Top Banner
FUZZY RULE-BASED SYSTEMS Lecture 15 from: Fuzzy Rule-Based Modeling with  Applications to Geophysical, Biological and Engineering Systems, by A. Bardos sy and L. Duckstein, CRC Press, 1995 A. Fuzzy Sets • Dealing with uncert ainty  Probability theory and statistics  Bayesian statistics  Fuzzy sets—nonfrequentist approach • Fuzzy set  Set of objects without clear boundaries or not well defined— partial membership 1 “Cri spset Exampl e:  the set of “young persons” is a fuzzy set 2 [ ] { } ( , ( ); , ( ) 0,1  A A  x x x x  µ µ = A X ( ) 0 or 1  A  x  =  1 25 40 - ( ) 25 40 25  0 > 40  A  x  x  x x  x  µ  = 1 0 25 40 linear  x 3
26

DSS- Fuzzy (literature)

Jan 06, 2016

Download

Documents

Meliana Aesy

Decission Support System dengan Fuzzy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 1/26

FUZZY RULE-BASED

SYSTEMS

Lecture 15

from: Fuzzy Rule-Based Modeling with

 Applications to Geophysical, Biological and

Engineering Systems, by A. Bardossy and

L. Duckstein, CRC Press, 1995

A. Fuzzy Sets

• Dealing with uncertainty

 –Probability theory and statistics –Bayesian statistics

 –Fuzzy sets—nonfrequentistapproach

• Fuzzy set

 –Set of objects without clearboundaries or not well defined—partial membership

1

• “Crisp” set

• Example:

 –the set of “young persons” is afuzzy set

2

[ ]{ }( , ( ); , ( ) 0,1 A A x x x x µ µ = ∈ ∈A X

( ) 0 or 1 A   x   =

  1 25

40 -( ) 25 40

25

  0 > 40

 A

 x

 x x x

 x

 µ 

= ≤ ≤

1

025 40

linear 

 x

3

Page 2: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 2/26

• defines the “truth value” of

• Learning—process of removing orreducing fuzziness

• Cardinality

4

( ) A   x

 x ∈ A

{ }

1

1 1

( )

  of ( , ),..., ( , )

 I 

i

i

 I I 

car 

a a

 µ 

 µ µ 

=

=

=

∑A

A

• h level set

“too at least a degree”

so:

• compliment:

5

( ) | ( ) A A h x x h µ = ≥

1 2 1 2( ) ( ) if A h A h h h⊂ >

(0 1) A A h≡ < <cC A=

( ) 1 ( )C A x x µ = −

• intersection

• union:

6

 D A B= ∩

( )( ) min ( ), ( ) D A B x x x µ µ µ =

B

 x

 AD

B

 x

 A E E A B= ∪

( )( ) max ( ), ( ) E A B x x x µ µ µ =

 : algebraic productab

• Note: not necessarily

• t  norm (intersection operator)

7

c A A∩ 0/

let  D A B= ∩

( ) ( ) , ( ) D A B x t x x

a   b

 µ µ µ 

=

 

(1 )(1 )

ab ab

a b ab a a b+ − + − −( )max 0, 1 ... many othersa b+ −

Page 3: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 3/26

  0 170 cm

185 -( ) 170 185 cm15

  1 > 185

 A

 x

 x x x

 x

 µ 

= < ≤

• t  co-norm

• linguistic variables

 – words, phrases, expressions

 – e.g., “tall”

8

( , ) 1 (1 ,1 )

( , ) 1 (1 ,1 )

c x y t x y

t x y c x y

= − − −

= − − −

• Linguistic modifiers:

 – VERY MOSTLY PRACTICALLY

 – SORT OF NOT INDEED – SOMEWHAT ROUGHLY … etc.

• e.g.

 – called “concentration”

 – since actually has effectof decreasing membership

9

2VERY ( ) ( ) x x µ µ =

[ ]0,1 µ ∈

• “dilation” modifier 

• “contrast” modifier 

 – to translate back to natural language,find closest Euclidean distance to

membership function of statement 10

MORE or LESS( ) ( ) x x µ µ =

( )

2

INDEED 2

2 ( ) 0 ( ) 0.5( )

1 2 1 ( ) 0.5 ( ) 1.0

 x x x

 x x

 µ µ  µ 

 µ µ 

  ≤ <= 

− − ≤ <

B. Fuzzy Numbers

• Special case of fuzzy sets

• Involves arithmetic operations

• A fuzzy subset A of real nos. is a

fuzzy number if:

 – at least 1 z such that:[normality]

 –for all

 –[convexity]

∃ ( ) 1 A   z   =

( )

 

( ) min ( ), ( ) A A A

a c b

c a b µ µ µ 

< <

11

Page 4: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 4/26

• Convexity insures h levels sets and

the support of the fuzzy no. are

intervals

• Membership value of real no. is“likeliness” of occurrence of that no.

 – not “likelihood” 12

{ }supp( ) | ( ) 0 A A x x µ = >

1 1

convex nonconvex

• Level sets: different nos. with given

minimum “likeliness”

• Zadeh: is “possibility” of x .impossible totally possible

• A “crisp” number is a fuzzy no. with a

single point

13

( ) A   x

• Triangular fuzzy nos. [symmetric or

asymmetric]

14

1

1

1 22 1

32 3

3 2

3

0

( )

 

0

 A

 x a

 x a

a x aa a x

a xa x a

a a

a x

 µ 

−   < ≤−

= −   < ≤

  −

<

1

a1

 xa2 a3

1 2 3( , , )T a a a

• Trapezoidal

fuzzy no.

15

1

11 2

2 1

2 3

43 4

4 3

4

0

1( )

 

0

 A

 x a

 x aa x a

a a

a x a xa x

a x aa a

a x

 µ 

−   < ≤−

< ≤=  −

  < ≤−

<

1

a1 xa2 a3 a4

Page 5: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 5/26

• Fuzzy mean

 –we often need to “defuzzify” a fuzzy

set—i.e., replace with a crisp value –could take element with highest

membership value—but may not be

unique or representative of fuzzy set

16

1

3 x

6 9

e.g.

(3,3,9)T 

• Fuzzy mean:

for

17

( )

( )

( )

 A

 A

t t dt  

 M A

t dt 

 µ 

 µ 

+∞

−∞

+∞

−∞

=

∫1 2 3( , , )T  A a a a=

1 2 3( )

3

a a a M A

  + +=

Note: not all fuzzy sets have fuzzy

means: e.g., 1 2( , , )T a a   ∞

• Fuzzy mean for piecewise linear

fuzzy membership function

18

( )

( )

1

1 11 1

0

11

0

  ( )

2 2( ) ( )6 6

( ) ( )

2

 L

 L

 M A

 x x x x x x x x

 x x x x

 µ µ 

 µ µ 

+ ++ +

=

++

=

=

+ + − +

+−

0 1for  L x x x< < ⋅⋅ ⋅ < breakpoints

• Advantage of fuzzy mean:

 –continuous—i.e., differences in

membership functions produce

smooth changes in fuzzy mean• Fuzzy median:

 –disadvantage: not continuous—also,not necessarily UNIQUE

19

( )

( )

( ) ( )

m A

 A A

m A

t dt t dt   µ µ +∞

−∞

=∫ ∫

Page 6: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 6/26

 –advantage: good for fuzzy sets

defined on DISCRETE ordered

sets X • Expressing similarity between fuzzy

sets:

 –similar to Euclidean distance—butonly applicable to TRIANGULAR

membership functions20

( )

2

2 2 21 1 2 2 3 3

  ( , )

( ) ( ) ( )

d A B

a b a b a b

=

− + − + −

C. Fuzzy Rules

• Problem of imprecise information and

measurements• Crisp systems tolerate no exceptions

and no errors

• Wide differences in opinion

 –a statement AND its opposite may

both be true to a certain degree

21

• Structure of fuzzy rule:

or simplified:

[different rules with different

consequences can be applied to samepremises]

22

1 1 2 2IF: is is is

THEN:

i i k ik  

i

a A a A a A

 B

⋅ ⋅ ⋅

{ AND OR XOR

1 2   THEN:i i ik i A A A B⋅⋅⋅

consequencepremises

• Degree of fulfillment [DOF]

 –Product inference

23

1

1 2

1 2

1 2

1 2

1 2

1 11 2 1 2

1 2 1 2

1 2

1 2 1 2

1 2

(not ) 1 ( )

( AND ) ( ) ( )

( OR ) ( ) ( )

  ( ) ( )

( XOR ) ( ) ( )

  2 ( ) ( )

 A A A

 A A

 A A

 A A

 A A

 A a

 A A a a

 A A a a

a a

 A A a a

a a

 µ µ 

 µ µ 

 µ µ 

 µ µ 

 µ µ 

= −

= ⋅

= +

− ⋅

= +

− ⋅

Page 7: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 7/26

 –min-max inference

[both reproduce Boolean truth table

for crisp or 0-1 case]24

( )( )( )

( )

1 2

1 2

1 2

1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2

( AND ) min ( ), ( )( OR ) max ( ), ( )

( XOR ) max min 1 ( ), ( ) ,

  min ( ),1 ( ) )

(

 A A

 A A

 A A

 A A

 A A a a A A a a

 A A a a

a a

 µ µ  µ µ 

 µ µ 

 µ µ 

=

=

= −

• Example:

IF: (1,2,3)T   AND

((1,2,6)T 

OR (4,5,7)T)

 AND (2.5,4,4.5)T 

THEN: (0,1,2)T 

If: a1=1.5 0.5

a2=4 0.5

a3=4.8 0.8

a4=3 0.333product gives DOF=0.150

min-max gives DOF=0.33325

0.8

 –min-max: accounts for only limiting

or extreme arguments

 –product: accounts for fulfillment of

 ALL arguments

26

• Degree of fulfillment for “AND” coupling

• Degree of fulfillment for “OR” coupling

2 clauses

multiple clauses—recursive “OR”

27

,

1 1

( )i k 

 K K 

i A k k  

k k 

 D a   ν = =

= =∏ ∏

,1 ,2 ,1 ,21 2 1 2( ) ( ) ( ) ( )

i i i ii A A A A D a a a a µ µ µ = + − ⋅

1 1 1( ,..., ) ( ( ,..., ), )i K i i K K   D D Dν ν ν ν ν  −=

Page 8: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 8/26

• Degree of fulfillment for “MOST OF”

• Degree of fulfillment for “AT LEAST AFEW”

 p=1: perfect compensation

 p=∞: no compensation

 p=2: good compromise 28

( ),

1

1

1

1 1 ( )i k 

 K    p p

i A k k 

 D a K   µ =

= − − ∑

( ),

1

1

1( )

i k 

 K    p p

i A k 

 D a K 

 µ =

=

 p-norm

• Example: suppose we have the

following 5 rule arguments for given

set of facts :

29

1

2

3

4

5

1 1

2 2

3 3

4 4

5 5

( ) 0.9

( ) 0.9

( ) 0.5

( ) 0.1

( ) 0

 A

 A

 A

 A

 A

a

a

a

a

a

ν µ 

ν µ 

ν µ 

ν µ 

ν µ 

= =

= =

= =

= =

= =

1 2 3 4 5, , , ,a a a a a

For “AND” coupling

For “OR” coupling

30

0.9 0.9 0.5 0.1 0.0 0i D   = ⋅ ⋅ ⋅ ⋅ =

( )( )( )

( )

0.9 0.9 0.9 0.9

  0.5 0.9 0.9 0.9 0.9 0.5

  0.1 0.9 0.9 0.9 0.9

  0.5 0.9 0.9 0.9 0.9 0.5 0.1

  0.9955

(

)

i D   = + − ⋅

+ − + − ⋅ ⋅

+ − + − ⋅

+ − + − ⋅ ⋅ ⋅

=

For “MOST OF” coupling ( p=2)

For “AT LEAST A FEW” coupling

31

( ) ( ) ( ) ( ) ( )1

2 2 2 2 2 2

  1

1 0.9 1 0.9 1 0.5 1 0.1 1 0

5

 

i D

0.355

= −

− + − − − −

=

( ) ( ) ( ) ( ) ( )1

2 2 2 2 2 20.9 0.9 0.5 0.1 0

5

 

i D

0.613

+ + + + =

=

Page 9: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 9/26

D. Combination of Fuzzy Rule

Responses

• With fuzzy rules (unlike “crisp” rules),several rules can be applied from the

same premise vector

• Need to be able to specify an “overall

response”

• DOF of rule i:

1( ,..., ) K a a

1( ,..., ) (response)i i K i D a a Bν   = →

32

• Problem: define fuzzy set B based on

the individual

i.e.,[combination operator]

• Assume all rules have consequences

which are fuzzy subsets of same set

• 3 methods

 – minimum

 – maximum

 – additive 33

( , )i i B   ν 

( ) ( )( )1 1, ,..., , I I  B C B Bν ν =

• Minimum combination

• Cresting minimum combination

disadvantage: requires much care—can

easily get

• Maximum combination:

34

0( ) min ( )

i

i

 B i B x xν 

ν µ >

=

( ){ }0

( ) min min , ( )i

i

 B i B x xν 

 µ ν µ >

=

( ) 0 B   x   =

1,...,( ) max ( )

i B i Bi I 

 x xν µ =

= ⋅

• Cresting Maximum combination

tolerates disagreements—but does notemphasize agreement--vague

35

( ){ }1,...,

( ) max min , ( )i

 B i Bi I 

 x x µ ν µ =

=

Page 10: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 10/26

• Additive combination:

1) Weighted sum:

 A rule is better if its consequence ismore specific—i.e., not vague

36

1I

i=1

( )

( )

max ( )

i

i

 I 

i B

i B

i Bu

 x

 x

u

ν µ 

 µ 

ν µ 

=

=

2) Normed weighted sum:

37

1( ) [continuous]

1car( ) ( ) [discrete]

i B

i

i ii   j

 x dx

 B j

 µ  β 

 µ  β 

−∞

=

= =

1

=1

( )

( )

max ( )

i

i

 I 

i i B

i B  I 

i i Bu

i

 x

 x

u

ν β µ 

 µ 

ν β µ 

=

⋅ ⋅

=

⋅ ⋅

3) Cresting weighted sum:

38

( )

( )1

=1

min , ( )

( )

max min , ( )

i

i

 I 

i B

i B  I 

i Bu

i

 x

 x

u

ν µ 

 µ 

ν µ 

==

4) Cresting normed weighted sum:

rules with “crisper” answers carry

more weight

39

( )

( )1

=1

min , ( )

( )

max min , ( )

i

i

 I 

i i B

i B  I 

i i Bu

i

 x

 x

u

 β ν µ 

 µ 

 β ν µ 

=

=

Page 11: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 11/26

• Example:

minimum combination:

40

1 1

2 2

Rule 1: 0.4 (0,2,4)

Rule 2: 0.5 (3,4,5)

 B

 B

ν 

ν 

= =

= =

4min 0.4 ,0.5 ( 3)

2

4 23  0.4 0.5 ( 3) @

2 7

 x x

 x x x

    −   ⋅ ⋅ −

− ⋅ = ⋅ − =

41

( )

230.5( 3) 3

74 23

0.4 42 7

 B

 x x

 x x

 x µ 

− < ≤

=  −   < <  

cresting minimum

42

( )

4 4min 0.4,

2 2

min 0.5, ( 3) 34 10

3 @2 3

 x x

 x x x

 x x

    −     − =

− = −−

= − =

( )

10( 3) 3

3

4 10  42 3

 B

 x x

 x x  x

 µ 

− < ≤

= −   < <

1

1   x2 3 4 5 6

0.5 crestmin

mincomb

1

1   x2 3 4 5 6

0.5crest

max

maxcomb

43

Page 12: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 12/26

weighted sum combination

44

0.4 0< 224

0.4 2 3( ) 2

4 0.4 +0.5( -3) 3 4

20.5(5 ) 4 5

 x x

 x x

 f x

 x x x

 x x

− < ≤

=    −

< ≤

  − < ≤Sum of membership functions ·  ν i 

imax ( ) 0.5

so... ( ) 2 ( )

i

i

 B

 B

u

 x f x

ν µ 

 µ 

⋅ =

=

normed weighted sum:

11

22

1area under : 2

1area under : 1

 B

 B

 β 

 β 

=

=

45

0.2 0< 22

40.2 2 3

( ) 24

 0.2 +0.5( -3) 3 42

0.5(5 ) 4 5

 x x

 x x

 f x x

 x x

 x x

− < ≤

=    −< ≤

  − < ≤

( ) 2 ( ) B   x f x=

46

1

1   x2 3 4 5 6

0.5norm. wtd.

sum

wtd.sum

1

1   x2 3 4 5 6

0.5

crest.wtd.sum

crest.norm.

wtd. sum

47

Page 13: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 13/26

• Advantage of additive methods for

combination

 – same support

• Disadvantage of additive methods

 – for repeating rules, gives different

 µ 

48

E. Defuzzification

• Often necessary to replace fuzzy

consequence with single crispconsequence

• Example: prediction for forecasting

or control decision:

• Methods

1) maximum2) mean

3) median

 Bb

( ) f  b D B=

49

• Defuzzification by maximum

 – not necessarily unique

• Defuzzification by mean

50

( ) max ( ) B B x

b x µ =

( ) ( ) f  b D B M B= =

1

1

1( )

( )1

 I 

i iii

 I 

iii

 B

 M B

ν  β 

ν  β 

=

=

=

 – for weighted

sum comb.

easy!

• Defuzzification by normed weightedsum:

• For weighted sum combination andmean defuzzification, rules can be:

51

1

1

( )

( )

 I 

i i

i

 I i

i

 B

 M B

ν 

ν 

=

=

=

,1 ,IF AND ANDTHEN: ( ( ), )

i i K 

i i

 A M B   β 

⋅⋅ ⋅

Page 14: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 14/26

• That is, we only have to represent

fuzzy consequence by its mean

and area under• For normed weighted sum

combination and mean

defuzzification, only need

• Defuzzification by median:

52

i B

( )i B : i µ β 

( )i B

( ) ( ) f  b D B m B= =

• Best methods are:

 – product inference

 – additive combinations – fuzzy mean defuzzification

53

F. Rule Systems

• Rule system

 –this does not imply that allarguments used for every rule:

 –e.g., assign for all

arguments k not used in rule i

,1 ,2 ,IF THEN

(for 1,..., )

i i i K i A A A B

i I 

⋅ ⋅ ⋅

=

,( ) 1

i k  A   x   =

,   fuzzy subsets offuzzy subsets of

i k k 

i

 A X  B Y 

54

• Numerical Rule System :

• To calculate response of rule system:

 –inference method

 –combination method

 –defuzzification method

• complete if for every premise vector 

, responseis nonempty fuzzy set

55

,IF: and fuzzy numbersi k i A B

( )1,...,  K a a   ∈ A   ( )1,...,  K a a

Page 15: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 15/26

• Rule system with maximum or

additive combination methods is

complete on Q iff:

[minimum does not work]

56

1

  rule such that

( ,..., ) 0i k 

i

 D a a

∀ ∃

>

a

ℜ • Example:

not complete under minimum

combination

for support [2,3]

• It is complete for maximum or additive

57

1,1 1

2,1 1

(1, 2,3) (1,2,3)

(2,3,4) (3,4,5)

T T 

T T 

 A B

 A B

= =

= =

( )1 2

1 2min ( ), ( ) 0 B B x xν µ ν µ  ⋅ ⋅ =

• For maximum and additive

combinations, all we need for

completeness is:

58

1

supp( )

e.g., above 1 3; 2 4

  1 4

 I 

i

 A i

 x x

 x

=

≤ ≤ ≤ ≤

⇒   ≤ ≤∪

• Rule system is nondegenerate if:

• If nondegenerate and complete—then mean defuzzification response is

continuous function of A.

59

i,k , Aand and ,

are continuous

i k ii A B∀ ∀

Page 16: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 16/26

• Example:

complete and nondegenerate on

interval [1, 5]

Use normed weighted sum

combination with mean defuzzification

60

if (1, 2,3) then (0,1,2)

if (3, 4,5) then (2,3,4)if (0,3,6) then (0,2, 4)

T T 

T T 

T T 

61

for 1 2

  values are ( 1),0, resp.3

for 2 3  values are (3 ), 0, resp.

3for 3 4

6  values are 0, ( 3), resp.

3for 4 5

6  values are 0, (4 ), resp.

3

i

i

i

i

 x x

 D x

 x  x D x

 x x

 D x

 x x

 D x

≤ ≤

≤ ≤−

≤ ≤−

≤ ≤−

1( 1) 3(0) 25 33

for 1 2 :4 3

( 1) 03

1(3 ) 3(0) 293

for 2 3 :9 2

(3 ) 03

 x x

 x x

 x   x x

 x x

 x x

 x x

− + +

− ≤ ≤ =

− − + +

− + + −

≤ ≤ =−

− + +

62

61(0) 3( 3) 2

7 153for 3 4 :

6 2 30 3

36

1(0) 3(5 ) 257 113

for 4 5 :6 21 4

0 53

 x x

 x x

 x   x x

 x x

 x x

 x   x x

− + − +

− ≤ ≤ =

−   − + − +

+ − + −

≤ ≤ =−   −

+ − +

63

Page 17: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 17/26

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

 x

 y

“defuzzified”response

• 3 crisp rules would give 3 different values

as consequences

• Objects in discrete categories (e.g., HIGH,

MEDIUM, LOW) can be given continuous

representation64

( )

1 1

1

1

If: = , ,

and ( , ..., ) is a continuousfunction on , then for any 0,

any inference combinations and any

defuzzification method, a rule system

 such that: ,...,

 K K 

 K 

 K 

a a a a

 f a a

 f a a

A

A   ε 

− + − + ×⋅⋅⋅×

>

ℜ − ℜ( )

( )1

1

,...,

  ,...,

 K 

 K 

a a

a a

ε <

• Proposition:

65

• Corollary:

Every nondegenerate rule system,

inference and combination method

with mean defuzzification can bereplaced by a rule system using:

 – AND operator 

 – product inference

 – weighted combination

 – fuzzy mean defuzzification

66

• Use of closed form functions:

 – have specific shape

• e.g., linear 

 – parameters assessed with specifictechnique

• e.g., least-squares

 – try to approximate observed data

 – parameters may not have physical

meaning

67

Page 18: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 18/26

• Advantage of rule systems:

 – rules can define function in

specific neighborhoods – errors in coefficients of polynomial

can be disastrous

 – errors in a single rule only

influence function on the support

of that rule

68

G. Membership Functions in

Rule Systems

• What is a good rule?

• How crisp should arguments and

responses be?

• What shape for membership

functions?

• If we are using normed weighted sumcombination and mean

defuzzification—DOESN’T MATTER!69

• Arguments with narrow (i.e., crisp)

supports

 – need many rules

• Very wide supports – nonspecific responses

• Triangular or trapezoidal

membership function are the most

popular 

70

H. Fuzzy Rule Construction

• Assessment of rules: knowledge

and/or available data encoded into

rules• Ways:

1) rules known by experts*

2) rules from experts—but updated from

data

3) not known—but variables specified4) only observations available*

71

Page 19: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 19/26

• Example: algae growth model

 x : available nutrients

y : algae biomass[use scale between 0 and 1]

States described by

high (H )

low (L)

Experts: HH LH LL HL HH 

[ represents time transition]72

nutrientsalgae biomass

Expert Rules: Starting @ HH  – if

algae high, nutrients reduced to L @

t +1; then since nutrients insufficient,

algae becomes L in next period; as

algae breaks down, nutrients

replenished and become H again;

then algae becomes H again in thenext time period.

73

74

ˆ ˆ

ˆ

ˆ

T

T

Let and be triangular

fuzzy numbers:

(0.4,1.0,1.0)

(0.0,0.0,0.7)

H L

H =

L =

1

0.4 0.5 0.7 1.0

H L

ˆ

ˆ

 

Calculate means:

0.4+1.0+1.0 2.4= = 0.8

3 3

0.0+0.0+0.7 0.7= = 0.233

3 3

Construct state vector trajectory :

Let initial state be :

( (0), (0)) = (0.5,0.6)

M(H)=

M(L)=

 x y 

75

Page 20: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 20/26

{ }2

 

ν 

ε ν µ µ  

L

H

L

H

2(0.5) =

for 7

1 nutrients x(0.5) =

61

(0.6) =for 7

2 algae y(0.6) =

6

Use for DOF: AND rule fulfillment grade

for is: i j 

 µ 

 µ 

 µ 

 µ 

(i, j) :

(i, j) L,H (i, j)= (0.5) (0.6)

product infere  nce

76

2/492/21

1/421/18(0.5)H 

 µ 

(0.5)L µ 

(0.6)H  µ  (0.6)L µ 

DOF:

1/42HL HH

2/49LL HL

2/21LH LL

1/18HH LH

DOFRule

Transition table:

77

there are

really 8 rules:

HHL AND H[x]  [y] 

 

⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

1 0.7 2 0.7 2 2.4 1 2.40.35 0.35+ 0.3 + 0.318 3 21 3 49 3 42 3(1)=

1 2 2 10.35 + 0.35+ 0.3+ 0.3

18 21 49 42

=

1 2.4 2 0.7 2 0.7 1 2.40.3 0.35+ 0.35+ 0.3

18 3 21 3 49 3 42 3(1) =

1 2 2 10.3 + 0.35+ 0.35+ 0.318 21 49 42

 x 

0.4319

  = 0.4222

Fuzzy mean combination of rules:

replaced with mean value, and:( )i B µ x 

 = =1 1

0.3 0.35H L β β

78

1

0.60.5

nutrients x (t )algae y (t )

Same procedure used to obtain x (t +1),

y (t +1) as function of x (t ), y (t ), etc.

oscillatory behavior 

79

same as solution ofcoupled diff. eqs.

Page 21: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 21/26

I. Deriving Rule Systems from

Data Sets

• Training set:

• Fuzzy rules can be used to:

 – simplify complex models

 – can generate synthetic training

sets

80

( ){ }1( ),..., ( ), ( ) ; 1,..., K a s a s b s s S  T = =

( ), , , ,

,

, , for each

1where mean ( )

i

i k i k i k i k  T 

i k k i   s R

 A

a s

 N 

α α α 

α 

− +

=   ∑

• Counting algorithm:

1. Define support:

2. Assume

81

( ), , ,, for eachi k i k i k   Aα α − +

{

( )1

, ,

th

where ( ),..., ( ), ( )

such that ( ) , ,

  1,...,

 denotes the set of all those premisevectors that fulfill at least the

 rule; forms a subset of the trainingse

i K 

k i k i k  

i

 R a s a s b s

 s

k K 

 R

i

in part

T

α α α − +

= ∈

=

t ; is the number of elementsin .

i

i

 N  R

T

82

3. Define support:

83

( ), ,i i iT 

 β β β − +

min ( )

1

( )

max ( )

i

i

i

i s R

ii   s R

i s R

b s

b s N 

b s

 β 

 β 

 β 

∈+

=

=

=∑

( ) ( )( )1 1 1

Rule System is:

IF , , AND , ,

THEN: , ,

i i i iK iK iK  T T 

i i iT 

α α α α α α  

 β β β 

− + − +

− +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Page 22: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 22/26

• Questions:

 – How to define supports?

 – Use split sampling methods?• Weighted counting algorithm

 – considers minimal DOF

 – calculate DOF’s

 – For each rule i :

84

( )i   sν 

( )min ( )i

i s

b sν ε 

 β −>

=

( )

( )

( )

( ) ( )

( )

max ( )

i

i

i

i s

i

i s

i s

 s b s

 s

b s

ν ε 

ν ε 

ν ε 

υ 

 β 

υ 

 β 

>

>

+

>

=

=

85

The higher the ε value, the fewer

elements used to define the responses,and the crisper are the assessed rules

• Least Squares Method:

86

( )

( )

2

1

11

1

min ( ),..., ( ) ( )

( ) ( )

( ),..., ( )

( )

 K  s

 I 

i i

i K   I 

ii

 R a s a s b s

 s M B

 R a s a s

 s

ν 

ν 

=

=

=

Rule response fornormed weighted

sum combination:

If we are using normed weighted sum

combination and mean

defuzzification, then the unknowns

are:Shapes of premise membership

functions are assumed in order to get

the

1( ),..., ( ) I  B M B

iν 

87

Note: the other methods can be used

for any combination and defuzzification

Page 23: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 23/26

Example:

• For comparison of the algorithms

• Training set with 25 sets ofobservation data (a1(s),b(s)),

s=1,…,25

• Develop rule system for the interval

[0,8]

• Highly variable, nonlinear behavior

88

TrainingSet

89

• Rule system from counting algorithm

• 7 rules; supports of equal length

• 2 or 3 rules applicable to each a(s)

90

• Rule system from weighted counting

algorithm

• For ε = 0.5; smaller supports; crisper 

91

Page 24: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 24/26

• Least-squares algorithm

• For ε = 0.5; smaller supports; crisper 

( )( )1( ) ( ) cos 12

 L x R x xπ = = +

1

L R

L-R fuzzy nos. –

smooth

approximations

to triangular

fuzzy numbers

92

• Rule system from least-squares

algorithm

93

x training setcounting algorithm

weighted countingalgorithm

94

x training setleast-squares

6th

order polynomial

Least-squares

[correlation = 0.96]

6th order

polynomial

[correlation = 0.89]

95

Page 25: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 25/26

J. Application: Reservoir

Operation*

• Premises:

 – Reservoir pool elevations

 – Inflows [net]

 – Forecasted demands (power)

 – Time of year 

96

•Shresha, B., L. Duckstein, and E. Stakhiv. (1996).“Fuzzy Rule-Based Modeling of Reservoir

Operation,” ASCE Journal of Water Resources

Planning and Management , 122(4), 262-269.

• Consequence:

 – Actual release

• Typical Rule:IF pool elevation is Ai ,1  AND

Net inflows is Ai ,2  AND

Forecast demand is Ai ,3  AND

Time of year is Ai ,4

THEN release is Bi 

97

• Uses split sampling

• Calibration:

 – Training set

 – Weighted counting algorithm• Storage elevation premises

calculated from mass balance:

St+1=St + I t – R t - Lt

98

consequence

• Following constraints imposed:

St,min < St < St,max 

R t,min < R t < R t,max 

• Applied to Tenkiller Lake inOklahoma

• Project purposes:

 – flood control

 – water supply

 – hydropower 

99

 – recreation

 – habitat

Page 26: DSS- Fuzzy (literature)

7/17/2019 DSS- Fuzzy (literature)

http://slidepdf.com/reader/full/dss-fuzzy-literature 26/26

• Capacity: 371,000 AF

• Daily data from 1980 to 1992

• Training set uses 1989• 9 TFN’s cover elevation 620 ft. to

677.2 ft.

• 8 TFN’s: inflows from 0 to 180,000

day-second-ft

• Supports cover entire range—25%overlap

100

• Training for each month separately

• Power demands: low, medium-low,

medium, medium-high, high• Product inference used [danger of

incompleteness

• Additive combination

101

102 103