Top Banner
Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials
81

Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dec 18, 2015

Download

Documents

Henry Nash
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Chapter 15

The Liquid State, The Solid State, and Modern Materials

Page 2: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Properties of Liquids

surface tension - A property of liquids arising from unbalanced molecular cohesive forces at or near the surface

Page 3: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Properties of Liquids

surface tension

capillary action - phenomenon in which the surface of a liquid is elevated or depressed when it comes in contact with a solid

Page 4: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Properties of Liquidssurface tension

capillary action

viscosity

– resistance of a fluid to flow

– resistance acts against the motion of any solid object through the fluid, and also against motion of the fluid itself past stationary obstacles

Page 5: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 6: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 7: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Compared to the average energy, those molecules which escape the surface of a liquid are

lower in energy

same energy

higher in energy

Page 8: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Phase Changes

Evaporation

phase change from liquid to gas

Condensation

phase change from gas to liquid

Page 9: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Vapor Pressure vs. Temperature

p vs. t(oC)

exponential function as t increases, p increases

Page 10: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 11: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Pressure vs. Temperature

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Temperature, C

Va

po

r P

ress

ure

, to

rr

Page 12: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

ln P vs 1/T

0.5

1

1.5

2

2.5

3

0.0025 0.0027 0.0029 0.0031 0.0033 0.0035 0.0037 0.0039

1/T, 1/K

ln P

Page 13: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Vapor Pressure vs. Temperature

Clausius-Clapeyron Equation

ln(P2/P1)=(Hvap/R)(1/T1 - 1/T2)

Page 14: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Properties of Liquidsboiling point

• the temperature at which its vapor pressure is equal to the local atmospheric pressure

normal boiling point

• the temperature at which its vapor pressure is equal to one atmospheric pressure

Page 15: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Properties of Liquids

liquid-vapor equilibirum

• both liquid and vapor of the liquid present in the same container uder stable conditions

vapor pressure

• The pressure exerted by a vapor in equilibrium with its solid or liquid phase.

Page 16: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Properties of Liquids

enthalpy of vaporization - The amount of heat required to convert a unit mass of a liquid at its boiling point into vapor without an increase in temperature.

Page 17: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 18: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 19: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 20: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Phase Changes

Melting

phase change from solid to liquid

Freezing

phase change from liquid to solid

melting point(freezing point)

temperature at which a liquid congeals into the solid state at a given pressure

Page 21: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 22: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Phase Changes

Melting and Freezing

enthalpy of fusion - heat absorbed by the substance in changing its state without raising its temperature

Page 23: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 24: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Phase ChangesLiquid Crystals

• substance that behaves like both a liquid and a solid

• by applying a small electric field, certain liquid crystal substances gain the ability to rotate polarized light. These types of liquid crystals are used to construct displays used in digital watches, calculators, miniature television sets, portable computers, and other items

Page 25: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 26: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Phase Diagram - General

P

T

Solid

Gas

Liquid

1 atm mpnbp

triple point

critical point

x sublimation point

x x

Page 27: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Phase Diagrams

label axes

label phase regions

label: triple point

critical point

melting point

boiling point

sublimation point

Page 28: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Critical Point

• The temperature and pressure at which the liquid and gaseous phases of a pure stable substance become identical.

• The critical temperature of a gas is the maximum temperature at which the gas can be liquefied; the critical pressure is the pressure necessary to liquefy the gas at the critical temperature.

Page 29: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 30: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 31: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 32: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 33: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Solids

• Crystals

• X-ray Diffraction

• Bragg's Law

Page 34: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Solids

Crystals - A homogenous solid formed by a repeating, three-dimensional pattern of atoms, ions, or molecules and having fixed distances between constituent parts.

Page 35: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

SolidsX-ray Diffraction - When an X-ray beam

bombards a crystal, the atomic structure of the crystal causes the beam to scatter in a specific pattern. This phenomenon, known as X-ray diffraction, occurs when the wavelength of the X rays and the distances between atoms in the crystal are of similar magnitude.

Page 36: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Solids

Bragg's Law - The fundamental law of x-ray crystallography, n = 2dsin, where n is an integer, is the wavelength of a beam of x-rays incident on a crystal with lattice planes separated by distance d, and is the Bragg angle.

[After Sir William Henry Bragg and Sir William Lawrence Bragg.]

Page 37: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Structure Determination

High Voltage

X-Ray DiffractionX-ray Tube

Lead Screen

X-ray Beam

Crystal

Photographic Plate

Projection Screen

Visible Light Laser 35mm slide

Optical Transforms

L

X

Page 38: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Diffraction Conditions

Solid State Resources CD-ROM

Movies

Chapter 4

Page 39: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Diffraction ConditionsFraunhofer diffraction Bragg diffraction

For constructive interference, d sin = n

For constructive interference, 2(d sin ) = n

}d

d }}

d

d sin

}

}d

d sin d sin

Page 40: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Solids

Bragg's Law

n = 2d sinwhere n => order of diffraction

=> X-ray wavelength

d => spacing between layers

of atom

=> angle of diffraction

Page 41: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

EXAMPLE

What is the spacing between copper atoms if X-ray radiation of wavelength 1.54diffracts in the second order at 58.42°?

n = 2 = 1.54A = 58.42° d = ?

n = 2d sin

d = (n)/2sin = (2*1.54A)/(2*sin(58.42°))

= 1.54A/0.852 = 1.81

Page 42: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 43: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Ionic Solids

cations and anions form the points in the 3-D structure

• NaCl

Page 44: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Metallic Solids

atoms of the metal form the 3-D points in the structure

• iron

• copper

Page 45: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Molecular Solids

molecules form point in the 3-D structure

• sugar

Page 46: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Network Covalent Solids

atoms covalently bonded to the surrounding atoms in a 3-D network

• diamond

• quartz

Page 47: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Lattice and Units Cells

Lattices

7 types

4 most common types: cubic

orthorhombic

monoclinic

triclinic

Page 48: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Unit Cells?

Page 49: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Which are Unit Cells?

Page 50: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Unit Cells of Metals

cubic: a = b = c

= = = 90°

simple cubic (primitive cubic) atoms only at corners of cube

body centered cubic (BCC) atoms at the corners and at the center of the body.

face-centered cubic (FCC) atoms at the corners and at the center of all 6 faces, same as cubic close-packed.

Page 51: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 52: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Structures of Metallic Elements

Ru

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti

Zr

Hf

V

Nb

Ta

Cr

Mo

W

Mn

Tc

Re

Fe

Os

Co

Ir

Rh

Ni

Pd

Pt

Cu

Ag

Au

Zn

Cd

Hg

B

Al

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

P

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

Ne

Ar

Kr

Xe

Rn

He

Primitive Cubic

Body Centered Cubic

Cubic close packing(Face centered cubic)

Hexagonal close packing

Page 53: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Number of Atoms per Unit Cell

- atoms at corner of unit cell count 1/8

- atoms at center of a face count 1/2

- atoms at center of the body count 1

Page 54: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 55: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Primitive Cubic

use of an orange to show why only 1/8 atom at corners of a unit cell

Solid State Resources CD-ROM

Chapter 3

Movie Orange Slicing

Page 56: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Number of Atoms per Unit Cell

primitive cubic => 8(1/8) = 1

BCC => 8(1/8) + 1 = 2

FCC => 8(1/8) + 6(1/2) = 4

Page 57: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Combinations of ElementsElement Combination Likely Structure

Nonmetal and nonmetal Discrete moleculeCO2, PCl3, NO

Metal and metal Extended (alloys)CuZn (brass), NiTi

Metal and nonmetal Extended (salts)NaCl, ZnS, CaTiO3

Page 58: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Unit Cells of Compounds

cubic: a = b = c

= = = 90°

face-centered cubic (FCC) =>NaCl, LiCl, ZnS(zinc blend, S ions in FCC with Zn ions in tetrahedral holes)

Page 59: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 60: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

NaCl Stoichiometry

8 corners X 18 12 edges X

14

6 faces X 12 1 center X 1

---------------- ----------------4 Cl- ions 4 Na+ ions

z=0, 1 z=1/2

NaCl has 1:1 stoichiometry!

Page 61: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 62: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 63: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Why is CsCl not

body-centered cubic (BCC)?

Page 64: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Unit Cells of Compounds

orthorhombic: abc

= = = 90°

monoclinic: a b c

= = 90°

> 90°

triclinic: ab c

90°

Page 65: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

EXAMPLE

Metallic gold crystallizes in the face-centered cubic lattice. The length of the cubic unit cell is 4.070A. What is the closest distance between gold atoms?

a = 4.070 r = ? closest distance = 2r

Page 66: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Face-Centered-Cubic Unit Cell

df = face diagonal

r = radius of atom

df = 4r

a = edge

a2 + a2 = df2

2a2 = (4r)2

r = (a*21/2 )/4

Page 67: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

EXAMPLEMetallic gold crystallizes in the face-centered cubic lattice. The length of the cubic unit cell is 4.070A. What is the closest distance between gold atoms?

a = 4.070A r = ? closest distance = 2r

4r = a21/2 => r = a21/2/4

r = (4.070A*1.414)/4 = 1.44A

closest distance = 2(1.44A) = 2.88A

Page 68: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Molecular Substances

Common Properties

- nonconductors of electricity when pure

- insoluble in water but soluble in non-polar solvents

- volatile, appreciable vapor pressure at room temperature

- low melting and boiling points

Page 69: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Metals

Common Properties

– Nonvolatile.

– Insoluble in water and other common solvents.

Page 70: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 71: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Network Covalent Substances

graphite => sp2 hybrid C, planar

Page 72: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 73: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Network Covalent Substances

diamond => sp3 hybrid C, 3D

Page 74: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 75: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Network Covalent Substances

silicon dioxide => sp3 Si, 4 O around each

Si

=> sp3 O, 4 Si around each

Si

Page 76: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 77: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 78: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 79: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 80: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Page 81: Dr. S. M. Condren Chapter 15 The Liquid State, The Solid State, and Modern Materials.

Dr. S. M. Condren

Amorphous Solids (Glasses)

• lacking definite form

• no long range ordering in the structure