Top Banner
Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1 , Wen-Hwa Liao 2 , Ming-De Huang 3 , and Hua-Wen Tsai 4 1 National University of Tainan, Dept. Information and Learning Technology 2 Tatung University, Dept. Information Management 3 Chang Jung Christian University, Dept. Information Management 4 National Cheng-Kung University, Dept. CSIE Wang, Sheng-Shih Wang, Sheng-Shih Dec. 26, 2005 Dec. 26, 2005 IEEE International Conference on Networks (ICON 2005)
34

Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Dec 14, 2015

Download

Documents

Casey Galt
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Dynamic Object Tracking in Wireless Sensor Networks

Tzung-Shi Chen1, Wen-Hwa Liao2, Ming-De Huang3, and Hua-Wen Tsai4

1 National University of Tainan, Dept. Information and Learning Technology2 Tatung University, Dept. Information Management

3 Chang Jung Christian University, Dept. Information Management4 National Cheng-Kung University, Dept. CSIE

Wang, Sheng-ShihWang, Sheng-ShihDec. 26, 2005Dec. 26, 2005

IEEE International Conference on Networks (ICON 2005)

Page 2: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Outline

• Introduction• Movement Object Tracking• Simulation• Conclusion

Page 3: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Introduction

• Motivations Target tracking is an important issue in WSNs

• Enemy vehicle tracking, habitat monitoring, etc Cooperation of multiple sensors

• Objectives Mobile object tracking

• Accurate• Quick• Energy efficiency

Page 4: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Movement Object Tracking --- Overview

A

F1

F3

F6

F7

F10

F2 F11

F12

F13

source

mobile target

ingress node

sensor

Page 5: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Movement Object Tracking --- Operation

• Target discovery• Mobile target detection• Target tracking• Track improvement

Face track adjustment Loop face track adjustment

Page 6: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Target Discovery

Target enters the network

Page 7: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Target Discovery (cont’d)

Three sensor nodes detect the target

Page 8: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Target Discovery (cont’d)

Where ?

Three sensor nodes build their corresponding faces

Page 9: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Target Discovery (cont’d)

querypacket

Source sends a query packet to discover the target

Page 10: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Target Discovery (cont’d)

replypacket

• state active• active time infinite

Ingress nodeThe sensor closest to the target replies the packet to the source

Page 11: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Target Discovery (cont’d)

Page 12: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Mobile Target Detection

wak

eup

Wakeup packet• ingress id (node A)• face hop count (1)

A

B

Node A is the 1st ingress node

wakeup

wakeup

wakeup

Page 13: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Mobile Target Detection (cont’d)

wak

eup

Wakeup packet• ingress id (node A)• face hop count (1)

A

B

Node A is the 1st ingress node

wakeup

wak

eup

wakeup

Page 14: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Mobile Target Detection (cont’d)

A

B

Target may enter face F0, F2, or F5

F2

F5

F0

F1

Page 15: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Mobile Target Detection (cont’d)

A

B

Node B sends the wakeup packets to all of its neighboring face nodes (F1, F2, F3, F4, and F5) Node A knows that node B is the next ingress node

F2

F3

F4

F1

F0

F5

Node B is the 2nd ingress node

Page 16: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Mobile Target Detection (cont’d)

A

BF2

F3

F4

F1

active time expires go to sleep

F0

F5

Page 17: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Target Tracking

A

B

C

D

• Node A knows the next ingress node (node B)• Node B knows the next ingress node (node C)• Node C knows the next ingress node (node D)

• Source knows the 1st ingress node (node A)

Page 18: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Face Track Adjustment

A

Page 19: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Face Track Adjustment (cont’d)

AG

B

C

D

E

F

• Track : <A, B, C, D, E, F> (F1, F2, F3, F6, F7, F8, F9)• Face hop count = 7

Not optimaltrack

F1

F2

F3

F4

F5

F6

F7

F8

F9

Page 20: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Face Track Adjustment (cont’d)

AG

B

C

Optimal track : <A, G, F>

F1

F3

F4

F5

F6

F7

F8

F9F

D

EF2

Page 21: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Face Track Adjustment (cont’d)

AG

B

C

F1

F3

F4

F5

F6

F7

F8

F9

if (face hop count = k)then send infoadj packet to the last checkface (node A)

F

D

EF2

Page 22: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Face Track Adjustment (cont’d)

AG

B

C

F1

F3

F4

F5

F6

F7

F8

F9F

D

EF2

Page 23: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Face Track Adjustment (cont’d)

AG

B

C

F1

F3

F4

F5

F6

F7

F8

F9F

D

E

The ingress nodes, B, C, D, and E, are canceled

F2

Page 24: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Face Track Adjustment (cont’d)

AG

B

C

Node A finds the next ingress node closest to the kth ingress node (F),and then sends an adjustment packet to the next ingress node

F1

F3

F4

F5

F6

F7

F8

F9F

D

E

adjustment adjustment

F2

Page 25: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Loop Face Track Adjustment

AG

B

C

F1

F3

F4

F5

F6

F7

F8

F9

D

EF2

F

H

Page 26: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Loop Face Track Adjustment (cont’d)

AG

B

C

F1

F3

F4

F5

F6

F7

F8

F9

D

EF2

• Track : <A, B, C, D, E, F, H> (F1, F2, F3, F6, F7, F8, F9, F4, F3)

F

H

loop

Page 27: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Loop Face Track Adjustment (cont’d)

A

H

B

C

F1

F3

F4

F5

F6

F7

F8

F9

F

D

EF2

• Node C receives the wakeup packet from node H and detects the loop, node C sends a deletion packet to node H

deletionG

Page 28: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Loop Face Track Adjustment (cont’d)

AG

B

C

F1

F3

F4

F5

F6

F7

F8

F9

D

EF2

F

H

Page 29: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Simulation Model

• ns-2 simulator• Sensing field: 500 m 500 m• 1000 sensor nodes (random deployment)• Communication range = sensing range = 25

m• Power

Tx = Rx = 175 mW Initial: 5 joule

• Moving speed Target: 20 m/s Source: 10 m/s, 20 m/s, or 30 m/s

• Simulation time: 2000 secs

Page 30: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Simulation --- Comparison

• Threshold Flooding (TF) When the source reaches the location of the

target, target discovery process is executed again• Schedule Flooding (SF)

The source executes the target discovery process every 2 secs

• Schedule Updating (SU) The source queries once The sensor which detects the target sends the

update message to the source every 2 secs• Proposed Object Tracking scheme (OT)

Page 31: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Simulation Result --- First Catching Time

infrequent query flooding and face track adjustment

Page 32: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Simulation Result --- Energy Consumption

• before the first catch • after the first catch

flooding-based

less query flooding

Page 33: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Simulation Result --- Lifetime

query packet is required although the source is near the target

Page 34: Dynamic Object Tracking in Wireless Sensor Networks Tzung-Shi Chen 1, Wen-Hwa Liao 2, Ming-De Huang 3, and Hua-Wen Tsai 4 1 National University of Tainan,

Conclusion

• Target tracking protocol Dynamic Energy efficiency Shorter tracking path Loop avoidance