Top Banner

of 23

Dynamical Effects in Semiconductor Spintronics

Apr 09, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    1/23

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    2/23

    Fourth Basic Circuit Element

    V i

    q

    Voltage, V Current, A

    Charge, C Flux, Wb

    Resistor:

    Capacitor:

    Inductor:

    Memristor:

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    3/23

    Memristive systems

    itiwMV ),,(=

    ),,( tiwfdt

    dw

    =

    Current-controlled

    Memristive system

    w = a set of n-state

    variables

    VtVwGi ),,(=

    ),,( tVwfdtdw =

    Voltage-controlled

    Memristive system

    itqMV ))((=Ideal memristor Chua, 71

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    4/23

    Properties

    1. Passivity criterion: .0),,( tiwM

    2. No energy discharge property: . 0)()()( = titVtp

    3. Frequency behavior: - as a non-linear resistor at low frequencies;

    - as a linear resistor at high frequencies.

    4. Doubled-valued Lissajous figure property.

    V

    i

    Pinched Hysteresis Loop

    Memristor Fingerprint

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    5/23

    Realizations and Applications

    Non-volatile memory Programmable logic

    Signal Processing

    Neural networks

    Thermistors

    Ion channelsResistive switching systems:

    Binary oxides: TiO2, CuO, NiO, CoO, Fe2O3 Strukov et al.,

    Nature 2008

    Perovskite oxides: SrTiO3, Pr1-x CaxMnO3

    Sulfides: Cu2S, Ag2S

    Organics: CuTCNQ, MIM (with pentacene, TPD, AIDCN, )

    Semiconductors: GaAs, ZnSe-Ge

    Spintronics devices

    App

    lic

    ati

    ons

    Rea

    liza

    tions

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    6/23

    Semiconductor spintronics systems

    YVP and M. Di Ventra,Phys. Rev. B 78,113309 (2008)

    Requirements to observe memristive effects in semiconductor spintronics:

    Transport properties should depend on the level of electron-spin polarization in a

    semiconductor

    Spin polarization in semiconductor should be influenced by an external control

    parameter (applied current or voltage).Spin injection Spin extraction

    An example:

    semiconductor/half-metal junctions

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    7/23

    +V

    Semiconductor

    with non-degenerate electron gas

    Half-metal

    Spin-down cloud

    YVP and M. Di Ventra, Phys. Rev. B 75, 193301 (2007).

    j

    Spin blockade

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    8/23

    Critical current: drift-diffusion equations

    SemiconductorHalf-metal j

    ( )( ) ( ) ( )( )

    +=

    nn

    ej

    t

    ne

    sf2div

    ( ) ( ) ( )+=neDEj x

    ( )nNe

    Ex =0

    div

    relaxation

    diffusion

    drift

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    9/23

    SemiconductorHalf-metal j

    From condition n(0)=0 we find:

    Critical current:

    Critical electric field:

    For GaAs, jc=10-7

    A/m2

    ,

    Boundary conditions fordrift-diffusion model:

    j(0)=0 j()=j/2

    j(0)=j j()=j/2

    0 1 2 3 4 5 6 7 80.00

    0.25

    0.50

    0.75

    1.00

    n/N

    0

    x

    nn

    Critical current

    V

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    10/23

    Possible application:

    Current stabilization device

    Current-voltage characteristics

    SC

    A

    FMcontact

    V=Vcont +VSC

    j~n(0) Vcont

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6

    0.8

    1.0

    j/jc

    V/(sL jc )

    c

    0/(

    sL)=0.1

    c

    0/(

    sL)=0.5

    c0/(

    sL)=1

    c

    0/(

    sL)=5

    c

    0/(

    sL)=10

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    11/23

    Spin memristive systems

    Memristive systemw = a set of n-state

    variables

    ItIwMV ),,(=

    ),,( tIwf

    dt

    dw=

    In

    NLV cs )

    )0(2( 00

    +=

    ( )( ) ( ) ( )( )

    +=

    nn

    ej

    t

    ne

    sf2div

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    12/23

    Spin memristive systems

    A

    FM contact SC

    j

    YVP and M. Di Ventra, Phys. Rev. B 78, 113309 (2008).

    very low frequencies: nonlinear resistor

    very high frequencies: linear resistor

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    13/23

    0 2 4 6 8 100

    3

    6

    9

    0.0

    0.5

    1.0

    1.5

    V(V)

    j/jc

    Time (ns)

    Transient response

    Current spikes!

    j~n(0) Vcont

    Usual conductors:

    Ohms law I=V/R

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    14/23

    Memristive spin Hall effect

    YVP and M. Di Ventra, Phys. Rev. B 79, 153307 (2008).

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    15/23

    Outline

    Memory effects in semiconductor

    spintronics

    Spin generation in closed geometries

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    16/23

    Spin Hall and stirring effects

    Y. K. Kato et al., Science 306, 1910 (2004) M. Switkes et al., Science 283, 1905 (1999)

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    17/23

    Main idea

    V1(t)

    V2

    (t)V3

    (t)

    V4(t)

    I

    YVP, N. A. Sinitsyn, A. Kogan, A. Saxena, D. L. Smith, Appl. Phys. Lett. 95, 022114

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    18/23

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    19/23

    Results: current and potential

    -1.5

    -1.0

    -0.5

    (V)

    y

    (m)

    0

    1

    2

    01

    2x

    (m)

    GaAs,R=1m, n=1015 cm-3 ,E0=5kV/cm

    Averaged current density Potential distribution

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    20/23

    Results: spin polarization

    0 1 2 3 4 52

    3

    4

    5

    6

    7

    8

    9

    0.2 0.4 0.6 0.8 1.00.01

    0.1

    1

    10

    pz

    (10-4)

    p

    z(10

    -4)

    T(ns)

    n (1016

    cm-3)

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    21/23

    Different number of electrodes

    = 3/2= 2/=

    -6.000E-4

    -3.500E-4

    -1.000E-4

    1.500E-4

    4.000E-4

    6.500E-4

    9.000E-4

    0.001150

    0.001400

    0.001600

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    22/23

    Screening effects

    0 1 2 3 4 52

    3

    4

    5

    6

    7

    8

    9

    0.2 0.4 0.6 0.8 1.00.01

    0.1

    1

    10

    pz

    (10

    -4)

    p

    z(10-4)

    T(ns)

    n (1016cm-3)

    -8.000E-5

    -6.750E-5

    -5.500E-5

    -4.250E-5

    -3.000E-5

    -1.750E-5

    -5.000E-6

    7.500E-6

    2.000E-5

    -3.500E-4

    -2.000E-4

    -5.000E-5

    1.000E-4

    2.500E-4

    4.000E-4

    5.500E-4

    7.000E-4

    8.000E-4

    n=1015

    cm-3

    n=1016

    cm-3

  • 8/8/2019 Dynamical Effects in Semiconductor Spintronics

    23/23

    Conclusions

    Short time memory effects are intrinsic in many

    semiconductor spintronics devices

    Transient response of semiconductor spintronics

    devices may limit their operational frequency

    All-electrical spin polarization generation scheme is

    suggested based on a combination of Spin Hall

    effect and stirring effect Such a scheme can be used, e.g., to control

    magnetization of nano-magnets