Top Banner
Donsker’s Invariance Principle and Brownian martingales Updated June 2, 2021
15

Donsker’s Invariance Principle and Brownian martingales

Jan 05, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Donsker’s Invariance Principle and Brownian martingales

Donsker’s Invariance Principleand Brownian martingales

Updated June 2, 2021

Page 2: Donsker’s Invariance Principle and Brownian martingales

Plan 0

Donsker’s Invariance PrincipleWeak convergence in Wiener spaceTools for verifying tightnessContinuous-time martingalesExamples using Brownian motion

Page 3: Donsker’s Invariance Principle and Brownian martingales

Scaling limit of random walks 1

Brownian motion constructed as a Cpr0, 8qq-valued r.v.Original motivation: scaling limit of random walksLet Z1, Z2, . . . be i.i.d. R-valued r.v.’s and set

@n P N : Xn :“nÿ

k“1

Zk

Use these to construct an element of Cpr0, 8qq via

@t P r0, 8q : Ypnqt :“ 1?

n

´Xtntu ` pnt ´ tntuqXtntu`1

¯

Page 4: Donsker’s Invariance Principle and Brownian martingales

Consequences of CLT 2

If EpZ1q “ 0 and EpZ21q “ s2, then by CLT:

@t • 0 : Ypnqt

law›ÑnÑ8 N p0, s2tq

Note: sBtlaw“ N p0, s2tq.

Mutlivariate CLT even gives convergence in the sense of finitedimensional distributions:

@0 § t1 † ¨ ¨ ¨ † tk : pYpnqt1

, . . . , Ypnqtk

˘ law›ÑnÑ8 psBt1 , . . . , sBtkq

where B is the SBM.

Q: Convergence of the law of t fiÑ Ypnqt on Cpr0, 8qq?

Page 5: Donsker’s Invariance Principle and Brownian martingales

Donsker’s Invariance Principle 3

Theorem (Donsker 1951)For Xn :“ Z1 ` ¨ ¨ ¨ ` Zn with tZkuk•1 i.i.d. satisfying EpZ1q “ 0and EpZ2

1q “ 1, as n Ñ 8 the law of

Ypnqt :“ 1?

n

´Xtntu ` pnt ´ tntuqXtntu`1

¯

on pCpr0, 8qq,BpCpr0, 8qqqq converges weakly to Wiener measure.

Precise meaning of convergence? Define

@A P BpCpr0, 8qqq : PpnqpAq :“ PpYpnq P Aq

Donsker’s Theorem says: Ppnq wÑ PW as n Ñ 8.

Page 6: Donsker’s Invariance Principle and Brownian martingales

Added value 4

Q: Why is this more than just conv. of finite-dim. distributions?

CorollaryFor above setting,

1?n

max1§k§n

Xklaw݄

nÑ8 max0§t§1

Bt

Corollary

Given a ° 0, set Tpnqa :“ inf

k • 0 : Xk • a

(. Then

1n

Tpnqa?

nlaw݄

nÑ8 inftt • 0 : Bt • au

Page 7: Donsker’s Invariance Principle and Brownian martingales

Proof of Corollaries 5

Page 8: Donsker’s Invariance Principle and Brownian martingales

Proof of Corollaries 6

Page 9: Donsker’s Invariance Principle and Brownian martingales

How to prove Donsker’s theorem? 7

Theorem

Let tPpnqun•1 and P be probability measures on the Wiener spacepCpr0, 8qq,BpCpr0, 8qqqq. Then

Ppnq w›ÑnÑ8 P

is equivalent to the conjunction of(1) Ppnq Ñ P in the sense of finite-dimensional distributions(2) tPpnqun•1 is tight

Recall: tPpnqun•1 on pX ,BpX qq is tight if

@e ° 0 DK Ñ X compact : lim supnÑ8

PpnqpX r Kq † e

Page 10: Donsker’s Invariance Principle and Brownian martingales

Proof of Theorem 8

Page 11: Donsker’s Invariance Principle and Brownian martingales

Verifying tightness 9

Arzela-Ascoli Theorem: A set K Ñ Cpr0, 8qq is compact if andonly if for each M • 1 the set

w|r0,Ms : w P K

(

is closed in Cpr0, Msq, pointwise bounded and equicontinuous.

Equicontinuity hard: needs truncation (to increase availablemoments) & Kolmogorov inequality (to control oscillation ofpaths over intervals)

We will prove Donsker’s Theorem via Martingale FunctionalCentral Limit Theorem (to be discussed next time)

Page 12: Donsker’s Invariance Principle and Brownian martingales

Continuous-time martingales 10

DefinitionAn R-valued process tXtut•0 is a martingale with respect tofiltration tFtut•0 if(1) @t • 0 : Xt is Ft-measurable with Xt P L1, and(2) @t, s • 0 : EpXt`s|Ftq “ Xt a.s.

Note:submartingale if EpXt`s|Ftq • Xt, supermartingale if “§”continuous/cadlag (sub/super)martingale if every samplepath t fiÑ Xt is continuous/cadlag

Fact (275D): regularity assumptions sometimes superfluous;sub/supermartingales admit cadlag versions

Page 13: Donsker’s Invariance Principle and Brownian martingales

Brownian martingales 11

The following are continuous martingales

Bt, B2t ´ t, B3

t ´ 3tBt, B4t ´ 6tB2

t ` 3t2, . . .

These are all generated by continuous martingale

Mt :“ elBt´ l22 t

Indeed,

elBt´ l22 t “ 1 ` lBt ` l2

2pB2

t ´ tq

` l3

6pB3

t ´ 3tBtq ` l4

24pB4

t ´ 6tB2t ` 3t2q ` . . .

Page 14: Donsker’s Invariance Principle and Brownian martingales

Basic facts derived via discrete-time martingales 12

LemmaX martingale ñ tXt : t § au UI for all a P p0, 8q

LemmaX cadlag martingale ^ T stopping time ñ tXT^tut•0 martingale

Page 15: Donsker’s Invariance Principle and Brownian martingales

18

TO BE CONTINUED . . .