Top Banner
Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford 1 Organic Chemistry Option II: Chemical Biology Dr Stuart Conway Department of Chemistry, Chemistry Research Laboratory, University of Oxford email: [email protected] Teaching webpage (to download handouts): http://conway.chem.ox.ac.uk/Teaching.html Recommended books: Biochemistry 4 th Edition by Voet and Voet, published by Wiley, ISBN: 9780470570951. Foundations of Chemical Biology by Dobson, Gerrard and Pratt, published by OUP (primer) ISBN: 0199248990
15

Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Apr 20, 2018

Download

Documents

ngonga
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

1

Organic  Chemistry  Option  II:  Chemical  Biology                  

                   

 

Dr  Stuart  Conway  Department  of  Chemistry,  Chemistry  Research  Laboratory,  University  of  Oxford  email:  [email protected]  Teaching  webpage  (to  download  hand-­‐outs):  http://conway.chem.ox.ac.uk/Teaching.html  

 Recommended  books:    Biochemistry  4th  Edition  by  Voet  and  Voet,  published  by  Wiley,  ISBN:  978-­‐0-­‐470-­‐57095-­‐1.    Foundations  of  Chemical  Biology  by  Dobson,  Gerrard  and  Pratt,  published  by  OUP  (primer)  ISBN:  0-­‐19-­‐924899-­‐0      

Page 2: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

2

Information  flow  in  cells  

   

   

•      

• We   must   understand   this   process   in   order   to   harness   it   for   exploration   of   biological  problems.  

   The  central  dogma  of  molecular  biology  

 

   

• How  does  DNA  in  genes  direct  the  synthesis  of  RNA  and  protein?    

• How  is  DNA  replicated?    

•        

slide  7  

slide  8  

Page 3: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

3

The  central  dogma  of  molecular  biology  

   

   

•      

 

•   Solid  lines  indicate  the  genetic  information  transfers  that  occur  in  all  cells.    

•   Dotted  lines  indicate  special  transfers.    

•        The  structure  of  DNA  and  RNA  

   

   

•    

slide  9  

slide  10  

Page 4: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

4

The  structure  of  DNA  and  RNA  

   

   

• Nucleotides  are  phosphate  esters  of  pentose  (furanose)  sugars.    

•   Deoxynucleotides  lack  the  hydroxyl  group  at  the  2’  position  of  the  sugar  ring.    

•   A  nitrogen-­‐containing  base  is  linked  to  the  1’-­‐position  of  the  sugar.      The  structure  of  DNA  and  RNA  

   

•      

 •    

   

• It   is   possible   that   this   chemical   stability   is  why  DNA  has  evolved  to  be  the  store  of  genetic  information.  

 

   

slide  12  

slide  13  

Page 5: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

5

The  structure  of  DNA  and  RNA  

 

   

• The  nitrogen  bases  are  planar,  aromatic  and  heterocyclic.    

•   They  are  usually  either  purine  or  pyrimidine  derivatives.    

 

The  structure  of  DNA  and  RNA  

               

 

• The  major  purine  components  of  nucleic  acids  are  adenine  and  guanine.    

•   The  purines  form  glycosidic  bonds  to  ribose  via  their  N9  atoms.    

 

The  structure  of  DNA  and  RNA  

   

 

• The   major   pyrimidine   components   of  nucleic   acids   are   cytosine,   uracil   and  thymine  (5-­‐methyluracil).  

 

•   Uracil   occurs   mainly   in   RNA   whereas  thymine  occurs  mainly  in  DNA.  

 

•   The   pyrimidines   form   glycosidic   bonds  to  ribose  via  their  N1  atoms.  

         

 

slide  14  

slide  15  

slide  16  

Page 6: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

6

The  structure  of  DNA  and  RNA  

 

   

• Some  DNAs  contain  bases  that  are  derivatives  of  the  standard  set.    

•        The  structure  of  DNA  and  RNA  

   

   

slide  17  

slide  18  

Page 7: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

7

The  structure  of  DNA  and  RNA  

   

Nucleotide:  adenosine  monophosphate    (R  =  OH  in  RNA  and  H  in  DNA)        

 

Nucleoside:  adenosine    (R  =  OH  in  RNA  and  H  in  DNA)        

 

Base:  adenine        

 

 

 

The  structure  of  DNA  and  RNA  

 •    

   

• The  phosphate  groups  bridge  the  3’-­‐  and  5’-­‐positions  of  successive  sugar  residues.  

 • The  phosphate  groups  are  deprotonated  

at   physiological   pH,   hence   nucleic   acids  are  polyanions  in  the  cell.  

 •    

 

 

slide  19  

slide  20  

Page 8: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

8

The  structure  of  DNA  and  RNA  

   

• Nucleic  acids  were  first  isolated  in  1869  and  the  presence  of  these  molecules  in  cells  was  demonstrated  a  few  years  later.  

 • In   the   1930s   and   1940s   it   was   widely   believed   that   nucleic   acids   had   a   monotonously  

repeating  sequence  of  all  four  bases  =  the  so  called  “tetranucleotide  hypothesis”.    

• It  was   generally   assumed   that   genes,   known   to   be   carriers   of   genetic   information,  were  proteins.  

 • See   Biochemistry   pages   85-­‐89   to   see   the   experiments   that   proved  DNA   is   the   carrier   of  

genetic  information.      The  structure  of  DNA  and  RNA  

   

• Erwin  Chargaff  was  the  first  to  show  that  DNA  contains  equal  numbers  of  adenine  and   thymine   residues   (A  =  T)   and  equal  numbers   of   cytosine   and   guanine  residues  (C  =  G).  

 • These   relationships   are   known   as  

“Chargaff’s  rules”.    

• Although   not   specifically   stated   by  Chargaff,  this  observation  suggests  some  form   of   base   pairing   in   the   (then  unknown)  structure  of  DNA.  

 

 

     

slide  21  

slide  22  

Page 9: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

9

The  structure  of  DNA  and  RNA  

   

     

•          

• The  planes  of  the  bases  are  nearly  perpendicular  to  the  helix  axis.    

• Each  base  is  hydrogen  bonded  to  a  base  on  the  opposite  strand  to  form  a  planar  base  pair.      Complementary  base  pairing  

   

 

       

 • The  most  remarkable  feature  of  the  Watson  and  Crick  structure  is  that  it  can  accommodate  

only  two  types  of  base  pairs.    

• Each  adenine  residue  must  pair  with  a  thymine  residue  and  vice  versa.    

slide  25  

slide  26  

Page 10: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

10

Complementary  base  pairing  

   

 

     

 • Each  guanine  residue  must  pair  with  a  cytosine  residue  and  vice  versa.  

 • The  geometries  of   these  A:T  and  G:C  pairs   ,   the  so-­‐called  Watson-­‐Crick  base  pairs,  mean  

that  these  base  pairs  are  interchangeable  in  the  double  helix.      

slide  27  

Page 11: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

11

Hydrogen  bonding  

 

   

• Hydrogen   bonds   are   one   of   the   most   important   non-­‐covalent   interactions   in   biological  systems.  

 

•        

•      

• There  is  a  significant  electrostatic  component  to  H-­‐bonding.    

 

Hydrogen  bonding  

 

   

•      

•        

• Consequently,  there  is  an  optimum  orientation  for  H-­‐  bonding.    

 

Hydrogen  bonding  

 

   

• The  optimum  angle  for  H-­‐bonding   is  where  the  X-­‐H  bond  points  directly  to  the   lone  pair,  such  that  the  angle  is  180°.  

 

•      

•        

slide  28  

slide  29  

slide  30  

Page 12: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

12

Complementary  base  pairing  

 

   

               

 • The  H-­‐bond  donor  and  acceptor  patterns  are  such  that  A  can  only  bind  to  T  and  G  can  only  

bind  to  C.    

• As   A   can   only   bind   to   T   and   G   can   only   bind   to   C,   we   can   immediately   understand  Chargaff’s  rules.  

 • In   addition,   the   Watson-­‐Crick   structure   allows   for   any   sequences   of   bases   on   one  

polynucleotide  strand  if  the  opposite  strand  has  the  complementary  sequence.    

• This   structure   also   suggests   that   hereditary   information   is   encoded   in   the   sequence   of  bases  on  either  strand.  

   

NN

NH

HN

NX N

NH

O CH3

XOHN

N

ON

NX N

N

N

XON

H

HH

HHdonor

acceptor

acceptor

donor

acceptor

donor

donor acceptor

donor

acceptor

adenine thymine guanine cytosine

slide  31  

Page 13: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

13

DNA  structure  

   

     

• DNA  has  three  major  helical  forms,  B-­‐DNA,  A-­‐DNA  and  Z-­‐DNA.    

• B-­‐DNA   is   the   biologically   predominant   form   of   DNA   it   forms   a   right-­‐handed   helix   with  major  and  minor  grooves.  

 • When  relative  humidity   is  reduced  to  75%,  B-­‐DNA  undergoes  a  reversible  conformational  

change  to  A-­‐DNA.    

• A-­‐DNA  forms  a  wide,  flatter  helix  than  B-­‐DNA.    

• The  base  pairs  of  A-­‐DNA  are  tilted  20  °  with  respect  to  the  helix  axis.    

• Certain  DNA  sequences  can  form  a  left-­‐handed  helix  that  has  been  called  Z-­‐DNA.    

• It   is   not   clear   whether   Z-­‐DNA   has   any   biological   significance     -­‐   it   may   play   a   role   in  regulating  DNA  transcription.  

                         

advanced  slide  32  &  33  

Page 14: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

14

RNA  structure  

   

•      

• Transfer  RNA  (see  later)  resembles  an  “L”  shape,  being   made   up   of   two   short   helical   regions  connected  by  a  hinge.  

 •    

   

     RNA  structure  

   

                   

 • Hydrogen  bonding  in  helical  RNA  occurs  between  cytosine  and  guanine  as  in  DNA.  

 • Cytosine  is  replaced  by  uracil,  which  forms  complementary  hydrogen  bonds  with  adenine.  

   

slide  34  

slide  35  

Page 15: Dr Stuart Conway Organic Option II ... - University of Oxfordconway.chem.ox.ac.uk/Teaching_files/Handout 1.pdfDr Stuart Conway Organic Option II: Chemical Biology University of Oxford

Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford  

15

DNA  replication  

 “It  has  not  escaped  our  notice  that  the  specific  pairing  we  have  postulated  immediately  suggests  a  possible  copying  mechanism  for  genetic  material.”    

•      

 

• In  this  process,  mediates  by  DNA  polymerase  enzymes,  each  DNA  strand  acts  as  a  template  for  the  formation  of  its  complementary  strand.  

 

• Consequently,   every   progeny   cell   contains   a   complete   copy   of  the  DNA  from  the  parent  cell.  

 

• Mutations  arise  when,  through  rare  copying  errors,  one  or  more  wrong  bases  are  incorporated  into  a  daughter  strand.  

 

• DNA  replication  is  a  highly  complex  process.    

•          

 

 

Translation  and  transcription  

   

• DNA   directs   its   own   replication   and  transcription   to   yield   RNA,   which   is  translated  to  form  proteins.  

 

•          

• “Translation”  indicates  that  the  “language”  changes  from  that  of  the  base  sequence  to  that  of  the  amino  acid  sequence.  

     

• Individual   portions   of   a   DNA   molecule   provide   the   information   for   the   construction   of  various  RNA  molecules  and  proteins.  

 

• RNA  corresponding  to  the  region  of  interest  id  produced  by  transcription  (the  synthesis  of  an  RNA  strand  from  a  DNA  template).  The  RNA  produced  in  this  case  is  called  messenger  RNA  or  mRNA.  

 

• This  mRNA  is  then  translated  when  molecules  of  transfer  RNA  (tRNA)  align  with  the  mRNA  via   complementary   base   pairing   between   segments   of   three   consecutive   nucleotides  (codon).  

 

•    

slide  36  

slide  37  &  38