Top Banner
dU = T dS P dV + µdN Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid Chemical reactions Different locations adsorption of gas on a surface flow of charged particles in a semiconductor 8.044 L18B1
28

dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

Mar 12, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

dU = T dS − P dV + µdN

Different phases

gas to liquid to solid

paramagnet to ferromagnet

normal fluid to superfluid

Chemical reactions

Different locations

adsorption of gas on a surface

flow of charged particles in a semiconductor

8.044 L18B1

Page 2: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

� �

� �

Note that

∂U µ =

∂N S,V ↑

This is often a source of miss-understanding.

However

F ≡ U − TS ⇒ dF = dU − T dS − SdT

dF = −SdT − P dV + µdN

So

∂F µ =

∂N T,V

8.044 L18B2

Page 3: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

dU

dN

T1, V1, N1 T2, V2, N2

dS = 1

T dU +

P

T dV −

µ

T dN

= 1

T1 (−dU2) −

µ1

T1 (−dN2) +

1

T2 dU2 −

µ2

T2 dN2

=

⎛ ⎝ 1

T2 −

1

T1

⎞ ⎠ dU2 +

⎛ ⎝µ1

T1 −

µ2

T2

⎞ ⎠ dN2 ≥ 0

8.044 L18B3

Page 4: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

If T1 > T2, energy flows to the right. If T1 = T2

there is no energy flow.

If the two sides are at the same temperature and

µ1 > µ2 particles flow to the right.

If T1 = T2 and µ1 = µ2 there is neither energy

flow nor particle flow and one has an equilibrium

situation.

8.044 L18B4

Page 5: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

Example: Adsorption

ε = 0

ε = - ε0

on the surface

free to move as a 2D gas

in the bulk

a 3D gas

8.044 L18B5

Page 6: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

� �

� � � �

3D gas

2 2 2 V−(px+py +p )/2mkBTzZ1 = V e dpxdpydpz/h3 =

λ3(T )

1 Z = Z1

N

N !

F = −kBT ln Z = −kBT (N ln Z1 − N ln N + N)

∂F µ = = −kBT (ln Z1 − N/N − ln N + 1)

∂N V,T

V 1 N = −kBT ln = kBT ln λ3(T )

N λ3 V

8.044 L18B6

Page 7: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

� �

� �

2D gas on surface with binding energy E0

2 2E0/kBT −(px+py )/2mkBTZ1 = A e e dpxdpy/h2

AE0/kBT= e λ2(T ) ⎛ ⎞

Z1 1E0/kBT A ⎠µ = −kBT ln = −kBT ln ⎝e N N λ2(T )

N = −E0 + kBT ln λ2(T )

A

8.044 L18B7

Page 8: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

� � � �

� � � �

Define the number density in the bulk as n ≡ N/V

and on the surface as σ ≡ N/A. In equilibrium

=µsurface µbulk

−�0 + kBT ln σ λ2(T ) = kBT ln n λ3(T )

ln σ λ2(T ) = �0/kBT + ln n λ3(T )

σ λ2(T ) = e�0/kBT n λ3(T )

�0/kBTσ = λ(T ) e n

8.044 L18B8

Page 9: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

h �0/kBTσ = √ e n 2πmkBT

8.044 L18B9

Page 10: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

Ensembles

• Microcanonical: E and N fixed

Starting point for all of statistical mechanics

Difficult to obtain results for specific systems

• Canonical: N fixed, T specified; E varies

Workhorse of statistical mechanics

• Grand Canonical: T and µ specified; E and N

vary

Used when the the particle number is not fixed

8.044 L18B10

Page 11: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

��������811

��� ����� � � ������������� ���

����������������� �����������������������������

������������������� ��������������������������

������������ ���� �� ���������������� ����������

����������������� �����

tom
Highlight
Page 12: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

For the entire system (microcanonical) one has

volume of accessible phase space consistent with X p(system in state X) =

Ω(E)

In particular, for our case

p({p1, q1, N1}) ≡ p(subsystem at {p1, q1, N1};

remainder undetermined)

Ω1({p1, q1, N1}) Ω2(E − E1, N − N1) =

Ω(E, N)

8.044 L18B12

tom
Highlight
tom
Highlight
tom
Highlight
tom
Highlight
Page 13: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

k ln p({p1, q1, N1}) = k ln Ω1 − k ln Ω(E, Nf ( ) f ( )) k ln 1 = 0 S(E, N)

+ k ln Ω2(E − E1, N − N1)f ( )

S2(E − E1, N − N1)

8.044 L18B13

Page 14: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

⎛ ⎞ ∂S2⎝ ⎠S2(E − E1, N − N1) ≈ S2(E, N) − E1∂E2 N, 22 1/T ⎛ ⎞

∂S2− ⎝ ⎠ N1∂N2 , E22 −µ/T

= S2(E, N) −H1({p1, q1, N1}/T

+µN1/T

8.044 L18B14

tom
Highlight
tom
Highlight
Page 15: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

H1({p1, q1, N1}) µN1k ln p({p1, q1, N1}) = − + T T

+S2(E, N) − S(E, N)

The first line on the right depends on the specific

state of the subsystem.

The second line on the right depends on the reser­

voir and the average properties of the subsystem.

8.044 L18B15

tom
Highlight
tom
Highlight
tom
Highlight
Page 16: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

S(E, N) = S1(E1, N1) + S2(E2, N2)

S2(E, N) − S(E, N)

=

=

=

[S2(E, N) − S2( E2, N2)] − S1( E1, N1)

[

⎛ ⎝ ∂S2

∂E2

⎞ ⎠

N2

E1 +

⎛ ⎝ ∂S2

∂N2

⎞ ⎠

E2

N1] − S1( E1, N1)

[ E1/T − µ N1/T ] − S1( E1, N1)

= ( E1 − µ N1 − T S1)/T = (F1 − µ N1)/T

8.044 L18B16

Page 17: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

k ln p({p1, q1, N1}) = − H1({p1, q1, N1})

T

+(F1 − µ N1)/T

+ µN1

T

p({p1, q1, N1})

p({p, q, N})

=

=

=

exp[β(µN1 − H)] exp[β(F1 − µ N1)

exp[β(µN − H)] exp[β(F − µ N)]

exp[β(µN − H)] / exp[−β(F − µ N)]

8.044 L18B17

Page 18: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

∞ e p({p, q, N}){dp, dq} = 1

N=1

exp[β(µN −H)] p({p, q, N}) =

Z

∞ e Z(T, V, µ) = exp[β(µN −H)]{dp, dq}

N=1

∞=

e (eβµ)NZ(T, V, N)

N=1

= exp[−β(F − µN)]

8.044 L18B18

Page 19: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

⎛ ⎞ ∞ ∂Z e ⎝ ⎠ ∂µ

= βN exp[β(µN −H)]{dp, dq}T,V N=1 ⎛ ⎞ ⎛ ⎞ ∞ 1 ∂Z e exp[β(µN −H)]⎝ ⎠ ⎝= N ⎠ {dp, dq}

βZ ∂µ ZT,V N=1 ⎛ ⎞ ∞ 1 ∂Z e ⎝ ⎠ = N p({p, q}, N){dp, dq}βZ ∂µ T,V N=1 ⎛ ⎞ 1 ∂ ln Z ⎝ ⎠ = < N > β ∂µ T,V

8.044 L18B19

Page 20: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

Define a new thermodynamic potential, the ”Grand

potential”, ΦG.

ΦG ≡ F − µN = U − TS − µN

¯dΦG = dF − µ d N − Ndµ

¯= −SdT − P dV − Ndµ

8.044 L18B20

Page 21: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

� �

� �

Then the connection between statistical mechan­

ics and thermodynamics in the Grand Canonical

Ensemble is through the Grand potential

∂ΦGS = − ∂T V, µ

∂ΦGP = − ∂V T, µ

⎛ ⎞ ∂ΦG¯ ⎝ ⎠N = − ∂µ T,V

8.044 L18B21

Page 22: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

Specification of

a symmetrically allowed many body state.

Indicate which single particle states, α, β, γ, · · ·, are

used and how many times.

{nα, nβ, nγ, · · ·}

An ∞ # of entries, each ranging from 0 to N

for Bosons and 0 to 1 for Fermions, but with the

restriction that

α nα = N

8.044 L18B22

Page 23: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

� �

|1, 0, 1, 1, 0, 0, · · ·) Fermi-Dirac

|2, 0, 1, 3, 6, 1, · · ·) Bose-Einstein

'Eαnα = E Prime indicates nα = N α α

8.044 L18B23

Page 24: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

∑ ∏ ( )

(∑

Statistical Mechanics Try Canonical Ensemble

−E(state)/kT Z(N, V, T ) = e states

I −E({nα})/kT = e {nα}

= I e −Eαnα/kT

α{nα}

This can not be carried out. One can not interchange

the ∑

over occupation numbers and the ∏

over states

because the occupation numbers are not independent

nα = N).

8.044 L18B24

Page 25: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

� �

Statistical Mechanics Grand Canonical Ensemble

[µN−E(state)]/kT Z(T, V, µ) = estates

[µN−E({nα})]/kT = e{nα}

= e(µ−Eα)nα/kT

α{nα}⎛ ⎞ ⎜ (µ−Eα)nα/kT ⎟ = ⎝ e ⎠ α {nα}

8.044 L18B25

Page 26: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

� �

� �

For Fermions nα = 0, 1

(µ−Eα)nα/kT (µ−Eα)β e = 1+ e{nα}

(µ−Eα)βln Z = ln 1+ eα

For Bosons nα = 0, 1, 2, · · ·� �−1 (µ−Eα)β]nα (µ−Eα)β[e = 1 − e{nα}

(µ−Eα)βln Z = − ln 1 − eα

8.044 L18B26

Page 27: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

< N > =

< nα > α

= 1 ⎛ ⎝ ∂ ln Z

⎞ ⎠ β ∂µ T,V

(µ−Eα)β e= {+ F-D, − B-E}

(µ−Eα)βα 1 ± e

1 < nα >=

e(Eα−µ)β ± 1

8.044 L18B27

Page 28: dU T dS P dV µdN - MIT OpenCourseWare · dU = T dS − P dV + µdN. Different phases gas to liquid to solid paramagnet to ferromagnet normal fluid to superfluid. Chemical reactions.

MIT OpenCourseWarehttp://ocw.mit.edu

8.044 Statistical Physics ISpring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.