Top Banner
1 Dust collected in MAST and in Tore Supra C. Pardanaud 1 , C. Martin 1 , P. Roubin 1 , C. Arnas 1 and G. De Temmerman 2 1 Lab. PIIM, CNRS-Université de Provence, UMR 6633, 13397 Marseille, France 2 EURATOM/UKAEA Fusion association Culham Science Center, Abingdon, UK Nanoparticle growth in laboratory plasmas A. Mouberi 1 , C. Arnas 1 , F. Bénédic 2 , G. Lombardi 2 , K. Hassouni 2 , X. Bonnin 2 1 Lab. PIIM, CNRS-Université de Provence, UMR 6633, 13397 Marseille, France 2 LIMHP, UPR 1311 CNRS, Université Paris XIII, Villetaneuse, France Association EURATOM-CEA FDR-FCM
19

Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

Sep 12, 2018

Download

Documents

vuongdan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

11

Dust collected in MAST and in Tore SupraC. Pardanaud1, C. Martin1, P. Roubin1, C. Arnas1 and G. De Temmerman2

1 Lab. PIIM, CNRS-Université de Provence, UMR 6633, 13397 Marseille, France2 EURATOM/UKAEA Fusion association Culham Science Center, Abingdon, UK

Nanoparticle growth in laboratory plasmasA. Mouberi1, C. Arnas 1, F. Bénédic 2, G. Lombardi 2, K. Hassouni2, X. Bonnin2

1Lab. PIIM, CNRS-Université de Provence, UMR 6633, 13397 Marseille, France2LIMHP, UPR 1311 CNRS, Université Paris XIII, Villetaneuse, France

Association EURATOM-CEA

FDR-FCM

Page 2: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

2

Outline

Dust produced in the MAST tokamak

quantitative analyses (mass)

qualitative analyses (shape, structure, composition)

Dust collected in Tore Supra neutralizers

qualitative analyses (shape, structure, composition)

Carbonaceous nanoparticles growth in laboratory plasmas

graphite cathode sputtering in DC discharges

microwave discharges in Ar/CH4/H2

Conclusion (similarities, differences)

Page 3: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

3

8 locations of collection by vacuuming below mid-plane. 3 groups of location:

erosion-dominated locations swept by strike points (foot of the central column, tiles)

private flux region (dome)

shadowed locations (toroidal gaps, ports, under Langmuir probe, upper surface of magnetic coils)

PFCs: graphite, stainless steel

M6 campain (2006-2007) = 2 x 2000 shots de 0.3 s

Dust collected in the MAST tokamak

xx

Page 4: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

44

Qualitative analyses: SEM, TEM, HRTEM, EDX, IR absorption spectroscopy, Raman microscopy

Quantitative analyses

outer toroidal gap of tiles + inner toroidal gap of tiles, m = (29.6 + 4.8) mg

ports, m = 4.2 mg

dome, m = 4.1 mg -> 1.86 mg/m²

tiles, m = 3.9 mg -> 0.52 mg/m²

Total mass > 46.6 mg (2 1018 atomes/s)

dust transport towards shadowed areassweeping of the outer strike point towards the tile outer toroidal gap (dust transport)private flux region = domeeroded-dominated regions = tiles

Consistent with dust transport and formation

Dust collected in the MAST tokamak

Page 5: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

55

1) metallic particles (nm to µm size)arcing on vessel and magnetic coils (stainless steel)

metallic impurities during plasma ignition on inductive coils

2) carbonaceous grains (~ µm), irregular shape heterogeneous structure (amorphous to graphite-like)

coming from redeposited layers when they contain metallic impurities

otherwise, pulled out from divertors during disruption

3) carbonaceous nanoparticles, different structure (amorphous, onion-like)

Evidence of homogeneous growth:consistent with divertor plasma: dense and cold

Nanoparticles (5-10nm)

SEM, TEM, HRTEM show everywhere:

Page 6: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

66

Raman micro-spectroscopyfor a given location, heterogeneous structure:

amorphous carbon to disordered graphite

the most amorphous grains located on the dome surface (private- flux region)

IR absorption spectroscopy

CD, CH, aromatic C=C , C≡C

1000 1100 1200 1300 1400 1500 1600 1700 1800

Raman shift (cm-1)

box 31 grain 1 box 31 grain 2 box 31 grain 3 box 31 grain 6

Dust in the outer toroidal gap of tiles (shadowed area):

Plan: Raman micro-spectroscopy currently done - correlation between the features deduced from spectra and the corresponding surface area collection

Page 7: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

7

Dust in the Tore Supra tokamak

neutralizer

toroidallimiter

neutralizer

toroidallimiter

Deposits collected on the leading edge of neutralizers (PhD M. Richou)

Page 8: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

1

200 μm200 μm200 μm 20 μm20 μm20 μm

1 μm

self-similar tips●

parallel tip-axes●

concentric shells●

porosity

network

heterogeneous growthwith specific features

Page 9: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

9

20 nm20 nm

locally graphitic

structure●

onion-like particles similar

to

carbon

black●

graphite-encapsulated metal

nanoparticules

evidence of homogeneous growthin the edge plasma

Page 10: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

10

Nanoparticles produced in tokamak edge plasmas, divertor plasmas

2 stages of growth in cold plasmas:

1) molecular precursors (complex chemical pathway) nucleation

2) growth of nanoparticles

sputtering (physical erosion)

CH4 release (chemical erosion)Tokamaks with graphitic PFCs:

(TEXTOR, TS, MAST …)

Page 11: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

11

From hydrocarbon species in microwave discharges

experimental set up

molecular precursors, nanoparticles growth

From cathode sputtering in DC discharges

experimental set up

molecular precursors, nanoparticle growth

2 examples of carbon nanoparticle growth in laboratory plasmas:

Page 12: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

12

1 : Graphite cathode 4 : Langmuir probe2 : Anode 5 : Thermocouple3 : Dust collector 6 : Optical window

1

23

5

4 6

• Emission spectroscopy• Laser extinction and diffusion

• Argon = 0.6 mbar• Vpol ~ - 600 V• P ~ 100 W• J ~ 10 A/m²

200 nm

Ne = Ni ~ 1010 cm-3 , Te = 3 eV dans la LN

Glow discharges

Page 13: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

13

0

3

6

9

12

0 0,2 0,4 0,6

E (eV)

EDF

3.45 eV

Decrease of the sputtered atom energy

cathode distance (cm)

Thompson’s model (1968):Sputtering from collisional cascade

EDF of sputtered carbon atoms at the graphite surface, θ

= 0°

Thermalization with argon (200 °C)

Mean energy ~ 11 eV

Cathode sputtering

<E> eV

Taking into account collisions C-Ar= carbon cooling mechanism

cooling mechanism produces supersaturated carbon vapor ⇒ condensation and carbon cluster formation, Cn

Ei = 100 eV

modeling of neutral, negative cluster growth: Cn, Cn- K. Hassouni et al (LIMHP)

Page 14: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

14

0

10

20

30

40

50

60

70

80

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540

Durée de la décharge (s)

Taill

e (n

m)

Growth by cluster deposition

agglomeration of nucleus of 2-3 nm size+ deposition 8 nm

agglomeration of nanoparticules, 6-15 nm size + deposition

~ 40 nm

Experimental growth law

Page 15: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

15

Ar/CH4 /H2 mixture

• [CH4 ]: 3%, [H2 ]: 1%

• Total pressure: 200 mbar

• Microwave power: 400-600 W

Bell jar reactorOrange emission in the peripheral plasma by heated dust particles

Microwave discharges

Ne ~ 1011 cm-3, Te ~ 1 eV

Page 16: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

16

C CH H2 C=C=C=CH

H H+ H

• Mechanism of Poly-Aromatic Hydrocarbons (PAHs) formation(1)

A4 model (K. Hassouni)Radicalar

growth

of PAH

and nucleation mechanism

Linearization

Cyclization

CH HC

HCCH

CH

C

HC C CH

+ C2 H2

- H

+ H

- H2

HC

HCCH

CH

CC C CH

CH

CH

C

HC

…….

+ C2 H2

- H

cyclisation

Hydrogen Abstraction Carbon Addition (HACA)

CH

CHHCCH

CCH

CHHCCH

C

+

Condensation of 2 pyrene (A4) molecules

nanoparticle nucleous

(1) Wang et Frenklach., Comb.Flame (1997)

C=C=C=CH

H H+ C CH H

CH

Page 17: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

17

3 nm

in-situ IR absorption spectroscopy (diode laser): presence of C≡C

ex-situ IR absorption spectroscopy: presence of PAHs with 3, 4 aromatic rings

chromatography in gas phase: presence of PAHs with 2, 3, 4 aromatic rings

HRTEM micrographs

0.1µm

Page 18: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

3 nm

1) carbon sputtering discharges: low pressure, low input power

1)2)

Conclusion (1/2)

2.5 nm

2) Ar/CH4 /H2 discharges: higher pressure, higher input power

3)Tore Supra (limiter tokamak)

4)MAST (divertor tokamak)

3) 4)

2 nm5 nm

Conclusion (1/2)Nanoparticles produced in different plasma conditions have similar structure

Page 19: Dust collected in MAST and in Tore Supra - Freecrwth.free.fr/images/3-14.pdf · 1. Dust collected in MAST and in Tore Supra. C. Pardanaud. 1, C. Martin. 1, P. Roubin. 1, C. Arnas.

1) IR absorption spectroscopy:- TS neutralizers deposits : flat spectra- MAST: one spectrum (CD, CH, C=C, C≡C)

Molecular precursors in Tore Supra and MAST?

2) Mass spectrometer (Tore Supra)3) Chromatography analyses?

1) carbon sputtering discharges: Cn , Cn-

2) Ar/CH4 /H2 discharges: complex chemical pathway ⇒ PAHs

Confirmation:1) Chromatography2) IR absorption spectroscopy 3) Mass spectrometer (plan)

But, in the considered laboratory plasmas, molecular precursors are different :