compton Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 3.2 Laser Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.14 3.3 MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 15

4 Result and Discussion

4.1 Cold Atom Transport through miniband . . . . . . . . . . . . . . . . 16

4.1.1 Free Space model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 4.1.2 Tilted Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

4.2 Optical Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21 4.2.1 Atom Trajectory: Linear dispersion. . . . . . . . . . . . . . .

21 4.2.2 High Field regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

Page 3: Dynamics of cold atoms in moving optical lattices (Version Dek8)

3

4.2.3 Bloch Oscillation regime . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Velocity of Optical Lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Abstract

This thesis studies the dynamics of cold atom and its transport in optical lattices. Two related but distinct systems are considered: periodic potential driven by an external force

(i.e. electric force and gravitational force); and optical lattice with additional moving potential caused by detuning of two counter propagating laser beams. For the second problem we investigated dynamics in terms of: displacement, average velocity and

momentum by varying the strength of the field and velocity of the optical lattice. We show fundamental cold atom dynamics, in particular, the transition between wave

dragging regime and Bloch oscillation regime which is extremely sensitive to field variations as it alters cold atom’s orientation.

Page 4: Dynamics of cold atoms in moving optical lattices (Version Dek8)

4

1 Introduction

This thesis is devoted to theoretical study of the dynamics of non-interacting cold atoms and their transport in periodic potential and optical lattice. Trapping and controlling cold

atoms in optical lattice with use of modern day lasers provides flexible quantum environment which makes it interesting subject for large number of theoretical and experimental purposes such as atom interferometry [1], quantum information processing

[2], Bose-Einstein condensation [3] and simulations of condensed matter systems [1,4]. The ability to control and manipulate the trapped cold atoms opens a venue in making

high precision measurements of length of displacement in terms of wavelength and as considered in Ref. [4] by using Bloch oscillations, which emerge from periodic potential, can be used as an instrument to make accurate measurement of gravity that depends on

number of Bloch oscillations detected. In this paper we study semi-classical particle dynamics inside the lattice with the

potential generated by several methods. Our problem in this thesis consists of investigation of dynamics of cold atoms and explore methods of their transport in optically driven lattice Dynamical behaviour of cold atoms under an influence of constant

potential were generated by applying uniform electric field and by tilting the system in which case gravity acts as constant force. On the other hand lasers were used as a tool for

both cooling method (see Section 3.1) and creating the counter propagating beams for periodic optical potential. The semi-classical approach has been taken solve the quantum behaviour of such atoms as the particles essentially demonstrate quantum tunnelling in

between the minibands (see Section 2.1) through the propagating potential. Also the Bloch oscillations, that corresponds to periodic motion thorough space for specific values

of the field applied, have been observed and investigated in details. We show that in spite the fact that atomic motion even in one-dimensional model can have complex behaviour we are able to predict its path and transport accordingly. Thus if we are able to control the

transport of cold atoms according to our requirements this contributes to multiple applications mentioned above [1,2,4].

In recent years there has been greater theoretical discussion and experimental interest into transport and dynamical examination of cold atoms in moving optical lattices [1-6], which makes the problem that we dealing with increasingly relevant to current

research areas of cold atoms and Bloch oscillations. Furthermore, in the case of the periodic optical potential mode its been discovered that the dynamics is identical to the

acoustically driven superlattice (see Ref. [9,25,26]) which suggest that the study of such problem provides a particle transport model applicable to multiple cases.

The contents of this thesis are briefly as follows. In the Section 2 (Theory) we

give an explanation to some fundamental theories and ideas that are used in this work when reflecting up on the effect of periodic potential on dynamics of the quantum

particles. Therefore explanation of Band theory will be helpful tool in understanding some basic features related to propagation of the wave and origins of Bloch oscillations in the system. Section 3 reveals the essential characteristics and methods used to create a

cold atom by optical molasses from basic theory of Compton scattering. Furthermore

Page 5: Dynamics of cold atoms in moving optical lattices (Version Dek8)

5

Section 4 is where the results are studied in details for those two different problems. Finally, Section 5 summarizes our conclusions with regards of our research.

2 Theory

Dynamical behaviour of ultra cold atoms under two different conditions where quantum

particle such as electron were under influence of constant potential generated by external force (such as electric force and gravity) and moving optical lattices in one-dimension by

two counter-propagating laser beams. The reason we consider an electron for our model of cold atom is because they both demonstrates many of the identical phenomena related to period potential [4].

2.1 de Broglie Hypothesis

We will start with some fundamental theory proposed by de Broglie, relating the energy

and momentum of a particle in discrete form, in order to move on to the Band theory. In the first quarter of the 20th century, French physics graduate student Louis de

Broglie, proposed that wave properties of a particle were characteristic of matter (i.e. electron) as well as the radiation [7]. De Broglie expressed mathematical equation that described frequency and wavelength relationship of an electron, know as de Broglie

relations:

𝑓 = 𝐸

β„Ž (2.1-1)

πœ† = β„Ž

𝑝 (2.1-2)

where E is the total energy, p is the momentum, πœ† de Broglie wavelength and h is known as Plank’s constant. This is useful relation as we mostly dealing with electrons and

photons, which are massless bosons of integer spin, propagating in free space with speed of light. Photons have a momentum component that is used to relate to energy. From Einstein’s quantization of radiation E=hf and for particle of zero rest energy E=pc

follows [7]:

𝐸 = 𝑝𝑐 = β„Žπ‘“ = β„Žπ‘

πœ† (2.1-3)

where c is the speed of light in free space. As we are dealing with dual behaviour of matter and wave, classically it must have solutions of the wave equation. It is known that harmonic oscillator’s properties:

Page 6: Dynamics of cold atoms in moving optical lattices (Version Dek8)

6

amplitude, frequency f and period T. Frequency and period also have useful relation with angular frequency and wave number respectively:

πœ” = 2πœ‹

𝑇 (2.1-4)

and π‘˜ = 2πœ‹

πœ† (2.1-5)

A system in which phase velocity 𝑣𝑝 is correlated with frequency (πœ”/π‘˜ not constant) is

known as dispersion relation that describe the change of angular frequency πœ” on wave

number π‘˜. The velocity of maximum amplitude is known as group velocity: [8]

𝑣𝑔 = Δω

π›₯π‘˜ =

dω

π‘‘π‘˜ (2.1-7)

since Ο‰=π‘˜π‘£π‘

𝑣𝑔 = dΟ‰

π‘‘π‘˜ =

d(π‘˜π‘£π‘)

π‘‘π‘˜ = 𝑣𝑝 + π‘˜

d(𝑣𝑝)

π‘‘π‘˜

= 𝑣𝑝 βˆ’ πœ†d𝑣𝑝

π‘‘πœ† (2.1-8)

where we have used de Broglie relationship for wavelength (1.1-5).

There are three cases for which group velocity 𝑣𝑔 defines the mode of dispersion:

a) System where phase velocity 𝑣𝑝 is not related to frequency (πœ”/π‘˜ is constant)

therefore 𝑣𝑔 = 𝑣𝑝, for example propagation in free space (no dispersion).

b) Normal dispersion - where d𝑣𝑝

π‘‘πœ† is positive, hence 𝑣𝑝>𝑣𝑔.

c) Abnormal dispersion – where d𝑣𝑝

π‘‘πœ† is negative, hence 𝑣𝑝<𝑣𝑔.

At certain conditions of the applied field we were able to obtain dispersion relations for

atoms in optical lattices described in Section 4.

Page 7: Dynamics of cold atoms in moving optical lattices (Version Dek8)

7

2.2 Band Theory

From quantum theory, we know that electrons occupy quantized orbits and therefore form discrete energy levels. When the large numbers of atoms are brought close together to form a solid or crystal lattice, number of orbitals becomes inversely proportional to the

distance of near by energy levels making it very small. Therefore, energy levels are thought to form of continuous bands. [9]

The focal point of modern understanding of electronic and optical properties of solid materials is based on the Band theory, which provides the description of key features of electrons in periodic lattice [8]. Moreover Band theory provides understanding

of material properties as to why some materials are able to conduct electricity and others do not by considering the effect of the lattice on the electron energy levels. The band gap

or energy gap 𝐸𝑔 is the difference in energy between lowest point of the conduction band

and the highest point of the valance band [10]. As the temperature increased, free

electrons are thermally excited from valance band to the conduction band (Figure 1).

Figure 1: Band scheme of for intrinsic conductivity in semiconductors. (Diagram taken from [11])

Both the electrons in the conduction and holes left behind in the valance band contribute

to the electrical conductivity, which determines the properties of a specific material. At temperature around 0 K the conductivity is zero because all the all the states in the valance band are full and all the states in the conduction band are empty.

Propagation of the wave in crystals is characterised by Bragg reflection of electron wave, which is caused by energy gap Eg. This is also know to be a forbidden zone where

electron can not stay due to quantum theory of discrete energy spectrum. These energy gaps are significant in determining whether a solid is an insulator or a conductor. For an

Page 8: Dynamics of cold atoms in moving optical lattices (Version Dek8)

8

insulator the valance band is fully filled so when electric field is applied it won’t accelerate electrons, as there are no vacant valance bands available.[10]

On the other hand, in a conductor valance and conduction bands are only partly filled

electrons could be transmitted on passing through the energy gap.

Figure 2: Schematic electron occupancy of allowed energy gap for a metal, semiconductor and insulator. Blue areas indicate allowed energy regions; Red areas

indicate the regions with filled electrons; Fermi energy (𝐸𝐹) is minimum amount of

energy required. (Diagram taken from [12]) When the electron channel through to the next available band it leaves a β€œhole” behind

which allow the following electron to fill it up. Same process take place in the metal, as it is know that these bands overlap with each other constructing one single energy band

(Figure 2), which is only partially filled. Therefore, when electric field is applied there are sufficient amount of states available for electrons to accelerate to, meaning it is highly conductive.

Fermi energy is much greater than the average energy of the lattice ions, so electron

energy distribution in fact will not differ from that of temperature at absolute zero (T= 0 K), which is governed by Pauli exclusion principle that states only a single fermion can occupy a single state.

The following relation gives Fermi energy:

𝐸𝐹 = π‘˜π΅π‘‡πΉ (2.2-1)

where 𝑇𝐹 is Fermi temperature and π‘˜π΅ is Boltzmann constant.

All the low-energy states are filled to certain Fermi energy and depend on density of that particular gas. Fermi energy can be equally thought as the increase of the ground-state

energy when a single fermion (e.g. electron) is added to the system. So by increasing the temperature, some of the electrons excited. But taking into account the fact that empty

Page 9: Dynamics of cold atoms in moving optical lattices (Version Dek8)

9

states are only available above the Fermi energy means that only s with energies close to 𝐸𝐹 can be excited. Therefore some states above 𝐸𝐹, in a narrow energy range β‰ˆ π‘˜π΅π‘‡πΉ, will

be occupied and others below 𝐸𝐹 depleted.

2.3 Bloch Theorem

One other favourable result of quantum theory apart from Band theory described in

Section 2.2 is the solution to the problem of electrical transport in metals, semiconductors and insulators.[8]

The distribution of lattices across the space that are generated by potential V(r) is created by atoms in solid or by propagating laser beams in opposite direction in an optical lattice.

We use three translational vectors π’‚πŸ, π’‚πŸ and π’‚πŸ‘ named primitive lattice vectors to

describe the location of each lattice point relative to any other point in spatial lattice. [9] Combined vectors are given by:

𝑹 = π‘’π’‚πŸ + π‘£π’‚πŸ + π‘ π’‚πŸ‘ (2.3-1)

where u, v and s are integers. Bloch theory states that all the measurable properties of its wavefunction must show symmetrical behaviour for translational lattice because quantum

particles experiences periodic potential[10]. Therefore probability of locating a particle at particular point r must have the following equality:

|πœ“(𝒓 + 𝑹)|2 = |πœ“(𝒓)|2 (2.3-2)

from this it follows that:

πœ“(𝒓 + 𝑹) = π‘’π‘–πœ·(𝑹)πœ“(r) (2.3-3)

where Ξ² is the linear function of R and can also be formulated as:

Ξ²(R) = π‘˜π‘₯ 𝑅π‘₯+ π‘˜π‘¦π‘…π‘¦ +π‘˜π‘§π‘…π‘§ = k.R (2.3-4)

which is dimensionless, real and arbitrary function of R. Combing equations (2.2-3) and (2.2-4) gives us Bloch’s theorem with wavefunction property:

πœ“π‘˜(𝒓 + 𝑹) = π‘’π‘–π’Œ.(𝒓+𝑹)π‘’π‘˜(𝒓 + 𝑹) = π‘’π‘–π’Œ.(𝒓)π‘’π‘˜(𝒓)π‘’π‘–π’Œ.(𝑹)

= πœ“π‘˜ (𝒓)π‘’π‘–π’Œ.𝑹 (2.3-5)

Bloch has proved the important theorem for a periodic potential by solving the SchrΓΆdinger’s equation and discovered it must be of particular form. Therefore product of

the plane wave π‘’π‘–π’Œ.𝒓 and function π‘’π‘˜(r), which has the identical periodicity as the applied

periodic potential gives us eigenfunction of the SchrΓΆdinger equation [8]:

Page 10: Dynamics of cold atoms in moving optical lattices (Version Dek8)

10

πœ“π‘˜(𝒓) = π‘’π‘˜(𝒓)π‘’π‘–π’Œ.𝒓 (2.3-6)

where π‘’π‘˜(r) is the function the periodicity that also has the symmetry in translation of the

lattice.

2.4 Kronig-Penny Model

One of the practical models for understanding how electrons conduct inside the materials

is the Kronig-Penny model. Using this model and Bloch’s theorem we can compute the energy of the electrons as the wave number parameter k.

The Kronig-Penny model appears as the background periodic potential for the electrons in the crystals. When electrons travel through solid (e.g. a semimetal or metal), they run

across sequence of potential barriers produced by the atoms or ions (𝑍 +). These ions are

located in the centre of each successive barrier with a constant distance separating them. Assuming that distance between two ions is a, one-dimensional lattice array of ions looks like Figure 3 [8.2].

Figure 3: A one-dimensional periodic array of potential barriers formed by atoms or ions located along a crystal lattice. 𝑍+ indicate ions and a is the distance between ions

(Diagram taken from [13]).

The wave function for electron is derived using Bloch functions and the behaviour of individual electrons is determined using the Kronig-Penny Model, which adjusts curved

one-dimensional periodic array shown on Figure 3 to rectangular periodic series of potential well of finite depth represented on Figure 4. Kronig and Penney were able to

show how behaviour of electrons motion by making the wells deeper and reducing separation between them. [14]

Page 11: Dynamics of cold atoms in moving optical lattices (Version Dek8)

11

Once again, cold atoms in optical lattice duplicate many of the properties related with

electrons in periodic potential [D]. Kronig-Penny model for electrons with the constant periodic potential have simple approximate form represented below.

Figure 4 A series of finite potential wells used by Kronig and Penny as first approximation. The distance between the potential wells is a, thickness of the well is b

and its height is 𝑉0 (potential). (Diagram taken from [15]).

In Figure 4 the distance between the potential wells is a, thickness of the well is b and its height is 𝑉0 (potential) with multiple miniband. The problem can be considered as the

particle moving in in a square potential well of width a with its energy being less than

potential E<V. Inside the well the potential is zero and fixed height corresponds to the value of potential V.

Wave function is expected to have the form of an integral number of de Broglie

half wavelengths inside the well with addition of exponentially decaying penetration into the wall on both sides. [9]

Using the SchrΓΆdinger’s equations it is possible to solve the problem and find the results for all three regions of the well: 1) 0<x≀a; 2) x>a and 3) x<0. *

βˆ’β„ 2

2π‘š

βˆ‚2 πœ“(π‘₯)

βˆ‚π‘₯2 +𝑉(π‘₯)πœ“ = πœ€πœ“ (2.4-1)

where πœ“(π‘₯) is the wave function of the quantum system, V(x) is the potential, m is the

mass of the particle, Ξ΅ is the energy eigenvalue and ℏ is the reduced Plank’s constant

(ℏ = β„Ž

2πœ‹ = 1.054Γ—10βˆ’34 J/s).

Page 12: Dynamics of cold atoms in moving optical lattices (Version Dek8)

12

This method of approximation is fairly accurate and simple to calculate with. It’s been used in many cases in order to analyse: the barrier problem [16], 1D monatomic gas [17]

and other forms of the periodic potential.

*Solutions to the following cases can be found in the Appendix A

3 Methods of Cooling

In order to explore the dynamics of cold atom in periodic potential and optical lattice we have to lower the temperature of the atom down drastically, to about 1 nK (10βˆ’9K). How

is it done? This is possible to achieve by using two main technics described below, laser cooling and magneto-optical trap (MOT), which also something that is used to achieve

Bose-Einstein condensation [1] but we are not considering it here. The following two methods assumed to have been applied for all the cold atom results that we obtained and studied in Section 4.

However first we would like to explain how the process of photon (laser beam) and electron interaction allows us decrease the temperature of electron essentially by

slowing it down.

3.1 Compton Scattering

In order to explain the following Section 3.2 we would like to introduce the Compton Scattering effect to explain the nature of momentum transfer of particles and waves as well as the conservation of momentum.

In 1923 Arthur H. Compton have worked with the concept of photon concept to explain the results of his experimental data on scattering X-ray by electrons. Compton

came to a realization that during scattering only a fraction of the total energy of the photon is transferred to an electron during the collision. In contrast results shown in photoelectric-effect experiment where all the energy is transferred to the electron. As

stated by classical theory, if electromagnetic wave of frequency 𝑓𝑖 is incident on material

containing free charges (e.g. metal) these electrons will oscillate with that same frequency and emit electromagnetic wave of the identical frequency. [9]

The assumption to these emitted waves as scattered photons and conservation of

energy and moment from classical mechanics, underline the behaviour of scattering process during photon-electron collision. During the collision the electron would absorb energy from incoming photon and recoil at a certain angle (see Figure 5). The scattered

photon πœ†π‘“ would have less energy and according to Planck’s relationship, lower

frequency and higher wavelength than incident photon πœ†π‘–. Compton scattering along with Doppler cooling (Section 3.2) is the very useful technic for cooling the atom to ΞΌK.

From equation (2.1-3, Section 2.1) we know that momentum and wavelength is related by:

Page 13: Dynamics of cold atoms in moving optical lattices (Version Dek8)

13

𝑝 = β„Ž

πœ† ; 𝑝𝑓 =

β„Ž

πœ†π‘“. (2.1-3)

Applying conservation of momentum to the collision gives:

𝑝𝑖 = 𝑝𝑒 + 𝑝𝑓 (3.1-1)

where 𝑝𝑖 is momentum of incident photon, 𝑝𝑒 momentum of electron after collision and 𝑝𝑓 is momentum of recoil photon.

Figure 5: The scattering of light by an electron. The scattered photon has less energy

therefore a longer wavelength than incident photon (πœ†π‘– > πœ†π‘“). (Diagram taken from [18])

At the initial condition electron is at rest (Figure 5) therefore zero momentum. Rearranging equation (2.4-1) for electron momentum and taking the dot product each

side with itself gives:

𝑝𝑒2 = 𝑝𝑖

2 + 𝑝𝑓2 - 2𝑝𝑖𝑝𝑓cos (πœƒ) (3.1-2)

where ΞΈ is the angle of the direction of scattered photon makes with direction of motion

of incident photon. Due to the fact that the kinetic energy of the electron after the collision is the

significant amount of it the rest energy, the relativistic relationship used to associate the total energy E and momentum 𝑝𝑒 of an electron. [9] This gives us:

𝐸 = βˆšπ‘π‘’2𝑐2 + (π‘šπ‘’π‘)2 (3.1-3)

where π‘šπ‘’ is the rest mass of the electron β‰ˆ 9.1Γ—10βˆ’34 kg and c is the speed of light.

Applying conservation of energy law to the collision gives:

Page 14: Dynamics of cold atoms in moving optical lattices (Version Dek8)

14

𝑝𝑖𝑐 + π‘šπ‘’π‘2 = 𝑝𝑓𝑐 + βˆšπ‘π‘’2𝑐2 + (π‘šπ‘’π‘)2 (3.1-4)

Using equation (2.4-2) in order to eliminate 𝑝𝑒2 produces:

1

π‘π‘“βˆ’

1

𝑝𝑖=

1

π‘šπ‘’π‘ [1 βˆ’ cos(πœƒ)] (3.1-5)

and finally by substituting 𝑝𝑖 and 𝑝𝑓 by using the equation (2.1-2) for momentum and

wavelength relation we obtain Compton equation:

π›₯πœ† = πœ†π‘“ βˆ’ πœ†π‘–=β„Ž

π‘šπ‘’π‘ [1 βˆ’ cos(πœƒ)] (3.1-6)

The main characteristic of the Compton effect is that change in wavelength π›₯πœ† does not

depend on initial wavelength of the photon πœ†π‘– but rather on the angle of the scattering

[19].

3.2 Laser Cooling

First a sample of rubidium (𝑅𝑏87 ) [2] vapour is illuminated by circular polarized laser

beams from six different directions (optical molasses). Lasers, which essentially are

stream of massless photons each carrying a momentum, collide with rubidium atoms and slow them down. Polarized light pushes the atoms in opposite direction that provides

restoring force that allows us to trap the atoms (Figure 6). With in a few seconds millions of atoms are confined in small volume defined by the intersecting laser beams, of about 0.5-1cm in radius. The temperature of the laser-cooled sample is near 1mK (10βˆ’3 K).

[20]

Page 15: Dynamics of cold atoms in moving optical lattices (Version Dek8)

15

Figure 6: Experimental setup of laser cooling and MOT. Red arrows represent the laser

beams and blue rings represent magnetic coils that produce uniform magnetic field. Red cylinder in the middle is trapped atom (Diagram taken from [21])

Laser cooling can only be as low as Doppler limit temperature.

𝑇𝐷 = β„Žπ›Ύ

2π‘˜π΅ (3.2-1)

where h is the Planck’s constant, π‘˜π΅ Boltzmann constant and Ξ³ is natural linewidth. Doppler cooling requires spontaneous emission of photons and therefore controlled by

natural life Ο„ of the excited state or equivalently is the inverse of natural line width (Ο„ =1/Ξ³). This is usually much higher than the recoil temperature 𝑇𝑅 that relies on coherent

scattering of photons from first beam into the second with opposite direction and polarization. [22]

𝑇𝑅= ℏ 2

2π‘šπ‘˜π΅ πœ†2 (3.2-2)

where π‘˜π΅ Boltzmann constant, ℏ is the reduced Plank’s constant, Ξ» is the wavelength of

light and m is the mass of an atom.

3.3 Magneto Optical Trap (MOT)

Doppler limit was overcome by applying non-uniform magnetic field. Magnetic trap is

used to control the enclosed area of trapped atoms. This technic cools the atoms down

Page 16: Dynamics of cold atoms in moving optical lattices (Version Dek8)

16

even lower than milli-Kelvin as it allows the atoms with higher kinetic energy (hotter) to escape leaving the ones with lower kinetic energy behind. Therefore evaporative cooling

takes place - cooling the remaining couple of thousands atoms down to 100 nK (10βˆ’9 K).

[20] Simpler example can also be though as everyday cup of hot tea in which water

molecules vaporising from top surface leaving the cold ones inside the cup. These remaining cold atoms move down into the lowest energy level (ground state) of finite potential and reach absolute zero. At that temperature new state called Bose-Einstein

Condensate, is achieved. The main reason of how MOT works lies in method of Doppler Cooling.

Polarized beams of light are tune to a certain frequency below atomic resonance frequency that allows photons from laser beams to be absorbed. The absorption and emission of photons transfer the momentum of the atom [1], which reduces the velocities

therefore lowering the temperature. These atoms have greater chance to absorb photons with energies that equals to the difference in their atomic energy levels [23]. For that

reason it is highly important to maintain the laser beams tuned at a certain frequency.

4 Results and Discussion

In this chapter we are using semi-classical approach to solve our problem and we obtain analytical expressions to the dynamics of cold atom. First we consider model of particle

transport in periodic potential driven by an external force such as electric force and examine its tunnelling through the potential. We then adjust the system by tilting it at an angle in which case gravitational force plays a crucial role as it generates new periodic

potential and we obtain a different periodic potential mode that generates oscillatory behaviour. We examined the dynamics by looking at momentum 𝑝π‘₯ and displacement π‘₯

variation with time by using the Matlab simulations to verify the theoretical assumptions. Also we provide additional analysis of phase momentum variation with displacement.

After that we move on to the optical lattice, which is simply a set of standing waves counter-propagating laser beams that are detuned in such manner that it creates

driving motion. The same semiclassical approach to the Hamiltonian 𝐻(π‘₯, 𝑝π‘₯ ) as for the particle is applied for the cold atom problem due to their homogenous characteristics.

Kinetic energy 𝐸(𝑝π‘₯ ) and potential energy 𝑉(π‘₯) correspondence change and we explore

dispersion relation and Bloch oscillations for different regimes by varying the applied

field π‘ˆπ‘€ and velocity of optical lattice 𝑣𝑀 parameters. In order to understand cold atom’s

transport we introduce average velocity < 𝒗𝒙 > of the particle to quantitatively and

qualitatively relate it to the variation of the field π‘ˆπ‘€ and optical lattice velocity 𝑣𝑀.

Page 17: Dynamics of cold atoms in moving optical lattices (Version Dek8)

17

4.1 Cold Atom Transport through miniband

By varying the speed or amplitude of the moving lattice produces Bloch oscillations along with high uniform electric field. From theoretical discussion two outcomes have verified Bloch oscillation and produced matching behaviour. In the results discussed

below one-dimensional propagation of the particle behaviour was considered.

4.1.1 Free Space model

Particle behaviour in free space corresponds to high velocity regime with kinetic energy given as:

𝐸(𝑝π‘₯) = 𝑝2

2π‘š (4.1.1-1)

where 𝐸(𝑝π‘₯ ) is the kinetic energy of the Hamiltonian 𝐻(π‘₯, 𝑝π‘₯ )= 𝑉(π‘₯) + 𝐸(𝑝π‘₯ ) 𝑝π‘₯ is the

momentum in the x-plane and m is the mass of the particle.

𝑉(π‘₯) = βˆ’πΉπ‘’π‘₯ (4.1.1-2)

where 𝑉(π‘₯) is the potential energy of the Hamiltonian 𝐻(π‘₯, 𝑝π‘₯ )= 𝑉(π‘₯) + 𝐸(𝑝π‘₯ ), 𝐹𝑒 is the

electric force and π‘₯ is the displacement along x-axis.

Therefore Hamiltonian of the form:

𝐻(π‘₯, 𝑝π‘₯) = 𝑝π‘₯

2

2π‘š βˆ’ 𝐹𝑒π‘₯ (4.1.1-3)

Free Space model for such Hamiltonian can visualized as Figure 7(a).

Page 18: Dynamics of cold atoms in moving optical lattices (Version Dek8)

18

Figure 7: (a) Transport of the particle through the miniband in 1D band structure. (b) Transport of the particle through the miniband in 1D band structure with a tilt due to

presence of gravitational force 𝐹𝑔. Where d is the lattice period, Ξ” is the bandwidth and 𝐹𝑒

is the electric force. Figure 7(b) shows schematic of how the free particle model is now adjusted to have

gravity (𝐹𝑔) acting when the system is being moved into sloping position. From Ref.[9] it

has been revealed that maximum output was achieved in the range of the tilt angle between 45 and 80 degrees. The potential energy is due to be invariable for this case 𝑉(π‘₯) = βˆ’πΉπ‘’π‘₯. On the other

hand kinetic energy 𝐸(𝑝π‘₯ ) is proportional to sinusoidal configuration that is analysed in

Section 4.1.2. That change of kinetic energy is one of the aspects in determining precise measurement of gravitational acceleration 𝑔 in Bloch oscillation [1].

Ξ”

βˆ’πΉπ‘’π‘₯

Ξ”

d (a)

(b)

Page 19: Dynamics of cold atoms in moving optical lattices (Version Dek8)

19

By adjusting the height of the energy minibands Ξ” it is possible to control the rate at

which particle tunnels through each successive well [24]. But for the purpose of our investigation we left lattice period d and bandwidth Ξ” values constant.

4.1.2 Tilted Mode

Conduction of the particle in the periodic potential has changed its behaviour and induced Bloch oscillations inside each miniband. Bloch oscillations arise from two nearby

potentials interactions with each other. From dispersion-relation for miniband, kinetic energy is of the form [25]:

𝐸(𝑝π‘₯) = π›₯

2[1 βˆ’ cos (

𝑝π‘₯𝑑

ℏ )] (4.1.2-1)

where E(𝑝π‘₯) is the kinetic energy of the Hamiltonian (H(x, 𝑝π‘₯)= 𝑉(π‘₯) + 𝐸(𝑝π‘₯ )), Ξ”

bandwidth, ℏ is reduced Plank’s constant (1.05Γ—10βˆ’34 J s), 𝑝π‘₯ is the momentum and d is

the distance between two walls of the band or just lattice period. Dispersion relation is of the form of Fourier series but only first term is significant enough for measurement so

equation (4.2.-1) is a rational approximation.

Potential energy was left unchanged and kept is it form still produced different

Hamiltonian to solve:

𝐻(π‘₯, 𝑝π‘₯ ) = π›₯

2[1 βˆ’ cos (

𝑝π‘₯𝑑

ℏ )] βˆ’ 𝐹𝑒π‘₯ (4.1.2-2)

In order to analyse the theoretical prediction we initially solve the Hamiltonian as the

system of simultaneous equations for displacement and momentum such as:

𝑝π‘₯Μ‡ = βˆ’ βˆ‚π»

βˆ‚π‘₯ (4.1.2-3)

and

οΏ½Μ‡οΏ½ = βˆ’ βˆ‚π»

βˆ‚π‘ (4.1.2-4)

The momentum behaviour produces invariant results for free space and tilted modes:

𝑝1 = 𝑝2 = 𝑝0 + 𝐹𝑒𝑑 (4.1.2-5)

where 𝑝0 is the initial momentum of an the particle.

But displacement of two regimes was certainly contrasting:

Page 20: Dynamics of cold atoms in moving optical lattices (Version Dek8)

20

π‘₯1 = π‘₯0 + 𝑝1𝑑

π‘š (4.1.2-6)

where π‘₯1 corresponds displacement of the particle in free space model and π‘₯0 is the initial

position.

and

π‘₯2 = π‘₯0 + cos ( 𝑝0𝑑

ℏ ) – cos (

𝑝2𝑑

ℏ ) (4.1.2-7)

where π‘₯2 corresponds displacement of the particle in tilted mode and π‘₯0 is the initial position.

Momentum was determined to have a linear relationship where as displacement appear to show sinusoidal shape. For simplicity displacement was reduced to dimensionless form

by interchanging variables (πœ”π΅ = 𝑒𝐹𝑑

ℏ , πœ‘ =

𝑝0𝑑

ℏ , A =

Ξ”

2𝑒𝐹 and Ο„ = πœ”π΅ 𝑑) such as:

π‘₯2 = π‘₯0 βˆ’ 𝐴cos (𝜏 + πœ‘) + 𝐴cos (πœ‘) (4.1.2-8)

This is of the form of simultaneous differential equations and has been worked out using

Matlab special solver ode45. This function evaluates the right hand side of the differential equation and solves the system of equation in the form y’ = f(t,y).

Figure 8: Numerical and Analytical graph for Momentum solved by ode45.

The increment of each step has been adjusted and produced two sets of data, numerical

and analytical predictions for both displacement π‘₯ and momentum 𝑝π‘₯ variation with time

(figure 8 and figure 9). On the figure 8 we run the Matlab for two functions, one for numerical result 𝑝1 = 𝑝2 = 𝑝0 + 𝑒𝐹𝑑 (equation 4.1.2-5) with atom being initially at rest

(𝑝0 = 0) and equation (4.1.2-4) by using ode45 solver to obtain the analytical set of

results. Where as the figure 9 represents numerical and analytical results for displacement variation with time equations (4.1.2-7) and (4.1.2-3) respectively.

0 5 10 15 20 25 300

5

10

15

20

25

30

35

Time / [ms]

Mo

me

ntu

m P

x /

[k

g m

m m

s]

Numerical

Analytical

Page 21: Dynamics of cold atoms in moving optical lattices (Version Dek8)

21

Figure 9: Numerical and Analytical graph for Momentum solved by ode45.

It is evident from two graphs that our analytical calculation is consistent with numerical curves that we predicted for displacement and momentum behaviour of and atom in periodic lattice. The displacement (figure 8) clearly perform Bloch oscillation with an

amplitude of its displacement A = 2 mm and period of oscillation t β‰ˆ 6 ms. Therefore increasing either the speed or amplitude of the moving lattice induces Bloch oscillation

with in the energy band 𝐸𝑔 . By introducing an additional moving periodic potential the

dynamics of atoms through stationary optical lattice have been analysed in this paper,

which is discussed in the Section 4.2. [26]

0 5 10 15 20 25 300

0.5

1

1.5

2

Time / [ms]

Dis

pla

ce

men

t X

/ [

mm

]

Numerical

Analytical

Page 22: Dynamics of cold atoms in moving optical lattices (Version Dek8)

22

4.2 Optical Lattice

In this section we are investigating the dynamics of cold atom in original optical lattice (free space model) but with an additional moving potential applied. This extra potential

has been a subject of calibrating two counter propagating laser beams.

4.2.1 Atom Trajectory: Linear dispersion

In the following Section 4.2.2, we look at the atom’s displacement, velocity and momentum behaviour in the low and high π‘ˆπ‘€ regime.

Same argument as before are used to derive the following one-dimensional semiclassical

Hamiltonian [9]:

𝐻(π‘₯, 𝑝π‘₯) = 𝐸(𝑝π‘₯) + 𝑉𝑀(π‘₯, 𝑑) (4.2.1-1)

where 𝐸(𝑝π‘₯ ) is the dispersion relation of the optical lattice and 𝑉𝑀 (x,t) is the moving optical lattice potential. By solving the time independent Schrodinger equation we obtain

the form for kinetic energy 𝐸(𝑝π‘₯ ) as equation(4.1.2-1):

𝐸(𝑝π‘₯) = π›₯

2[1 βˆ’ cos (

𝑝π‘₯𝑑

ℏ )] (4.2.1-2)

where π›₯ is the bandwidth of the 1st energy band and d is the spatial period of the optical

lattice. The potential that atom will experience in the moving optical lattice 𝑉𝑀(π‘₯, 𝑑) is

time and coordinate dependent function and is:

𝑉𝑀(π‘₯, 𝑑) = π‘ˆπ‘š

2 βˆ’

π‘ˆπ‘€

2sin (π‘˜π‘€π‘₯ βˆ’ πœ”π‘€π‘‘) (4.2.1-3)

where π‘˜π‘€ = 2πœ‹

πœ†π‘€ is the wave number of the propagating lattice of wavelength πœ†π‘€, πœ”π‘€ =

π‘£π‘€π‘˜π‘€ is the frequency of the optical lattice (by which we determine the period of

oscillation) and π‘ˆπ‘€ is the optical amplitude. Substituting both equations (4.2.1-2) and

(4.2.1-3) into the Hamiltonian gives:

𝐻(π‘₯, 𝑝π‘₯) = π›₯

2[1 βˆ’ cos (

𝑝π‘₯𝑑

ℏ )] +

π‘ˆπ‘€

2(1 βˆ’ sin(π‘˜π‘€π‘₯ βˆ’ πœ”π‘€π‘‘) (4.2.1-4)

which is of the same form as equation (4.1.2-2) but with extra optical lattice parameter.

Page 23: Dynamics of cold atoms in moving optical lattices (Version Dek8)

23

Using equation (4.3-4) and applying the differential form of (4.2-3) and (4.2-4) we obtain equations of motion for the Hamiltonian as:

βˆ‚π‘π‘₯

βˆ‚π‘‘=

π‘ˆπ‘€π‘˜π‘€

2cos(π‘˜π‘€π‘₯ βˆ’ πœ”π‘€π‘‘) (4.3-5)**

βˆ‚π‘₯

βˆ‚π‘‘=

π›₯𝑑

2ℏ sin (

𝑝π‘₯𝑑

ℏ ) (4.3-6) **

Trajectories of cold atom were obtained by using numerical integration of Runge-Kutta routine (4th order) [27]. The numerical integrations of the simultaneous equations (4.3-5)

and (4.3-5) were solved by using Matlab ode45 solver (see Appendix C) that computed displacement and momentum trajectory. Figure 10 represents atom’s characteristics with

initial condition at time 𝑑 = 0 being stationary (π‘₯ = 0) and having no initial momentum 𝑝0 = 0 within low field regime π‘ˆπ‘€= 1 peV. We assume that there is no random jiggle of a

particle so overall movement is characterized by average velocity < 𝑣π‘₯ > parameter

instead of drift velocity. For this particular system we have analysed momentum and displacement behaviour for the following parameters of: bandwidth π›₯ = 24.35 peV

(β‰ˆ3.9Γ—10βˆ’30 J) and lattice period d = 294.5 nm which were taken from experiment [28].

Figure 10.1: atom trajectory, average velocity and momentum respectively for π‘ˆπ‘€= 1

peV and 𝑣𝑀 = 2.5 mm/s.

The figure 10.1 show how atom propagates through space is in dispersion mode. As a result atom is travelling in x-direction with positive gradient and particle starts to accelerate and increase its oscillatory average velocity and momentum with small

amplitude, < 𝑣π‘₯ > β‰ˆ Β±0.2 mm/s and 𝑝π‘₯=Β±0.1 kg m/s respectively. The particles dynamical components (displacement π‘₯, average velocity < 𝑣π‘₯ > and momentum 𝑝π‘₯)

highly dependent on the conditions we set for the field π‘ˆπ‘€ and optical lattice velocity 𝑣𝑀 .

Let us first see their relation with the field π‘ˆπ‘€ and then we will study closer its

displacement correspondence to the optical lattice velocity 𝑣𝑀 in Section 4.3.

**Solutions to the following equation can be found in the Appendix B

Page 24: Dynamics of cold atoms in moving optical lattices (Version Dek8)

24

If we were to increase the field π‘ˆπ‘€ by a magnitude of 40 (figure 10.2) particles

displacement, average velocity and momentum change substantially. In particular the displacement of the particle went from positive to negative slope meaning that it changed

its trajectory from one direction to another. Average velocity of the particle is periodically constant for brief amount of time and momentum starts to loose its smooth correspondence at such field (π‘ˆπ‘€=40 peV).

Figure 10.1: atom trajectory, average velocity and momentum respectively for π‘ˆπ‘€= 40

peV and 𝑣𝑀 = 2.5 mm/s.

That being the case lets us look deeper to particles trajectory connection associated with

the magnitude of the field π‘ˆπ‘€ . Increasing the field to the first critical point π‘ˆπ‘€1 β‰ˆ 2 peV

(figure 11) accelerates its average velocity and hence momentum to Β±0.5 mm/s and Β±0.2

kg m/s respectively. Also the amplitude of the displacement at that point rises reaching its maximum of 4 ΞΌm after 12 ms.

Figure 11: shows atom trajectory, average velocity and momentum respectively for π‘ˆπ‘€= 2 peV and 𝑣𝑀 = 2.5 mm/s.

Page 25: Dynamics of cold atoms in moving optical lattices (Version Dek8)

25

Increasing the field to the second critical point π‘ˆπ‘€2 β‰ˆ16 peV continues the trend of

increasing amplitude of displacement, velocity and momentum. But the oscillations of

average velocity < 𝑣π‘₯ > start to take a new more complex shape (figure 12 (blue)).

Figure 12: atom trajectory, average velocity and momentum respectively for π‘ˆπ‘€= 16

peV and 𝑣𝑀 = 2.5 mm/s.

Figure 13 show the distribution of average velocity < 𝑣π‘₯ > depending on how π‘ˆπ‘€

changes for wavelength πœ†π‘€= 20d and 𝑣𝑀 = 2.5 mm/s.

Figure 13: the distribution of average velocity < 𝑣π‘₯ > depending on how π‘ˆπ‘€ changes for

wavelength πœ†π‘€= 20d and velocity of optical lattice 𝑣𝑀 = 2.5 mm/s.

The figure 13 shows that for very small values of π‘ˆπ‘€ (from 0 to β‰ˆ2 peV) average < 𝑣π‘₯ >

velocity behaves exponentially until it reaches its first critical value π‘ˆπ‘€1 β‰ˆ2 peV, at which

π‘ˆπ‘€1

π‘ˆπ‘€2

𝑃1 𝑃2

Page 26: Dynamics of cold atoms in moving optical lattices (Version Dek8)

26

point < 𝑣π‘₯ > = 𝑣𝑀 = 2.5 mm/s which is consistent with what Greenaway has also

achieved [9]. As we increase the value of π‘ˆπ‘€further the average velocity is being

unaffected and remains almost constant until π‘ˆπ‘€ = π‘ˆπ‘€2 β‰ˆ 17 peV, second critical value.

After which average velocity decreases significantly. The reason for the particle having the same value of average velocity as the velocity of optical lattice (< 𝑣π‘₯ > = 𝑣𝑀 = 2.5

mm/s) is due to it being in wave dragging regime for π‘ˆπ‘€1 < π‘ˆπ‘€ < π‘ˆπ‘€

2 . Potential generated by the moving optical lattice traps the atom (see Section 3.2) and hence propagates through stationary optical lattice at average velocity equal to velocity of the

potential (< 𝑣π‘₯ > = 𝑣𝑀). Further increase of π‘ˆπ‘€allows the particle to perform Bloch oscillations the high field regimes are indicated by peak values 𝑃1β‰ˆ 75 peV and 𝑃2β‰ˆ 150

peV, which were analysed and will be described in the Section 4.2.2.

4.2.2 High Field regime The Bloch oscillations only start show their shape after we raised the field beyond the

second crirtical point π‘ˆπ‘€ > π‘ˆπ‘€2 . On top of that the behaviour of atom becomes more

sensitive to small variations of field π‘ˆπ‘€ . We looked at the atom’s dynamics and

sensitivity near the first peak 𝑃1 > 𝑃 > 𝑃1. From figure 13 it is clear that average velocity of the particle is decreasing its value until about π‘ˆπ‘€β‰ˆ 65 peV where curves start to pick

up a positive gradient again.

Figure 14: atom trajectory, average velocity and momentum respectively with the high field regime for π‘ˆπ‘€= 65 peV.

For that reason the gradient of the dispersion curve is now negative (Figure 14) and the

particle travels in the negative x-direction. This is due to Bragg reflection caused by energy gap Eg (see section 2.1). The particle continues to accelerate with negative

gradient achieving its maximum average velocity of < 𝑣π‘₯ > β‰ˆ Β±2.1 mm/s. The increase

of velocity allows the atom perform more frequent oscillations but with smaller amplitude of displacement. Further increase of the field only decreases its amplitude and

period of oscillation of displacement until it generates high field regime and atom performs Bloch oscillations (see section 2.2).

Page 27: Dynamics of cold atoms in moving optical lattices (Version Dek8)

27

Figure 15: atom trajectory, average velocity and momentum respectively with the high field regime for π‘ˆπ‘€= 75 peV.

It is evident from Figure 15 that characteristics of displacement π‘₯ and average velocity <𝑣π‘₯ > begin to take a compound form when the field is at the first critical point 𝑃1. The

gradient of dispersion curve for displacement becomes almost zero which suggest that atom travels in a straight line along the x-axis with amplitude of average velocity being <𝑣π‘₯ > = Β±2 mm/s with maximum momentum 𝑝π‘₯= 10 kg mm/s.

Figure 16: distribution momentum 𝑝π‘₯ versus displacement for optical velocity 𝑣𝑀=2.5

mm/s and field π‘ˆπ‘€=75peV (first peak value 𝑃1).

Another way of representing the correlation between the momentum and displacement is to plot phase trajectory graph (figure 16), which visualizes tangled oscillatory behaviour. The graph has quite a distinct shape, which is symmetrical about π‘₯β‰ˆ1.2 mm. It can also

Page 28: Dynamics of cold atoms in moving optical lattices (Version Dek8)

28

be observed that along the displacement the trajectory is mostly in the positive side of the axis, which suggest that particle is travelling with positive gradient.

Figure 17 represents the first critical value of the field 𝑃1 that generates the Bloch oscillation that was deduced from Figure 13’s first peak. At this point the dynamics of

atom is easily affected to slight changes of the field. Increasing the field further by only 1 peV (π‘ˆπ‘€= 76 peV) changes the slope from zero to negative value hence particle travels

along the x-axis with the negative gradient.

Figure 17: atom trajectory, average velocity and momentum respectively with the high field regime for π‘ˆπ‘€= 76 peV.

Furthermore the slope of displacement curve constantly changes affecting the particle’s

dynamics for π‘ˆπ‘€ β‰₯ 75 peV. The analysis for the Bloch oscillatory regime is discussed

and evaluated further in Section 4.2.3 for second critical value of the field 𝑃2 that has more rigorous fluctuations of displacement curve with time.

4.2.3 Bloch Oscillation regime

Page 29: Dynamics of cold atoms in moving optical lattices (Version Dek8)

29

From figure 13 increasing the field π‘ˆπ‘€ further towards the peak values 𝑃1 and 𝑃2 allows

the atom to perform Bloch oscillations in the high field regimes. Figure 18 shows even sharper alteration of oscillation for displacement of an atom over short period of time (12

ms). The fast oscillations break up by abrupt jumps. This pattern is precisely the one found for the particle Bloch oscillations driven by an acoustic wave case in Greenaway’s thesis [9] and consistent with one described by Stockhofe and Schmelcher [29].

Figure 18: atom trajectory with the Bloch oscillation regime with the velocity of optical lattice 𝑣𝑀 = 2.5 mm/s for: [a] π‘ˆπ‘€= 145 peV and [b] π‘ˆπ‘€= 170 peV. Figure 18 correspond to Bloch regime around second peak value 𝑃2>P >𝑃2. On Figure 20

[a] π‘ˆπ‘€= 145 peV atom’s trajectory generally have the same shape as [b] π‘ˆπ‘€= 170 peV.

Both perform Bloch oscillations with abrupt jumps. For π‘ˆπ‘€= 145 peV overall atom

spends more time with positive velocity than negative velocity which generates a forward jump with positive average velocity. On the other hand π‘ˆπ‘€= 170 peV we have average

velocity being negative, meaning that atom spends more time with negative velocity than positive velocity that generates a backward jump.

Once again another way of representing the correlation between the momentum and displacement is to plot phase trajectory graphs (figure 19 and figure 20). Using the

topology of that trajectory we can explain the forward and backward jumps that appeared

0 2 4 6 8 10 12

0

0.5

1

1.5

t / [ms]

X / [

mm

]

[a]

[b]

Page 30: Dynamics of cold atoms in moving optical lattices (Version Dek8)

30

in figure 18. From figure 19 it can be seen that the particle shows identical behaviour to the distinct pattern that appeared in figure 16 but since the field π‘ˆπ‘€ is almost doubled it

seems that the pattern repeated it self twice. It is symmetrical about π‘₯β‰ˆ0.1 mm and it is

evident that it spends slightly more time in the positive side of the displacement axis that suggest that the particle moves with the positive gradient, which is what is show on the

figure 18[a].

Figure 19: distribution momentum 𝑝π‘₯ versus displacement for optical velocity 𝑣𝑀=2.5 mm/s and field π‘ˆπ‘€=145 peV (second peak value 𝑃2).

Figure 20: distribution momentum 𝑝π‘₯ versus displacement for optical velocity 𝑣𝑀=2.5

mm/s and field π‘ˆπ‘€=170 peV (second peak value 𝑃2).

Similarly on the figure 20 the symmetry appears around π‘₯β‰ˆ-0.8 mm that means that

particle’s displacement marginally is in the negative side of the axis, which means that it moves in along the x-axis but with the negative slope. This was shown on figure 18[b].

4.3 Velocity of Optical Lattice 𝒗𝑴

Page 31: Dynamics of cold atoms in moving optical lattices (Version Dek8)

31

We would now like to see the effect of velocity of optical lattice 𝑣𝑀 on the system, which

can be adjusted by varying the frequencies of two counter propagating laser beams. We show that the interaction between the two lattices produce a large number of resonances

in transport properties of the cold atoms. By changing the parameter of optical lattice velocity 𝑣𝑀 totally changes the characteristics of the field average velocity < 𝑣π‘₯ >. The

figures 17-21 (next two pages) represent the behaviour for average velocity < 𝑣π‘₯ > for: 2,3,4,6 and 8 mm/s with the exactly the same values of wavelength πœ†π‘€= 20d, bandwidth

π›₯ = 24.35 peV and lattice period d = 294.5 nm

Figure 17: distribution of average velocity < 𝑣π‘₯ > depending on how π‘ˆπ‘€ changes for

velocity of optical lattice 𝑣𝑀 = 2 mm/s.

When initial value of optical lattice velocity 𝑣𝑀 is being adjusted (figure 17 and figure 18)

the behaviour is not that dissimilar from when it was 𝑣𝑀 = 2.5 mm/s other than having

more peaks for lower range (figure 17). In both cases atom accelerates exponentially reaching its maximum of average velocity < 𝑣π‘₯ > = 2.5 mm/s which held constant for

some period of the field π‘ˆπ‘€ for figure 17 its roughly Ξ”π‘ˆπ‘€β‰ˆ20 peV and for figure 18 it is

Ξ”π‘ˆπ‘€β‰ˆ5peV.

Page 32: Dynamics of cold atoms in moving optical lattices (Version Dek8)

32

Figure 18: distribution of average velocity < 𝑣π‘₯ > depending on how field π‘ˆπ‘€ changes

for velocity of optical lattice 𝑣𝑀 = 3 mm/s.

As the optical lattice velocity 𝑣𝑀 increases the region of constant velocity becomes shorter (Ξ”π‘ˆπ‘€ β†’ 0) and later as we keep on increasing velocity of the optical lattice 𝑣𝑀

further the average velocity< 𝑣π‘₯ > starts to drop and it projects much smoother trajectory

(see figure 19-21).

Figure 19: distribution of average velocity < 𝑣π‘₯ > depending on how field π‘ˆπ‘€ changes

for velocity of optical lattice 𝑣𝑀 = 4 mm/s.

Page 33: Dynamics of cold atoms in moving optical lattices (Version Dek8)

33

On both figures 19-20 maximum average velocity < 𝑣π‘₯ > decreases from initial value of

2.5 mm/s (when the optical velocity 𝑣𝑀 = 2.5 mm/s) and as the field π‘ˆπ‘€ increases from 0

to 200 peV the graphs show less peaks and hence transition from positive to negative gradient requires greater input of the field to achieve the next peak.

Figure 20: distribution of average velocity < 𝑣π‘₯ > depending on how field π‘ˆπ‘€ changes for velocity of optical lattice 𝑣𝑀 = 6 mm/s.

When the optical lattice velocity raised to a value 𝑣𝑀 = 8 mm/s maximum average

velocity is only about a third of its initial value < 𝑣π‘₯ > β‰ˆ0.75 mm/s and clearly free from

any abrupt behaviour that it used to show before. Also on the previous three graphs (figure 19-21) there is no more wave dragging regime for which average velocity < 𝑣π‘₯ >

has one to one correspondence with velocity at which optical wave is travelling (<𝑣π‘₯ >≠𝑣𝑀). This is due to the detuning of the counter propagating lasers that do not

Figure 21: distribution of average velocity < 𝑣π‘₯ > depending on how field π‘ˆπ‘€ changes

for velocity of optical lattice 𝑣𝑀 = 8 mm/s.

produce previously shown constructive interference which lets us achieve maximum

possible average velocity of < 𝑣π‘₯ > = 2.5 mm/s.

From above discussion we now have several ways of analysing the trajectory and treating the atom depending on how we would like it to behave. If we would like to transport the atom with a constant average velocity would be preferable to use low field

Page 34: Dynamics of cold atoms in moving optical lattices (Version Dek8)

34

value 1peVβ‰€π‘ˆπ‘€β‰€10peV with velocity of optical lattice 2 mm/s≀𝑣𝑀≀3 mm/s. On the other

hand if we want to suddenly accelerate or decelerate the atom we can use one of the peak value that will increase or decrease the resonant oscillations and speed up or down the

atom in a certain direction. Moreover when using the peak values to change the velocity profile of the atom we have to be careful with the precise value we are using because as show in Section 4.2 small variations of the field near the peak values could drastically

change the direction in which atom travels due to forward and backward jumps. For that reason, detuning counter propagating lasers beams in such manner that velocity of optical

lattice travelling at about 6 mm/s≀𝑣𝑀≀8 mm/s will benefit the steady acceleration and deceleration profile of cold atom transport.

Page 35: Dynamics of cold atoms in moving optical lattices (Version Dek8)

35

5 Conclusion

In this thesis, first system was studied as a simple model of particle in periodic potential driven by external force that helped us understand origins of the Bloch oscillations, which

then lead us to our main problem of transport and dynamics investigation of cold atoms under an influence of secondary periodic potentials. At first we have examined the effect

of periodic potential generated by the electric force and then tilted that system to induce the effect of gravitational force to the kinetic energy of the Hamiltonian. Analytical and numerical results showed the Bloch oscillations behaviour appearing in the conduction of

the particles through the miniband.

After that we investigated the dynamics of cold atom in original optical lattice but with

the additional moving potential. Secondary potential been attained by detuning two counter propagating laser beams. This time potential energy of the Hamiltonian has been change, which had to be, solved analytically using Matlab ode45 solver. The trajectory of

the cold atom has been analysed for large range of the field and also for some values of the optical lattice velocity. We have established certain conditions that allow us control

and manipulate cold atom trajectory for our purposes. We found that there are abrupt jumps in Bloch oscillation regimes where as wave dragging regime perform steady evolution of displacement with time. The dynamics of the particle is very sensitive to

slight variations of the field that causes the atom to move in opposite directions. For instance concluded that we can transport the particle with constant velocity, which equals

to the velocity of the propagating optical lattice that we applied and then we can also accelerate or decelerate it further all by changing the field to some critical values.

Therefore this supplies us with a technique for transporting cold atoms that allows us to

move the particle with the precise velocities and directs it to particular locations. This is in fact what is necessary in quantum information processing [2], condensed matter

simulations [1,4] and Bose-Einstein condensation [3].

Finally the dynamics analysed in this paper is analogues to those calculated for electrons in acoustically driven superlattice [2,9,14,15]. Therefore the cold-atom system that we

have described also supplies a quantum simulator for acoustic modes of the wave.

Acknowledgments

I would like to gratefully appreciate A. Balanov for his guidance and intellectual stimulation through my final project, with whom I had a pleasure to collaborate throughout the past few years at Loughborough.

Page 36: Dynamics of cold atoms in moving optical lattices (Version Dek8)

36

References [1] H ́elΜ€ ene Perrin, Pierre Lemonde, Franck Pereira dos Santos, Vincent

Josse, Bruno Laburthe Tolra, Fr ́ed ́eric Chevy, and Daniel Comparat. β€œApplication of lasers to ultracold atoms and molecules” Physique, Volume 12 (2011) [2] Q. Beaufils, G. Tackmann, X. Wang, B. Pelle, S. Pelisson, P. Wolf, and F. Pereira dos

Santos. β€œLaser Controlled Tunneling in a Vertical Optical Lattice”. Physical Review Letters (2011)

[3] V. Yu. Argonov and S. V. Prants. β€œNonlinear Coherent Dynamics of an Atom in an Optical Lattice.” Journal of Russian Laser Research, Volume 27.(2006) [4] K. W. Mahmud, L. Jiang, E. Tiesinga,1 and P. R. Johnson. β€œBloch oscillations and

quench dynamics of interacting bosons in an optical lattice”. Physical Review A 89 (2014)

[5] M.R. Bakhtiari, P. Vignolo, M.P. Tosi. β€œTheory of coherent transport by an ultra-cold atomic Fermi gas through linear arrays of potential wells”. Physica E. (2006) [6] A.R. Kolovskya. β€œTransport of cold atoms in optical lattices”. Eur. Phys. J. Special

Topics 151 (2007) [7] Paul A. Tipler, Gene Mosca. β€œPhysics For Scientist And Engineers With Modern

Physics”. 6th Edition [8] Jasprit Singh. β€œQuantum Mechanics: Fundamentals and Applications to Technology” A Wiley-Interscience Publication, (1997)

[8.2] H. J. Pain. β€œThe Physics of Vibrations and Waves”. 6th Edition. [9] Mark Thomas Greenaway, β€œSingle particle and collective dynamics in periodic potentials” February 2010.

[10] Charles Kittel. β€œIntroduction to Solid State Physics”. 8th Edition. [11] Web Image: http://users-phys.au.dk/philip/pictures/solid_9

semiconductors/britney.gif [12] Web Image: http://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/ Band_gap_comparison.svg/2000pxBand_gap_comparison.svg.png

[13] Web Image: http://en.wikipedia.org/wiki/Particle_in_a_one-dimensional_lattice [14] H. J. Pain. β€œThe Physics of Vibrations and Waves”. 6th Edition.

[15] Web Image: http://en.wikipedia.org/wiki/Particle_in_a_one-dimensional_lattice [16]Bruce H. J. McKellar and G. J. Stephenson, Jr. β€œKlein paradox and the Dirac-Kronig-Penney model. Physical Review A (1987)

[17] F. Domfnguez-Adame and M.A. Gonzfilez. β€œA generalized Dirac-Kronig-Penney model with nonlocal separable potentials”. Physica B (1991)

[18] Web Image: http://www.mysearch.org.uk/website1/images/ pictures/523.1.jpg [19] Jayant V. Narlikar. β€œAn Introduction to Relativity”. Cambridge University Press

(2010) [20] Paul A. Tipler, Ralph A. Llewellyn. β€œModern Physics” 4th Edition. W. H. Freeman

and Company. [21] Web Image: http://www.vescent.com/applications/cold-atom-science/ [22] Advanced Optic Laboratory. β€œLaser Cooling and Trapping”. Web source:

http://massey.dur.ac.uk/resources/grad_skills/LaserCooling.pdf

Page 37: Dynamics of cold atoms in moving optical lattices (Version Dek8)

37

[23] Eric S. Muckley β€œConstructing A Magneto-Optical Trap For Cold Atom Trapping”. California Polytechnic State University 2009.

[24] Amalia Patane` and Mark Fromhold. β€œNovel regimes of electron dynamics in superlattices”. Phil. Trans. R. Soc. A 364, (2006).

[25] M. T. Greenway, A. G. Balanov, D. Flower, A. J. Kent and T. M. Fromhold. Physical Review B β€œ Using acoustic wave to induce high-frequency current oscillations in superlattices” 2010.

[26] M. T. Greenway, A. G. Balanov and T. M. Fromhold. Physical Review A β€œResonant of cold-atom transport through two optical lattices with a constant relative

speed” 2013. [27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipies in C. Cambridge University Press, 2nd edition, 1996.

[28] David Sherwood. β€œEffect of Stochastic Webs on Electron Transport in Semicon- ductor Superlattices.” PhD thesis, University of Nottingham, 2003.

[29] J. Stockhofe and P. Schmelcher . Physical Review A β€œBloch dynamics in lattices with long-range hopping” (2015)

Page 38: Dynamics of cold atoms in moving optical lattices (Version Dek8)

38

Appendix A

βˆ’β„ 2

2π‘š

βˆ‚2πœ“(π‘₯)

βˆ‚π‘₯𝑛2 +𝑉(π‘₯)πœ“ = πœ€πœ“ (2.3-1)

1) In the region 0<x<a where 𝑉 = 0 the eigenfunction is a linear combination,

πœ“ = 𝐴𝑒𝑖𝑆π‘₯ + π΅π‘’βˆ’π‘–π‘†π‘₯ (A-1)

with energy Ξ΅ = ℏ 2𝑆2

2π‘š (A-2)

2) In the region x>a where 𝑉 = 𝑉0

πœ“ = πΆπ‘’βˆ’π‘‡π‘₯ (A-3)

with energy 𝑉0 – Ξ΅ = ℏ 2𝑇2

2π‘š (A-4)

3) In the region x<a where 𝑉 = 𝑉0

πœ“ = 𝐷𝑒𝑇π‘₯ (A-5)

with energy 𝑉0 – Ξ΅ = ℏ 2𝑇2

2π‘š (A-6)

Page 39: Dynamics of cold atoms in moving optical lattices (Version Dek8)

39

Appendix B

βˆ‚π‘π‘₯

βˆ‚π‘‘=

π‘ˆπ‘€π‘˜π‘€

2cos(π‘˜π‘€π‘₯ βˆ’ πœ”π‘€π‘‘) (4.3-5)

βˆ‚π‘₯

βˆ‚π‘‘=

π›₯𝑑

2ℏ sin (

𝑝π‘₯𝑑

ℏ )

(4.3-6)

Using substitution:

𝑃 =𝑝π‘₯𝑑

ℏ (B-1)

𝑋 = π‘˜π‘€π‘₯ βˆ’ πœ”π‘€π‘‘ (B-2)

𝜏 = πœ”π‘€π‘‘ (B-3)

All three substitutions are in dimensionless units.

Therefore using (B-1) and (B-3) equation (4.3-5):

d𝑝π‘₯

d𝑑=

d𝑃

d𝑑

ℏ

𝑑=

d𝑃

d𝜏

ℏ πœ”π‘€

𝑑=

π‘ˆπ‘€π‘˜π‘€

2cos(π‘˜π‘€π‘₯ βˆ’ πœ”π‘€π‘‘)

hence d𝑃

d𝜏=

π‘ˆπ‘€π‘˜π‘€π‘‘

2ℏ πœ”π‘€cos(π‘˜π‘€π‘₯ βˆ’ πœ”π‘€ 𝑑)

and since 𝑣𝑀 = πœ”π‘€

π‘˜π‘€ and using (B-2) we get

d𝑃

d𝜏=

π‘ˆπ‘€π‘‘

2ℏ 𝑣𝑀cos(𝑋)

(B-4)

So consequently using (B-2):

dπ‘₯

dt=

d(𝑋+πœ”π‘€π‘‘)

dt π‘˜π‘€=

d(𝑋)

dt

1

π‘˜π‘€ +

πœ”π‘€

π‘˜π‘€ =

π›₯𝑑

2ℏ sin (

𝑝π‘₯𝑑

ℏ )

using (B-1) :

d𝑋

d𝜏 πœ”π‘€

π‘˜π‘€=

π›₯𝑑

2ℏ sin(𝑃) βˆ’

πœ”π‘€

π‘˜π‘€

Page 40: Dynamics of cold atoms in moving optical lattices (Version Dek8)

40

d𝑋

d𝜏 =

π›₯π‘‘π‘˜π‘€

2ℏ πœ”π‘€sin(𝑃) βˆ’ 1

since 𝑣𝑀 = πœ”π‘€

π‘˜π‘€

d𝑋

d𝜏 =

π›₯ 𝑑

2ℏ 𝑣𝑀sin(𝑃) βˆ’ 1 (B-5)

Two simultaneous equations used to calculate the displacement and momentum dynamics using Matlab function ode45:

d𝑃

d𝜏=

π‘ˆπ‘€π‘‘

2ℏ 𝑣𝑀cos(𝑋)

(B-4)

d𝑋

d𝜏 =

π›₯ 𝑑

2ℏ 𝑣𝑀sin(𝑃) βˆ’ 1 (B-5)

Page 41: Dynamics of cold atoms in moving optical lattices (Version Dek8)

41

Appendix C

Function β€œSoptic” is of the for of simultaneous equations (4.3-5) and (4.3-6).

function dS = Soptic(t,S) dS = zeros(2,1);

h = 6.62606957e-34; % J

hbar = h/(2*pi); % J eVJ = 1.602176565e-19; % J delta = 24.35e-12*eVJ ; % J

d = 294.5e-9 ; % m Vm = 25e-4; % 2.5 mm/s

lambdaM = 20*d; % m Km = 2*pi/lambdaM; % /m Wm = Vm*Km; % /s

Um = 76e-12*eVJ; % J % tau = Wm*t;

Ix = delta*d/(2*hbar*Vm); Yp = d*Um/(2*hbar*Vm);

dS(1)= Ix*sin(S(2))-1; % Displacement dS(2)= Yp*cos(S(1)); % Momentum

end The second script is the one which uses ode45 solve to run the function β€œSoptic”.

tspan = 0:1e-4:32; %Wm - few Wm's...

options = odeset('RelTol',1e-10,'AbsTol',1e-16); [tau,S] = ode45(@Soptic, tspan, [0 , 0], options);

% ode45 - better

%ode23s, ode23t, ode23tb - takes a very long time %ode15s - okay

figure; subplot(3,1,1);

plot(tau*1000/Wm,((S(:,1)+tau)/Km)*10^6,'-g'); ylabel ('X / [\mum]'); subplot(3,1,2);

plot(tau*100/Wm, (delta*d/(2*hbar*Vm)*sin(S(:,2))), '-b'); ylabel('<V> / [mm/s]')

subplot(3,1,3); plot(tau*100/Wm, S(:,2),'-r');

Page 42: Dynamics of cold atoms in moving optical lattices (Version Dek8)

42

ylabel('Px / [Ns]') xlabel (' t / [ms]'); % 10-3