Top Banner
The offshore access problem and turbine availability probabilistic modelling of expected delays to repairs Dr. Julian Feuchtwang Prof. David Infield
26

Dr. Julian Feuchtwang Prof. David Infield

Jan 22, 2016

Download

Documents

chinue

The offshore access problem and turbine availability probabilistic modelling of expected delays to repairs. Dr. Julian Feuchtwang Prof. David Infield. Background: - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dr. Julian Feuchtwang Prof. David Infield

The offshore access problem and turbine availability

probabilistic modelling of expected delays to repairs

Dr. Julian FeuchtwangProf. David Infield

Page 2: Dr. Julian Feuchtwang Prof. David Infield

Background:

Aim: Estimate expected delay times to turbine repairs due to sea-state (and/or wind) and how they are influenced by key factors, especially vessel access limits and time required

Contributes as part of a ‘Cost of Energy’ model including risks

Page 3: Dr. Julian Feuchtwang Prof. David Infield

Why use a probabilistic method?

Monte Carlo approach needs:– Long, continuous, time series data (real or synthesised?)– Many runs (for statistical validity)

Probabilistic approach needs:– Time series data (best but scant)– or duration statistics– or simple wave height statistics (less accurate)– Allows trends and sensitivities to be explored quickly and easily

Page 4: Dr. Julian Feuchtwang Prof. David Infield

Estimating subsystem down-times

Site wind & wave

data / stats

Failure types

Access limit

conditions

Failure rates

Repair times

Statistical model of

access and repair

Expected down-time

O & M cost

Lost revenue

Page 5: Dr. Julian Feuchtwang Prof. David Infield

Event tree

fault

is access

possible?

is there

enough access time left?

waitfor next ‘weather window’

carry out repair

no

yes

yes

no

Assumption:No travel without forecast

Page 6: Dr. Julian Feuchtwang Prof. David Infield

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

13/10 18/10 23/10 28/10 02/11 07/11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

13/10 18/10 23/10 28/10 02/11 07/11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

13/10 18/10 23/10 28/10 02/11 07/11date

sig

nif

ican

t w

ave

hei

gh

t H

s (m

)

Sea-state conditions & Event tree

After 1, 2a or 2b, low sea-state periods may again be too short leading to more delays

0: repair can go ahead

1: waves too high

2a: period

too short

2b: fault too late

required duration

Page 7: Dr. Julian Feuchtwang Prof. David Infield

For a given threshold wave height Hth

the wave height probability density function is p( Hth )

Wave height distribution

exceedence probability is

thH

thth dHHHHHP )p()Prob()(

0 1 2 30

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

numerical prob densnumerical exc prob

Wave height distribution from Dowsing - original data

significant wave height Hs (m)

prob

abili

ty d

ensi

ty

exce

eden

ce p

roba

bilit

y

Page 8: Dr. Julian Feuchtwang Prof. David Infield

Wave height –Maximum likelihood Weibull fitFor a given threshold wave height Hth the wave height exceedence probability

k

c

ththth H

HHHHH 0expProbP

H0 location parameter

HC

scale parameter

kshape parameter

0 1 2 30

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

numerical prob densWeibull fit pdfnumerical exc probWeibull fit xp

Wave height distribution from Dowsing - Weibull fit (ML)

significant wave height Hs (m)

prob

abili

ty d

ensi

ty

exce

eden

ce p

roba

bilit

y

Page 9: Dr. Julian Feuchtwang Prof. David Infield

Wave height duration joint distributionsFor a given threshold wave height Hth

and a ‘storm or calm’ duration treq

reqt

xreqthreqth dttttHHtH )(q)&Prob(),(Qx

the storm duration exceedence probability is found by integration:

the storm duration probability density function is q( H > Hth , t ) = qx( t )

0.1 1 10 100 1 103

0.01

0.1

1

10

0

0.2

0.4

0.6

0.8

1

calm prob densstorm prob denscalm exc probstorm exc prob

Wave height storm/calm duration from Dowsing, Hth = 2m

duration t (hr)

prob

abili

ty d

ensi

ty

exce

eden

ce p

roba

bilit

y

the mean storm duration

)(qM)(q x10

tdttt xx

Page 10: Dr. Julian Feuchtwang Prof. David Infield

Duration exceedence - M.L. Weibull fit

n

n

reqnreqthn

tgtH

exp),(Qthe calm duration exceedence probability is

τn is the mean calm

duration

αn is the shape

factor

is a normalisation factor

11ng

0.1 1 10 100 1 103

0

0.2

0.4

0.6

0.8

1

calm numerical exc probcalm Weibull exc pf

Wave height calm duration from Dowsing, Hth = 2m

calm duration (hr)

exce

eden

ce p

roba

bilit

y

Page 11: Dr. Julian Feuchtwang Prof. David Infield

Wave-height Non-exceedence-Duration curvescalm duration exceedence

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 24 48 72 96 120 144 168 192 216 240

operation time treq (hrs)

pro

bab

ilit

y o

f ex

ceed

ing

du

rati

on

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

wave height threshold Hth (m)

Page 12: Dr. Julian Feuchtwang Prof. David Infield

Estimating delay times

Partial

Moments etc.

∫dtAccess limits Hthr & treq

Wave-height data

Storm & calm

duration distnsqx(H,t)qn(H,t)

Storm / calm time

series

Expected delay time

E(tdel(Hthr))

Lost revenue

O&M cost

Page 13: Dr. Julian Feuchtwang Prof. David Infield

Estimating delay timesif no time-series data

& no duration statistics:Kuwashima & Hogben method

Access limits Hthr & treq

Wave-height Weibull

parameters

Storm & calm

duration distnsqx(H,t)qn(H,t)

K&H

Kuwashima & Hogben method

based on data correlations mostly from North Sea

from H0 HC & k → gives estimates of τn & αn

Partial

Moments etc.

∫dt

Expected delay time

E(tdel(Hthr))

Page 14: Dr. Julian Feuchtwang Prof. David Infield

Expected 1st delays of different types:

1st order:Wave height

above threshold P(H) is the storm probability

τx is the mean storm duration

Mqqx(H) is the 2nd moment (non-dim)

of the storm distribution

Etdel1 H( ) P H( ) Mqqx H( ) x H( )

Page 15: Dr. Julian Feuchtwang Prof. David Infield

Expected 1st delays of different types:

2nd order (a):Wave height below

threshold, insufficient duration

2nd order (b):Wave height below

threshold, insufficient time left

Mqn(H,t) is the 1st moment (non-dim)

of the calm distribution

Mqqn(H,t) is the 2nd moment (non-dim)

of the calm distribution

Etdel2a H t( ) 1 P H( ) Mqqn H t( )

P H( ) Mqn H t( )

n H( )

Etdel2b H t( ) P H( ) Qn H t( ) t 1t

2 x H( )

Qn(H,t) is the calm duration probability

Page 16: Dr. Julian Feuchtwang Prof. David Infield

Further delays of different types:

After 2nd order (a or b):Wave height is above

threshold

After 1st and 3rd order:Wave height is below threshold but duration

may be short

E tdel3| del2 τx=

E tdel4|del1,3 Mqn H t( ) n H( )

all these components can be calculated:

•directly from time-series data by numerical integration

•from Weibull parameters from duration data(uses exponential and Gamma functions)

•or from estimated Weibull parameters (K&H)

Page 17: Dr. Julian Feuchtwang Prof. David Infield

Estimated delay timesexpected delay time

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

operation time treq (hrs)

exp

ecte

d d

elay

tim

e (h

rs)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.5

3.0

wave height threshold Hth (m)

Page 18: Dr. Julian Feuchtwang Prof. David Infield

In order to use this model, we need:

• Failure rate data per fault type– Tavner et al (D & DK)– Hahn Durstewitz & Rohrig (D & DK)– DOWECS (D & DK)– Ribrant & Bertling (SE – includes gearbox

components)– All the above are land-based data. No offshore data available

• Repair times– ditto

• Vessel Operational limits– 2 types of vessel modelled

• Site climate data– in UK: CEFAS, BOCD, NEXT (parameters only)

– in NL: Rijkswaterstaat

– elsewhere: ?

Page 19: Dr. Julian Feuchtwang Prof. David Infield

Baseline Case DataBaseline case: failure rates & down-time per failure

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Rotor b

lades

Air bra

ke

Mec

h. bra

ke

Mai

n shaf

t/bea

ring

Gearb

ox

Gener

ator

Yaw s

yste

m

Elect

ronic

Contro

l

Hydra

ulics

Grid/e

lect

rical

Sys

Mec

h/pitc

h contro

l sys

.

fail

ure

s/yr

0

20

40

60

80

100

120

140

160

180

200

hrs

/yr

failure rate

on-land downtime perfailure

Page 20: Dr. Julian Feuchtwang Prof. David Infield

Baseline Case Results:annual down-time by subsystem

0

100

200

300

400

500

600

700

800

900

1000

Rotor b

lades

Air bra

ke

Mec

h. bra

ke

Mai

n shaf

t/bea

ring

Gearb

ox

Gener

ator

Yaw s

yste

m

Elect

ronic

Contro

l

Hydra

ulics

Grid/e

lect

rical

Sys

Mec

h/pitc

h contro

l sys

.

hrs

/yr

repair time

travel time

delay time

lead time

Page 21: Dr. Julian Feuchtwang Prof. David Infield

Influence of repair time on availability

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100% 120%

repair time factor

% a

vail

abil

ity

Page 22: Dr. Julian Feuchtwang Prof. David Infield

Influence of site on availability

Barrow

Lytham

North Somercotes

Lowestoft

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20% 25% 30% 35% 40% 45%

crane vessel accessibility

% a

vail

abil

ity

Page 23: Dr. Julian Feuchtwang Prof. David Infield

Influence of large vessel threshold on availability

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

threshold wave height Hth (m)

% a

vail

abil

ity

Page 24: Dr. Julian Feuchtwang Prof. David Infield

Influence of small vessel threshold on availability

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

threshold wave height Hth (m)

% a

vail

abil

ity

Page 25: Dr. Julian Feuchtwang Prof. David Infield

Ribrant

TavnerLWK

HahnTavner

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.5 1.0 1.5 2.0 2.5 3.0

whole turbine failure rate /year

% a

vail

abil

ity

dataset

datasetfailure rateDrive-train reliability scaledIndividual Turbine Models

Enercon E66

Nacelle Crane

Nordex N52/54

Vestas V39-500

Enercon E40

Tacke TW600

Influence of failure rate on availability

Page 26: Dr. Julian Feuchtwang Prof. David Infield

Conclusions:

Probabilistic method allows rapid exploration of sensitivity to different factors – vessel operability– site climate – reliability– repair times

Offshore exacerbates differences in– reliability– time to repair– accessibility

Highly dependent on access to data but so are other methods