Top Banner
DSP First, 2/e Lecture 17 DFT: Discrete Fourier Transform READING ASSIGNMENTS READING ASSIGNMENTS This Lecture: Chapter 8, Sections 8-1, 8-2 and 8-4 Aug 2016 © 2003-2016, JH McClellan & RW Schafer 3 LECTURE OBJECTIVES LECTURE OBJECTIVES Discrete Fourier Transform Discrete Fourier Transform 1 ) / 2 ( ] [ ] [ N n k N j e n x k X 1 ) / 2 ( ] [ 1 ] [ N n k N j e k X n x DFT from DTFT by frequency sampling frequency sampling 0 n 0 k N DFT computation (FFT) DFT pairs and properties Periodicity in DFT (time & frequency) Aug 2016 © 2003-2016, JH McClellan & RW Schafer 4 Periodicity in DFT (time & frequency) Sample the DTFT DFT Sample the DTFT DFT Want computable Fourier transform Want computable Fourier transform Finite signal length (L) Finite number of frequencies n j j e n x e X ˆ ˆ ] [ ) ( 1 ˆ ˆ ] [ ) ( L n j j k k e n x e X n 0 n 1 , 2 , 1 , 0 , ) / 2 ( ˆ N k k N k ] [ ] [ ) ( ) ( : Periodic ˆ ) 2 ˆ ( k X N k X e X e X j j k is the frequency index Aug 2016 © 2003-2016, JH McClellan & RW Schafer 5 ] [ ] [ ) ( ) ( : Periodic k X N k X e X e X
8

DSP First, 2/e READING ASSIGNMENTSdspfirst.gatech.edu/archives/lectures/DSPFirst-L17-pp4.pdf · DSP First, 2/e Lecture 17 DFT: Discrete Fourie r Transform READING ASSIGNMENTS This

Feb 06, 2018

Download

Documents

lethu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: DSP First, 2/e READING ASSIGNMENTSdspfirst.gatech.edu/archives/lectures/DSPFirst-L17-pp4.pdf · DSP First, 2/e Lecture 17 DFT: Discrete Fourie r Transform READING ASSIGNMENTS This

DSP First, 2/e

Lecture 17DFT: Discrete Fourier

Transform

READING ASSIGNMENTSREADING ASSIGNMENTS

This Lecture: Chapter 8, Sections 8-1, 8-2 and 8-4

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 3

LECTURE OBJECTIVESLECTURE OBJECTIVES Discrete Fourier Transform Discrete Fourier Transform

1

)/2(][][N

nkNjenxkX

1

)/2(][1][N

nkNjekXnx

DFT from DTFT by frequency samplingfrequency sampling

0

][][n

enxk 0

][][kN

y q y p gq y p g

DFT computation (FFT)

DFT pairs and propertiesPeriodicity in DFT (time & frequency)

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 4

Periodicity in DFT (time & frequency)

Sample the DTFT DFTSample the DTFT DFT Want computable Fourier transformWant computable Fourier transform Finite signal length (L) Finite number of frequenciesq

njj enxeX ˆˆ ][)(

1

ˆˆ ][)(L

njj kk enxeX n

0n

1,2,1,0,)/2(ˆ NkkNk

][][)()(:Periodic ˆ)2ˆ( kXNkXeXeX jj

k is the frequency index

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 5

][][)()(:Periodic )( kXNkXeXeX jj

Page 2: DSP First, 2/e READING ASSIGNMENTSdspfirst.gatech.edu/archives/lectures/DSPFirst-L17-pp4.pdf · DSP First, 2/e Lecture 17 DFT: Discrete Fourie r Transform READING ASSIGNMENTS This

Want a Computable INVERSE Fourier TransformINVERSE Fourier Transform Write the inverse DTFT as a finite Riemann sum:

1

0

)/2(2

ˆˆ )(lim][N

k

nNkjj

NeeXnx k

Note that

0k

NN 1

2/2

2ˆ )()(

Propose:

)(][where,][1][ ˆ1

)/2( kjN

nNkj eXkXekXN

nx

This is the inverse Discrete Fourier Transform (IDFT)

)(][,][][0kN

1N

Aug 2016 6© 2003-2016, JH McClellan & RW Schafer

DFTforward be will,][][1

0

)/2(

N

k

nNkjenxkX

Inverse DFT when L=N (proof)(proof) Complex exponentials are ORTHOGONALComplex exponentials are ORTHOGONAL

][1][1

0

)/2(ekXN

nxN

k

nkNj

][1 1)/2(

1)/2(

0

eemxN

NN

nkNjN

mkNj

k

][1 1 1)/2()/2(

0 0

eemx

NN N

nkNjmkNj

k m

][][1

][

1 1)()/2(

0 0

nxemx

eemxN

N NmnkNj

m k

mnmnN

mnN0

][

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 7

][][0 0

)()( nxemxN m k

j

Orthogonality of Complex ExponentialsExponentials

The sequence set: 110for1)/2(

NneNknNj The sequence set:

11 1)()/2(

1)/2()/2( eee

NmknNj

NmnNjknNj

1,,1,0for 0 Nne k

,111 )(2

00

mke

eN

eeN

mkj

nn

otherwise ,01 )()/2(eN mkNj

b Nk0 Nk ||because ,

and

Nmk ,0

Ne lj

21lim

Nmk ||

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 8

and Ne lNjl

)/2(0 1

lim

4-pt DFT: Numerical Examplep p

Take the 4 pt DFT of the following signal Take the 4-pt DFT of the following signal]1[][][ nnnx ]0,0,1,1[]}[{ nx

20011]3[]2[]1[]0[]0[ 0000 jjjj exexexexX

2/32/22/0 ]3[]2[]1[]0[]1[ jjjjX 4/

2/32/22/0

21

]3[]2[]1[]0[]1[

j

jjjj

ej

exexexexX

320 jjjj 00011]3[]2[]1[]0[]2[ 320 jjjj exexexexX

2/932/30 ]3[]2[]1[]0[]3[ jjjj exexexexX

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 9

4/21

][][][][][jej

Page 3: DSP First, 2/e READING ASSIGNMENTSdspfirst.gatech.edu/archives/lectures/DSPFirst-L17-pp4.pdf · DSP First, 2/e Lecture 17 DFT: Discrete Fourie r Transform READING ASSIGNMENTS This

N-pt DFT: Numerical Examplep p

Take the N pt DFT of the impulse Take the N-pt DFT of the impulse][][ nnx ]0,0,0,1[]}[{ nx

1

)/2(][][N

nkNjenkX

0

)/2(

0

1][ nkNj

n

en 0

1][n

en

]1,,1,1,1[]}[{ kX

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 10

],,,,[]}[{

4-pt iDFT: Numerical Example4 pt iDFT: Numerical Example

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 11

Matrix Form for N-pt DFTMatrix Form for N pt DFT In MATLAB, NxN DFT matrix is dftmtx(N), ( )

• Obtain DFT by X = dftmtx(N)*x• Or, more efficiently by X = fft(x,N)

• Fast Fourier transform (FFT) algorithm later

]0[1111]0[ xX

]2[]1[

11

]2[]1[

/)1(4/8/4

/)1(2/4/2

xx

eeeeee

XX

NNjNjNj

NNjNjNj

]1[1]1[ /)1)(1(2/)1(4/)1(2 NxeeeNX NNNjNNjNNj

Signal

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 12

DFT matrixSignalvector

FFT: Fast Fourier TransformFFT: Fast Fourier Transform

FFT is an algorithm for computing the DFT FFT is an algorithm for computing the DFT

N log2N versus N2 operationsg2 p Count multiplications (and additions) For example, when N = 1024 = 210

≈10,000 ops vs. ≈1,000,000 operations ≈1000 times faster

What about N=256, how much faster?

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 13

Page 4: DSP First, 2/e READING ASSIGNMENTSdspfirst.gatech.edu/archives/lectures/DSPFirst-L17-pp4.pdf · DSP First, 2/e Lecture 17 DFT: Discrete Fourie r Transform READING ASSIGNMENTS This

Zero-Padding gives denser FREQUENCY SAMPLINGFREQUENCY SAMPLING

W t l f DTFT Want many samples of DTFT WHY? to make a smooth plot Finite signal length (L) Finite number of frequencies (N)

ˆj Thus, we need

1

ˆˆL

jj

)(][,, ̂jeXkXNNL

0

][)(n

njj kk enxeX

1,2,1,0,)/2(ˆ NkkNk

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 14

1,2,1,0,)/2( NkkNk

Zero-Padding with the FFTZero-Padding with the FFT

Get many samples of DTFT Get many samples of DTFT Finite signal length (L)

Fi it b f f i (N) Finite number of frequencies (N) Thus, we need )(][,, ̂jeXkXNNL

In MATLAB• Use X = fft(x,N)

Wi h l h N• With L=length(x) less than N• Define xpadtoN = [x,zeros(1,N-L)];• Take the N pt DFT of xpadtoN

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 15

• Take the N-pt DFT of xpadtoN

DFT periodic in k (frequency domain)(frequency domain) Since DTFT is periodic in frequency the DFT Since DTFT is periodic in frequency, the DFT

must also be periodic in k)(][ )/2( kNjeXkX

What about Negative indices and Conjugate)()()(][

)(][)/2())/2())(/2())(/2( kNjNNkNjNkNj eXeXeXNkX

eXkX

What about Negative indices and Conjugate Symmetry?

)()( )/2()/2( XX kNjkNj ]1[]31[32

XXN

][][)()( )/2()/2(

kXkXeXeX kNjkNj

]2[]30[]1[]31[

XXXX

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 16

][][ kXkNX ]3[]29[ XX

DFT Periodicity in Frequency IndexFrequency Index

)()(][ )/2(ˆ eXeXkX kNjj k

1,2,1,0)()(][ )(

NkeXeXkX jj k

)()(][][ ˆ)2ˆ( jj eXeXkXNkX )()(][][ eXeXkXNkX

]2[]2[],[][

XNXkXkNX

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 17

]2[]2[,e.g. XNX

Page 5: DSP First, 2/e READING ASSIGNMENTSdspfirst.gatech.edu/archives/lectures/DSPFirst-L17-pp4.pdf · DSP First, 2/e Lecture 17 DFT: Discrete Fourie r Transform READING ASSIGNMENTS This

DFT pairs & propertiesDFT pairs & properties

Recall DTFT pairs because DFT is sampled DTFT Recall DTFT pairs because DFT is sampled DTFT See next two slides

DFT acts on a finite-length signal so we can useDFT acts on a finite-length signal, so we can use DTFT pairs & properties for finite signals

Want DFT properties related to computation

A d ill t t i And, we will concentrate on one more pair: DTFT and DFT of finite sinusoid (or cexp)

Length-L signal Length-L signal N-pt DFT

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 18

Th 3 i l h i fi it l thThese 3 signals have infinite length

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 19

Summary of DTFT PairsSummary of DTFT Pairs

Aug 2016 20© 2003-2016, JH McClellan & RW Schafer

These 3 properties involve circular indexingThese 3 properties involve circular indexing

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 21

Page 6: DSP First, 2/e READING ASSIGNMENTSdspfirst.gatech.edu/archives/lectures/DSPFirst-L17-pp4.pdf · DSP First, 2/e Lecture 17 DFT: Discrete Fourie r Transform READING ASSIGNMENTS This

Aug 2016 22© 2003-2016, JH McClellan & RW Schafer

Convolution Property not the samethe same Almost true for DFT:Almost true for DFT: Convolution maps to multiplication of transforms

Need a different kind of convolution Need a different kind of convolution CIRCULAR CONVOLUTION

LATER i d d DSP LATER in an advanced DSP course

Like ise for Time Shifting Likewise, for Time-Shifting Has to be circular Because the “n” domain is also periodic

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 23

Delay Property of DFTDelay Property of DFT

Recall DTFT propert for time shifting Recall DTFT property for time shifting:dnjjj

d eeXeYnnxny ˆˆˆ )()(][][

Expected DFT property via frequency sampling

I di h t b l t d

dnNkjd ekXkYnnxny )/2(][][][][

Indices such as must be evaluated modulo-N because

dnn dd nNkjNnNkj ee )/2())(/2(

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 24

DTFT of a Length-L PulseDTFT of a Length L Pulse

Know DTFT of finite rectangular pulse Know DTFT of finite rectangular pulse Dirichlet form and a linear phase term

1 )ˆsin(01 LLn 2/)1(ˆ

21

21

ˆ

)ˆsin()sin()(

otherwise001

][

Ljj eLeXLn

nx

)ˆsin()ˆsin()ˆ(

21

21

LDL

Use frequency-sampling to get DFT)1)(/(2/)1)(/2(2

1)/2())/2(sin(][ LNkjLNkj eNkDeNkLkX

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 25

21

)/2())/2(sin(

][ L eNkDeNk

kX

Page 7: DSP First, 2/e READING ASSIGNMENTSdspfirst.gatech.edu/archives/lectures/DSPFirst-L17-pp4.pdf · DSP First, 2/e Lecture 17 DFT: Discrete Fourie r Transform READING ASSIGNMENTS This

DTFT of a Finite Length Complex Exponential (1)Complex Exponential (1) Know DTFT of finite rectangular pulseKnow DTFT of finite rectangular pulse Dirichlet form and a linear phase term

2/)1(ˆ21

ˆ )ˆsin(01 Ljj LLn 2/)1(

21

2

)ˆsin()sin()(

otherwise00

][

Ljj eLeXn

nx

Use frequency shift property)ˆsin()ˆsin()ˆ(

21

21

LDL

Use frequency-shift property2/)1)(ˆˆ(

102

ˆ0

0

))ˆˆ(i ())ˆˆ(sin()(

th i00

][

Ljjnj

eLeYLne

ny

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 26

021 ))(sin(otherwise0

DTFT of a Finite Length Complex Exponential (2)Complex Exponential (2) Know DTFT, so we can sample in frequencyKnow DTFT, so we can sample in frequency

2/)1)(ˆˆ(

021

021

ˆˆ

00

))ˆˆ(sin())ˆˆ(sin()(

otherwise00

][

Ljjnj

eLeYLne

ny

Thus, the N-point DFT is02 ))((otherwise0

ˆ j ˆ0

00

][

nj

NnLLne

ny

Dirichlet Function

2/)1)(ˆ(02

21

02))ˆ(sin(][

ˆat)(][

LjNk

Nkj

Nk

eLkY

eYkY

)ˆsin()ˆsin()ˆ(

21

21

LDL

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 27

02

21 ))ˆ(sin(

][

N

k ekY

20-pt DFT of Complex ExponentialExponential

)5.2(ˆ 20 N

21ˆ20 ))ˆ(sin(0 knj kLLne 2/)1)(ˆ(

02

21

021

110

20

))ˆ(sin())(sin(][

otherwise00

][

Lj

NkN

jN

k

eLkXLne

nx

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 28

form Dirichletshifteda is outline theso)ˆsin()ˆsin()ˆ(

21

21

LDL

20-pt DFT of Complex Exp: “on the grid” the grid

)2(ˆ 20 N

/))(ˆ(21ˆ

20 ))ˆ(sin(0 knj kLLne 2/)1)(ˆ(

02

21

021

220

2

))ˆ(sin())(sin(][

otherwise00

][

Lj

NkN N

k

eLkXLne

nx

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 29form Dirichletshifteda is outline theso)ˆsin()ˆsin()ˆ(

21

21

LDL

Page 8: DSP First, 2/e READING ASSIGNMENTSdspfirst.gatech.edu/archives/lectures/DSPFirst-L17-pp4.pdf · DSP First, 2/e Lecture 17 DFT: Discrete Fourie r Transform READING ASSIGNMENTS This

50-pt DFT of Sinusoid: zero paddingpadding

50,202

NL

4.0)10(ˆ 20 N

?

04 otherwise0

0)ˆcos(][

LnnA

nx

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 30

2/)1)(ˆ(0

2212/)1)(ˆ(

02

21

40

20

2

)ˆ()ˆ(][ LjN

kL

LjN

kL

Nk

Nk

eADeADkX

RECALL: BandPass Filter (BPF)( )

fFrequency shiftingup and down is doneby cosine multiplicationin the time domain

BPF i f hift d

in the time domain

BPF is frequency shiftedversion of LPF (below)

)ˆsin()ˆcos(2][ diff2

1

midBP nnnnh

ˆ|ˆ|ˆ1ˆ|ˆ|0

)(21

1

coco

coˆ

BPj

DTFTeH

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 31

|ˆ|ˆ0

2co

50-pt DFT of Sinusoid: zero paddingpadding

50,202

NL

4.0)10(ˆ 20 N

?

Zero-crossings of Dirichlet ?Width of Dirichlet ?

Thus we havea simple BPF

Aug 2016 © 2003-2016, JH McClellan & RW Schafer 32

Density of frequency samples?