Top Banner
Biochemistry Biochemistry is the science concerned the chemical reactions occurring in living cells and organisms. Biochemistry in the medicine is mainly concerned with balance of biochemical reactions occurring in the body, both in physiological state as in pathology. The program of teaching biochemistry for medical students consists of lectures, seminars and laboratory classes. The main object comprises five sections: Structure and Function of Proteins and Enzymes, Metabolism of Carbohydrates, Lipids of Physiological Significance, Nucleic Acids and special topics (Nutrition, Digestion, Vitamins, Plasma Proteins, Immunoglobulins, Haemostasis, Xenobiotics). Total program of teaching in Biochemistry includes: 70 hours lectures, 68 hours seminars, and 42 hours practical classes. At the end of course students must take the final examination prepared by Board of Medical Examiners. Teachers: 1. Prof. dr hab. med. Józef Kędziora 2. Dr Jolanta Czuczejko 3. Dr Karolina Szewczyk-Golec Contact: Dr Jolanta Czuczejko [email protected] Syllabus I. Department of Biochemistry II. Head of the Unit: dr hab. n. med.Beata Augustyńska III. Faculty of Medicine, Medical Program, year II IV. Course coordinator – dr Jolanta Czuczejko V. Form of classes - lectures, practicals, seminars VI. Form of crediting/assessment - Exam , 16 ECTS points
65

· Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Mar 08, 2018

Download

Documents

duongkhue
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Biochemistry

Biochemistry is the science concerned the chemical reactions occurring in living cells and organisms. Biochemistry in the medicine is mainly concerned with balance of biochemical reactions occurring in the body, both in physiological state as in pathology. The program of teaching biochemistry for medical students consists of lectures, seminars and laboratory classes. The main object comprises five sections: Structure and Function of Proteins and Enzymes, Metabolism of Carbohydrates, Lipids of Physiological Significance, Nucleic Acids and special topics (Nutrition, Digestion, Vitamins, Plasma Proteins, Immunoglobulins, Haemostasis, Xenobiotics). Total program of teaching in Biochemistry includes: 70 hours lectures, 68 hours seminars, and 42 hours practical classes. At the end of course students must take the final examination prepared by Board of Medical Examiners.

Teachers:

1. Prof. dr hab. med. Józef Kędziora

2. Dr Jolanta Czuczejko

3. Dr Karolina Szewczyk-Golec

Contact: Dr Jolanta Czuczejko [email protected]

Syllabus

I. Department of Biochemistry

II. Head of the Unit: dr hab. n. med.Beata Augustyńska

III. Faculty of Medicine, Medical Program, year II

IV. Course coordinator – dr Jolanta Czuczejko

V. Form of classes - lectures, practicals, seminars

VI. Form of crediting/assessment - Exam , 16 ECTS points

VII. Number of hours - 60 hours of lectures, 120 hours of practicals and seminars

VIII. Aim of the course:

Acquiring knowledge of the chemical processes occuring in human cells. Studying the chemical constituents of human cells: structure, properties and function of proteins, saccharydes, lipids, nucleic acids, vitamins and coenzymes. Studying biochemical aspects of metabolic disorders. Analysis of the compartmentation, integration and regulation of metabolic pathways. Learning about the metabolism of

Page 2: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

the main human organs. Emphasising the relationships between medicine and biochemistry and the role of biochemical knowledge in medical diagnostics.

IX. Topics:

Biochemistry Lectures

Amino acids, peptides, proteins.

1. Nature of Proteins - Function: Enzymatic catalysis, transport and storage of small molecules, structural elements

of cytoskeleton, immunity (immune defense system)2. Amino Acids – fundamental units of proteins

- Composition- Optical activity- Amphoteric properties

3. Peptides and polypeptides- Formation- Amphoteric properties

4. Purification of proteins5. Conformation of proteins - primary, secondary, tertiary, quaternary structure6. Protein Structure – Function Relationship

Oxygen transport proteinsA. Myoglobin and Hemoglobin Structure and FunctionB. Hemoglobinopathies (HbS, HbC, HbM, thalassemias)C. Humoral Immunity - five basic classes of immunoglobulin (structure and function): IgM, IgD,

IgG, IgE, IgAD. Fibrous proteins - collagen

Enzymes, co-enzymes, vitamins.

1. General characteristics of enzymeDifferences between enzymes and chemical catalysts- Measures of enzyme activity- Enzymes nomenclature

2. Enzyme KineticsA. Quantification of enzyme activityB. Quantification of chemical reaction by kinetic orderC Michaelis – Menten kinetic theory of enzyme action-significance of the Michaelis constant-Lineweaver Burk transform

3. Enzyme InhibitionA. CompetitiveB. Uncompetitive

Page 3: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

C. Medical relevance of enzyme inhibitor D. Regulation of enzymes

4. Enzymes in clinical diagnosis5. Nomenclature of vitamins - water soluble and fat soluble.6. Coenzymes:

Nicotinamide-adenine dinukleotide (NAD+)Nicotinamide – adenine dinukleotide phosphate (NADP+)Flavin mononucleotide (FMN)Flavin adenine dinukleotide (FAD)CoA-SH, ACPFolic acidPyridoxal phosphate (PLP) Thiamin pyrophosphate (TPP)Biotin CobalamineAscorbic acid

7. Cofactors: metal ions of Co, Cu, Mg, Mn, Se, Zn, Fe.

Saccharides, glycolysis pathway, tricarboxylic acid cycle, pentose phosphate pathway.

1. Structures of saccharidesA. Open chain form (asymmetric carbon, isomers, epimers, enantiomers, hemiacetals)B. Cyclic form (acetals, glycosialles) polysacharydes

2. Carbohydrate derivatesA. Phosphoric acid esters of monosacharidesB. Amino sugarsC. Sugar acidsD. Deoxy sugars

3. Glycoproteins - physiologic functions A. Glycosaminoglycans (heparin, chondroitin sulfate, dermatan sulfate, heparin sulfate, keratin sulfate, hyaluronic acid)

4. Glycolysis - anaerobic glycolysis, aerobic glycolisys.5. The pyruvate dehydrogenase (PDH) enzyme complex, PDH regulation5. Pentose phosphate pathway6. Uronic acid pathway (glucuronic acid cycle)7. Citric acid cycle

Oxidative phosphorylation and biologic oxidation.

Page 4: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Mitochondrial Electron Transport

Localization of electron transport chain

1. The outer membrane

2. The itermembrane space present

3. The inner membrane

4. Organization of the electron transport chain - Complex I, II, III, IV

Lipids

1. Nomenclature of lipids and physiologic significance

2. Phospholipids and glycosphingolipids – structure, function and biosynthesis

3. Fatty acids chain biosynthesis

4. Desaturase & elongase enzyme systems

5. Eicosanoids biosynthesis and their physiologic role

6. Cholesterol biosynthesis (regulation of HMG-CoA reductase activity)

7. Cholesterol as a precursor of steroids (corticosteroids, sex hormones, bile acids, vitamin D)

8. Lipid and cholesterol transport and storage – plasma lipoproteins

9. β-oxidation of saturated, unsaturated and odd number of carbon atoms fatty acids

10. Ketogenesis

11. Lipid peroxidation

12. Interrelationships among carbohydrates and lipids metabolism

*Nucleic acids – structure, function, organization. Molecular genetics.

1. Human genome – definition and structure. Nucleosome and chromatin package. Hetero – and euchromatin. Structure of nucleic acids. Genetic information and genetic code. Organization of genes, promoters, microsatellite DNA, pseudogenes.

Page 5: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

2. DNA replication – DNA polymerases, start of replication, role of starters in DNA synthesis, Okazaki fragments. Topology of DNA associated with replication and role of helicases.

3. Transcription of genetic information. RNA synthesis by DNA-dependent RNA polymerase. Types of RNA and their function. Reverse transcriptase.

4. Translation of genetic information. Components of the translation apparatus. Protein biosynthesis. Protein maturation and posttranslational modifications. Protein degradation and turnover.

5. Epigenetics – DNA modifications, DNA methylation. Modulation of genes expression. Epigenetics and cancer.

6. DNA damage and repair. DNA damage in the way of health & on the way to ageing. Oxidative DNA damage and repair. Measurement of DNA damage. Biological consequences of oxidative DNA damage. DNA repair pathways. Mutagenesis. Mutations and polymorphisms in genes encoding DNA repair enzymes.

7. Mitochondrial genome and its metabolism. Organisation of the human mitochondrial genome. Maternal inheritance. High mutation rate. Mutations in mtDNA.

*Nutrition, digestion & absorption.

1. Macro- and micronutrients. Digestion and absorption of proteins, carbohydrates and lipids. Vitamins. Bile acids metabolism.

2. Energy metabolism. Protein-energy intake. Malnutrition. Obesity. Assessment of nutritional status.

*Blood, hemostasis & thrombosis.

1. The composition of blood. Blood cells and plasma. Oxygenation of blood. 2. Mechanism of blood coagulation.

* Excretory system.

1. Organs of the excretory system. Removal of carbon dioxide excess by lungs. Skin functions. Break-down of proteins and urea production in liver. Urea cycle.

Page 6: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

2. Kidney function. Hormonal control of water and salt

Detoxification processes – liver functions

1. The metabolism of the liver - amino acids, urea cycle, proteins, carbohydrates, lipids

2. Steps of detoxification – cytochrome P450, conjugation (role of reduced glutathione GSH – biosynthesis of mercapturic acids)

3. Other role of GSH – peroxidase glutathione (GSH-Px), reductase glutathione (GR), transport of amino acids

Metabolism of amino acids.

Deamination (role of Glu), transamination, decarboxylation, glucogenic and ketogenic aminoacids, role of aminoacids on biosynthesis, essential and non-essential amino acids

* Hormones and hormonal regulation.

Hormones and the hormonal cascade system. Major polypeptide hormones and their action. Steroid hormones. Hormone receptors and intracellular hormone signalling.

* lectures conducted by the Department of Clinical Biochemistry

Biochemistry PracticalsPractical 1 Chemical properties of amino acids

The aim of the class: studies on selected properties of amino acids

Theoretical basis: general structure of amino acids, the names (full names and their three-letter abbrevations) and structures of protein amino acids, characteristics of the chemical groups attached to amino acid chain (like carboxylic, amino, imino, sulphydryl, imidazol, guanidine, hydroxyl groups), amphoteric properties of amino acids, classification of amino acids according to the chemical properties of their side chains (charged, nonpolar hydrophobic, uncharged polar; aliphatic, cyclic, aromatic; acidic, basic)

Laboratory tests:

Page 7: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

1. Ninhydrin reaction – a characteristic reaction for all amino acids.2. Characteristic reactions for individual amino acids:

a) xantoprotein reaction – detection of aromatic amino acidsb) Millon reaction – detection of tyrosinec) Adamkiewicz-Hopkins reaction – detection of tryptophand) Pauly reaction – detection of histidinee) Sakaguchi reaction – detection of argininef) cysteine reaction – detection of sulphur amino acids (cysteine, cystine)

Practical 2 Some properties of peptides and proteins

The aim of the class: Some physical and chemical properties of peptides and proteins

Theoretical basis: structure and characteristics of the peptide bond, classification of peptides according to their structures, the physiologic significance of some peptides in human body, the characteristics of primary, secondary, tertiary and quaternary structures of proteins, classification of proteins according to their structures, properties and functions, the amphoteric properties of proteins (the isoelectric point of proteins)

Laboratory tests:

1. Biuret reaction – detection of peptide bonds.2. Denaturation of protein:

a) thermal denaturation of proteinb) denaturation of proteins with strong acidsc) denaturation of proteins with strong basesd) precipitation of proteins with ethanole) denaturation of proteins with heavy metal saltsf) denaturation of proteins with alkaloid reagents

3. Amphoteric properties of proteins.

Practical 3 Blood proteins

The aim of the class: Some properties of blood proteins

Theoretical basis: the constituents of the blood, the compositions of blood plasma and blood serum, characteristics of main blood plasma proteins: albumins, globulins and fibrinogen, electrophoresis as an important method of plasma (or serum) protein fractionation, the characteristics of individual protein fractions, the physiologic and pathological concentrations of blood plasma protein, the diagnostic role of alterations in the amount of total proteins and in mutual quantitative relationships between individual fractions, examples of methods for protein concentration determination (biuret protein assay, Lowry protein assay, Bradford protein assay)

Page 8: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Laboratory tests:

1. Determination of plasma protein concentration by biuret method – preparation of a calibration curve.

2. Polyacrylamide gel electrophoresis of serum proteins.3. Fractionation of blood plasma proteins by salting out with ammonium sulphate.

Practical 4 Gel filtration

The aim of the class: molecular filtration for protein separation and desalting of protein solution

Theoretical basis: The separation of proteins contained in solution by different types of chromatography, the characteristics of molecular filtration (the types of molecular sieves and their structure, the principles and applications of gel filtration), different methods used for measurement of protein molecular weight

Laboratory tests:

1. The separation of mixture of substances with different molecular weight (blue dextran, hemoglobin, potassium chromate) on chromatographic column filled with Sephadex gel.

SEMINAR / TEST I Amino acids, peptides, proteins

The key problems: The structure of protein amino acids. The classification of amino acids according to both the polarity and the structural features of their side chains (e. g. polar, nonpolar; aliphatic, aromatic; sulfur-containing; charged, uncharged; acidic, basic). The amphoteric properties of amino acids, zwitterions. The structure of some modified amino acids (as selenocysteine, 4-hydroxyproline, 5-hydroxylysine). The structure of some physiologically important nonprotein amino acids.

The formation, structure and properties of the peptide bond. Some important peptides in the human organism (glutathione, peptide hormones). The insulin synthesis.

The classification of proteins according to their structure, properties and functions. The characteristics of primary, secondary, tertiary and quaternary structures of proteins. The interactions involved in a protein folding into its final conformation (e. g. the attraction between positively and negatively charged molecules, the hydrophobic effect, hydrogen bonding, and van der Waals interactions). Posttranslational modifications of amino acids in proteins. Structure – function relationships in myoglobin, hemoglobin and immunoglobulins. The structure and synthesis of collagen. Rybonuclease renaturation as an example of the importance of primary protein structure. The prions as an example of medical importance of proper protein folding.

Page 9: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Practical 5 The isolation of enzymes from biological materials

The aim of the class: the isolation and purification of yeast saccharase

Theoretical basis: the structure of enzymes, classification of enzymes, the enzymes names, the methods of isolation and purification of enzymes from biological materials.

Laboratory tests:

1. The isolation and purification of saccharase (sucrase) from yeast.2. Samogyi-Nelson method – calibration curve preparation.

Practical 6 The kinetics of the enzymatic reaction

The aim of the class: the determination of the initial velocity and Michaelis constant in reaction catalysed by saccharase

Theoretical basis: the enzyme-catalyzed reaction, the definitions of initial velocity, maximal velocity and Michaelis constant, the Michaelis-Menten equation, the standard units of enzymatic activity (katal, international unit), the influence of some factors on the enzyme activity (e. g. temperature, pH, the concentration of substrate and enzyme, competitive and noncompetitive inhibitors).

Laboratory tests:

1. The determination of the initial velocity in reaction catalysed by saccharase.2. The determination of the Michaelis constant in reaction catalysed by saccharase.

Practical 7 The vitamin C concentration in biological materials

The aim of the class: the determination of the ascorbic acid concentration in different biological materials

Theoretical basis: classification, structure and functions of water-soluble vitamins, classification, structure and functions of coenzymes.

Laboratory tests:

1. The determination of the ascorbic acid concentration by Folin method in the blood serum and some other biological materials (e. g. vegetable and fruit juices)

SEMINAR / TEST II Enzymes and coenzymes

Page 10: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

The key problems: The definitions: enzyme, coenzyme, cofactor. The isoenzymes of the diagnostic importance (lactate dehydrogenase (LDH), creatine phosphokinase (CPK)). The structure of the active site and models for substrate binding. The specificity of enzymes to the substrates and the catalysed reaction.

The catalytic mechanisms of the enzymatic reactions. The influence of physical and chemical factors on the enzyme activity (temperature, pH, the enzyme concentration, the substrate concentration, the product concentration). The kinetics of enzymatic reaction: the initial and maximal velocities, Michaelis constant, the Michaelis-Menten equation, the Lineweaver-Burk plot.

Regulation of enzyme activity: allosteric enzymes (allosteric activators and inhibitors, the examples of allosteric enzymes, the sequential and concerted models for an allosteric enzyme, the kinetics of allosteric enzyme reaction), feedback regulation and its examples in the human organism, covalent modification of enzymes (phosphorylation), proteolytic cleavage (proenzymes, zymogens, autocatalysis), reversible inhibition (competitive and noncompetitive inhibitors, the mechanism of the inhibition, the kinetics of competitive and noncompetitive inhibitions, medical significance of inhibition: acetylsalicylic acid, Fluorouracil, methotrexate, penicillin, allopurinol).

The standard units of enzymatic activity (katal, the international unit, the specific activity of an enzyme). The classes of enzymes (oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases).

Coenzymes: their structrures and functions in the reactions. Water-soluble and fat-soluble vitamins: their structures and functions. The trace elements: some enzymatic reactions that involve the iron, cobalt, zinc, or copper ions.

Practical 8 Some properties of monosaccharides

The aim of the class: some chemical properties of monosaccharides

Theoretical basis: nomenclature of monosaccharides and their isomerism, the structure of monosaccharides (Fischer projection and cyclic structure), the chemical properties of monosaccharides, the examples of biologically important monosaccharides.

Laboratory tests:

1. Fuchsine reaction – characteristic reaction for monosacharides in neutral solution2. Characteristic reactions for monosaccharides in basic solution – the reducing properties of

saccharides:a) Fehling reactionb) Benedict reaction

Page 11: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

c) Nylander reactiond) picric acid reaction

3. Characteristic reactions for monosaccharides in concentrated strong acids solutionsa) Molisch reaction – detection of every monosaccharideb) Seliwanow reaction – detection of ketosesc) phloroglucinol reaction – detection of pentoses

4. Phenylhydrazine reaction – the formation of osazones.5. Ethanol fermentation.

Practical 9 Some properties of di- and polysaccharides

The aim of the class: some properties of biologically important disaccharides and polysaccharides

Theoretical basis: nomenclature of disaccharides and polysaccharides, their structure and properties, the examples of biologically important di- and polysaccharides, physiologically significant saccharide derivatives (e. g. heparine) and glycoproteins

Laboratory tests:

1. Molisch reaction – detection of every di- or polysaccharide2. Seliwanow reaction – detection of ketose presence in saccharose molecule.3. The reductive test for some dissacharides:

a) Fehling reaction for lactose, maltose and sucroseb) picric reaction for lactose, maltose and sucrose

4. Barfoed reaction – the characteristic reaction for reducing disaccharides.5. Iodine test – the detection of starch.

Practical 10 Saccharides of physiological importance

The aim of the class: preparation of glucose tolerance curve, the estimation of sialic acids concentration in the blood serum

Theoretical basis: the glucose concentration in the blood, the maintenance of blood glucose levels, regulation of blood glucose level by hormones, the glucose levels in diabetes mellitus, glucose tolerance test in healthy persons and diabetes mellitus patients, the physiologic role of sialic acid

Laboratory tests:

1. Determination of the blood glucose levels in the blood samples obtained during oral glucose tolerance test conducted on the healthy person – an enzymatic reaction with glucose oxidase.

Page 12: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

2. Determination of the blood glucose levels in the blood samples obtained during oral glucose tolerance test conducted on the diabetes mellitus patient – an enzymatic reaction with glucose oxidase.

3. The drawing of two glucose tolerance curves – for healthy and diabetes mellitus person.4. Winzler method – the determination of blood sialic acids concentration.

SEMINAR / TEST III Saccharides

The key problems: Classification of monosaccharides by both the number of contained carbon atoms (e. g. triose, tetrose etc.) and the type of contained carbonyl group (aldose, ketose), and their isomerism. Common disaccharides. The structure of important polysaccharides (starch and glycogen). Physiologically significant saccharide derivatives (especially amino sugars). Synthesis and functions of sialic acids.

Generation of ATP from glucose: glycolysis (reactions of glycolytic pathway, substrate-level phosphorylation, regulation of glycolysis). Synthesis of 2,3-bis-phosphoglycerate in a “side reaction” of the glycolytic pathway. Anaerobic glycolysis – (lactate fermentation, tissues dependent on anaerobic glycolysis, fate of lactate – Cori cycle, lactic acidemia, ethanol fermentation). Fructose and galactose metabolisms. Synthesis and degradation of lactose. Formation and degradation of glycogen. Disorders of metabolisms of fructose, galactose and glycogen. The pentose phosphate pathway. The directions of the pentose phosphate pathway reactions due to the cellular needs. Hemolysis caused by reactive oxygen species in the conditions of glucose-6-phosphate dehydrogenase deficiency. Gluconeogenesis. The maintenance of blood glucose levels by hormones (regulation of glycolysis and gluconeogenesis, as well as formation and degradation of glycogen by insulin, glucagon and noradrenaline).

Practical 11 The electron-transport chain.

The aim of the class: studies on selected enzymes of the electron-transport chain and some enzymes of antioxidative properties.

Theoretical basis: the oxidative-reduction components of the electron-transport chain and their structures, the electron-transport chain as a major source of the free radicals in the cell, the antioxidative defense in the human organism, the enzymatic and non-enzymatic components of the antioxidative defense

Laboratory tests:

1. Demonstration of the cytochrome c oxidase activity in potato juice.2. Demonstration of the catalase activity in the hemolysate.3. Determination of glutathione peroxidase activity in the blood plasma.

Page 13: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

4. Determination of ceruloplasmin oxidase activity in the blood serum.

SEMINAR / TEST IV # Oxidative phosphorylation and tricarboxylic acid cycle

The key problems: Oxidative fates of pyruvate – oxidation of pyruvate to acetyl CoA by pyruvate dehydrogenase. The tricarboxylic acid (TCA) cycle (reaction, enzymes, coenzymes, regulation of this cycle). The energetics of the TCA cycle. Cellular bioenergetics: the compounds containing high-energy bonds (ATP and the others nucleoside triphosphates, creatine phosphate, 1,3-bis-phosphoglycerate, acetyl CoA). Oxidative fates of NADH, produced from glycolysis (glycerol 3-phosphate shuttle and malate-aspartate shuttle). Transfer of compounds through the inner and outer mitochondrial membranes. The generation of ATP from glucose (complete aerobic oxidation of glucose, anaerobic glycolysis).

Oxidative phosphorylation. The electron-transport chain. Chemiosmotic model of ATP synthesis. The structure of protein complexes of the electron-transport chain. Respiratory chain inhibitors, chemical uncouplers of oxidative phosphorylation. The generation of reactive oxygen species (ROS) in the cell (the mitochondrial electron-transport chain and other sources). ROS-mediated cellular injury. Formation of free radicals during phagocytosis and inflammation. Cellular defences against oxygen toxicity.

Practical 12 * Some properties of lipids.

The aim of the class: some chemical properties of lipids, lipids of physiologic significance.

Theoretical basis: categories of lipids, the nomenclature of both saturated and unsaturated fatty acids, examples of biologically important fatty acids, the structure of glycerolipids, the structure of sphingolipids, the role of some important lipids in the human organism, the lipid peroxidation, the structure of cholesterol, the physiological blood concentrations of both cholesterol and triacylglycerols, the diagnostic significance of cholesterol, triacylglycerols and lipoproteins levels in the blood.

Laboratory tests:

1. Acrolein test – detection of glycerol. 2. Detection of unsaturated fatty acids.3. Saponification reaction of triglicerydes.4. Emulsifying action of both the soap and the bile acids.5. Kreis test – detection of aldehyde products of lipid peroxidation6. Determination of the cholesterol concentration in the blood serum – an enzymatic method.7. Determination of the triglycerides concentration in the blood serum – an enzymatic method.

Page 14: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

SEMINAR / TEST V * Lipids

The key problems: Saturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions of cholesterol. The cholesterol derivatives (vitamin D, steroid hormones, the bile acids) and their role in the organism. Transport of cholesterol by the blood lipoproteins. The cholesterol synthesis and its regulation. Medical significance of elevated cholesterol blood levels. Dyslipoproteinemias.

Activation of long-chain fatty acids and their transport into mitochondria. β-oxidation of long-chain fatty acids, oxidation of unsaturated fatty acids. Energy yield of β-oxidation. Odd-chain-lenght fatty acids oxidation. Conversion of propionyl CoA to succinyl CoA. Metabolism of ketone bodies.

The acetyl CoA transport from mitochondria into cytosol (role of citrate). The sources of NADPH for fatty acid synthesis. Fatty acid synthesis. Elongation of fatty acids. Desaturation of fatty acids. Conversion of linoleic acid to arachidonic acid. The synthesis of eicosanoids and their physiologic significance. Synthesis of triacylglycerols. Synthesis of glycerophospholipids and sphingolipids. Integration of carbohydrate and lipid metabolism.

Practical 13 * Nucleic acids extraction from yeast

The aim of the class: isolation of nucleic acids from yeast.

Theoretical basis: the structure and nomenclature of nucletides, the structure of nucleic acids: DNA and RNA, the conditions of nucleic acid separation from yeast

Laboratory tests:

1. The separation and purification of nucleic acids from yeast. 2. Determination of RNA concentration in the sample – orcin method.3. Determination of DNA concentration in the sample – Feulgen method.

Practical 14 * Some properties of nucleic acids

The aim of the class: studies on the composition and some properties of nucleic acids

Theoretical basis: characteristics of nucleic acids, their structure, metabolism and functions in the human body

Laboratory tests:

1. The solubility of nucleic acids.2. Nucleic acid sugar compounds detection:

Page 15: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

a) orcin test: detection of riboseb) diphenylamine test – detection of deoxyribose

3. Nucleic acids hydrolysisa) detection of purines – by precipitation with Ag+ ionsb) detection of sugar – phloroglucinol reactionc) detection of phosphate – by reaction with molybdic reagent

4. Absorbsion spectrum of nucleic acids.

SEMINAR / TEST VI * Nucleic acids and their metabolism

The key problems: The nomenclature and structure of purine and pirymidine bases. The structure of nucleotides. Purine and pyrimidine synthesis and its regulation. The purine nucleotide salvage pathway. The formation of deoxyribonucleotides. Degradation of purine and pyrimidine bases. Lesch-Nyhan syndrome, sever combined immunodeficiency disease (SCID), hyperuricemia.

The structure of the nucleic acids. Synthesis of DNA. Transcription: synthesis of RNA. Translation: synthesis of proteins. Regulation of gene expression. Use of recombinant DNA techniques in medicine. The molecular biology of cancer.

Practical 15 Enzymes of digestive tract

The aim of the class: studies on some properties of digestive juices

Theoretical basis: the composition of digestive juices, the physical and chemical properties of digestive juices, the role of the components of digestive juices in the digestion process. The characteristics of digestive enzymes.

Laboratory tests:

1. Demonstration of amylase presence in pancreatic juice.2. Demonstration of proteolytic enzymes presence in pancreatic juice. 3. Demonstration of lipase presence in pancreatic juice.4. Determination of lipase activity in pancreatic juice.5. Detection of some inorganic ions in the saliva.6. Measurement of gastric content acidity (free, related and total acidity).7. Demonstration of bile acids presence in the bile

a) Hay testb) Pettenkofer test

Practical 16 * The constituents of the blood

The aim of the class: studies on some properties of some constituents of the blood

Page 16: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Theoretical basis: the constituents of both cellular and noncellular fractions of the blood, major functions of the blood, the structure of hemoglobin and its role in the respiration (oxygen and carbon dioxide transport), the oxygen-binding curve of hemoglobin, the allosteric effectors for oxygen binding to hemoglobin (pH, carbon dioxide, 2,3-bisphosphoglycerate), the Bohr effect, some examples of hemoglobinopathies (hemoglobin M, hemoglobin S, thalassemias), the role of the blood proteins in the maintenance of homeostasis, the functions of inorganic compounds in the blood

Laboratory tests:

1. Benzidine reaction – detection of the blood.2. Distinction of oxyhemoglobin and carboxyhemoglobin.3. Preparation of hematin in acidic and basic conditions.4. Demonstration of iron presence in hemoglobine molecule.5. Determination of hemoglobin concentration – the cyanmethemoglobin method.6. Detection of lipids in the blood plasma.7. Van der Bergh reaction - detection of bilirubin in the blood serum.8. Detection of bilirubin in the bile.

Practical 17 The blood serum enzymes used in clinical diagnosis

The aim of the class: the analysis of some serum enzymes activities and its role in the diagnosis of disease processes

Theoretical basis: classification of blood diagnostic enzymes, the major enzymes used in clinical diagnosis, the role of diagnostic enzymology in diagnosis of myocardial infarction and some liver diseases, absorption spectra of NAD+ and NADH, the usage of these spectra for the assays of dehydrogenases activities, the coupled enzyme assays

Laboratory tests:

1. Determination of alanine aminotransferase activity in the blood serum.2. Determination of aspartate aminotransferase activity in the blood serum.3. Determination of lactate dehydrogenase activity in the blood serum.4. Determination of alkaline phosphatase activity in the blood serum.5. Determination of -amylase activity in the blood serum.

SEMINAR / TEST VII The blood. Nutrition, digestion, and absorption

The key problems: The composition of digestive juices, the enzymes of digestive tract. Digestion and absorption of carbohydrates, lipids, proteins, vitamins and minerals. The role of hydrochloric acid and the bile salts in digestion processes. The production of hydrochloric acid by parietal

Page 17: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

cell of the stomach. The biosynthesis and degradation of bile salts. The enterohepatic bile salts circulation.

Synthesis of heme and regulation of this process. Catabolism of heme. The fates of bilirubin: transport to the liver, conjugation with glukuronic acid, secretion into bile, reduction to urobilinogen. The enterohepatic urobilinogen cycle. Hyperbilirubinemias, different causes of jaundice (hemolytic anemia, hepatitis, obstructive jaundice), the laboratory tests important in helping to distinguish between prehepatic, hepatic and posthepatic causes of jaundice.

The major functions of the blood, the constituents of the blood. The organic and inorganic constituents of the blood plasma. The characteristics and functions of plasma proteins. Structure and functions of red blood cells. Metabolism of the red cell. Reaction of importance in relation to oxidative stress in blood cells. System for reducing heme Fe3+ back to the Fe2+

state in the red blood cell. Physiologic roles of hemoglobin and mioglobin, the oxygen dissociation curves for myoglobin and hemoglobin. The mechanism of binding O 2 to myoglobin and hemoglobin. The cooperative interactions infuencing the binding O2 to hemoglobing, the changes of oxygen-binding curve of hemoglobin (effect of temperature, pH, carbon dioxide concentration, 2,3-bis-phosphoglycerate concentration). The Bohr effect. The carbon dioxide transport in the blood. Binding CO to hemoglobin. Changes of the subunit composition of hemoglobin tetramers during development (embryonic, fetal and adult subunits). Abnormal hemoglobines. Anemia. The classification of the causes of anemia.

Practical 18 Urine physiologic parameters

The aim of the class: the analysis of some substances extreted by the kidney from the body via the urine during physiologic conditions

Theoretical basis: the functions of the kidney (excretion of waste products produced by metabolism, acid-base homeostasis, osmolality regulation, the blood pressure regulation, hormone secretion), the production of urine, characteristics and composition of the urine, glomerular filtration rate (GFR), creatinine clearance as a creatinine-based approximation of GFR

Laboratory tests:

1. Determination of urea concentration in the urine – Yatzidis method with Ehrlich’s reagent.2. Harrison’s test – detection of bilirubin in the urine.3. Detection of creatinine in the urine:

a) Weyl’s testb) Jaffe method

4. Determination of creatinine concentration in the urine – Jaffe method.5. Deniges test – detection of indican in the urine.6. Ehrlich’s aldehyde test – detection of urobilinogen in the urine.

Page 18: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

7. Determination of α-amylase activity in the urine – Winslow’s method.8. Determination of uric acid concentration in the urine and in the blood serum – enzymatic

method.

Practical 19 Diagnostic chemical markers in human urine

The aim of the class: the analysis of some substances excreted by the kidney from the body via the urine during pathologic conditions

Theoretical basis: the role of the urine analysis in the medical examination, the substances excreted by the kidney via the urine in selected disease processes, diagnostic urine stripes as a rapid method of urine analysis

Laboratory tests:

1. Benzidine method – detection of the blood (or hemoglobin) presence in the urine.2. Coagulation urine protein test – detection of the protein presence in the urine.3. Benedict’s test – detection of glucose presence in the urine.4. Rothera’s test – detection of ketone bodies presence in the urine.5. Hay test – detection of the bile salts presence in the urine. 6. The urine examination using the diagnostic urine stripes.

SEMINAR / TEST VIII Metabolism of amino acids.

The key problems: Fate of amino acid nitrogen. Enzymes important in the process of interconverting amino acids and in removing nitrogen (dehydratases, transaminases, glutamate dehydrogenase, glutaminase, deaminases). The convertion of amino acid nitrogen to urea – the urea cycle.

Degradation of amino acid: fate of amino acid carbon skeletons. Glucogenic and ketogenic amino acids. The role of pyridoxal phosphate, tetrahydrofolate and tetrahydrobiopterin coenzymes in amino acid metabolism. Some disorders of amino acid catabolism: alkaptonuria, phenylketonuria, maple syrup urine disease.

The biosyntheses of biologically important compounds from amino acids (sphingosine, choline, taurine, creatine, catecholamines, hippuric acid, nitric oxide, glutathione, glycerophospholipids, purines, pirymidines, carnosine, anserine, bile salts, hem, serotonin, melatonin, nicotinin acid, coenzyme A). Biosynthetic decarboxylations of amino acids to amines – the biogenic amines and their biological functions.

The one-carbon carriers in the body: tetrahydrofolate (FH4), vitamin B12, S-adenosylmethionine (SAM). Sources and recipients of one-carbon FH4 pool.The methyl-trap hypothesis. The role of SAM in the biosynthesis of the compounds of biological importance

Page 19: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

(creatine, phosphatidylcholine, adrenaline, melatonin, methylated nucleotides, methylated DNA).

Essential and nonessential amino acids. The synthesis of nonessential amino acids in the human organism.

SEMINAR IX Integrative seminar 1 – Metabolism of tissues and organs.

The key problems: Carbohydrate, lipid and amino acid metabolism of liver, brain, skeletal muscle, cardiac muscle cells, and kidney. The sources of ATP for skeletal muscle cells (e. g. creatine phosphate, purine nucleotide cycle). Major functions of the kidney (excretion of waste products produced by metabolism, acid-base homeostasis, osmolality regulation, the blood pressure regulation, hormone secretion, γ-glutamyl cycle). The substances excreted via the urine in normal and pathologic conditions. The metabolism of liver (detoxification of drugs and metabolites, glutathione S-transferases, metabolism of ethanol). The functions of glutathione in the organism.

Intertissue relationships in the metabolism of carbohydrates, lipids and amino acids.

SEMINAR X * Integrative seminar 2 – Metabolism regulation – actions of hormones.

The key problems: Classification of hormones according to their structure, a type of hormone receptor, and a second messenger. The synthesis of thyroid hormones. The hormones involved in the glucose maintenance in the blood. The major hormones influencing nutrient metabolism and their actions on muscle, liver, and adipose tissue. The changes in the fuel metabolism during fasting state and starvation. The metabolism of carbohydrates, lipids, and amino acids in the diabetes mellitus type I and type II.

Practical 20 End-of-year practical

* practicals and seminars conducted by the Department of Clinical Biochemistry

# practicals and seminars partially conducted by the Department of Clinical Biochemistry

X. Self-study topics -

XI. Basic booklist

1. Murray RK, Bender DA et al. "Harper`s Illustrated Biochemistry" 28th edition

Page 20: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

2. Lieberman M, Marks AD "Marks` Basic Medical Biochemistry a Clinical Approach". 3rd edition

3. Marks DB "Biochemistry" 3rd edition

XII. Detailed list of required practical skills and confirmation of completing

Assessment record

Student name:

Year of the study, group number:

Academic year:

List of required practical skills Date of

assessment

signature of

tutor

comments

Gaining knowledge of molecular, biochemical and

physiological mechanisms occuring in human organism

Analysis of laboratory results

Page 21: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Rules and regulations

The main objective of the course is to provide an understanding of biochemical processes and to gain relevant basic laboratory skills according to the educational requirement defined in the program of teaching biochemistry for medical students.

The program (180 hrs) consists of lectures (60 hrs), tests and seminars (40 hrs), and practical classes (80 hrs) and a closing test. All classes are compulsory. Students should check the schedule carefully and be on time. If students cannot attend class they must have sick note and arrange for an alternative date to carry out the lab/seminar.

The performance during each laboratory class will be evaluated by the quality of theoretical preparation, laboratory skills and written protocol from the experiments.

Seminars: Students must be prepared to give a short presentations of topics which will be given to them by the teacher after each part of material.

Tests: One-choice tests (30 questions, graded 1 point for a correct answer) will be held at the end of the each part of the material.

Final examination: Students who has earned credit must take the final examination (50 questions, one-choice questions test, graded 1 point for a correct answer).

The final examination and partial tests can be retaken according to the schedule and the percentage of the points according to the following system:

60-67 % - satisfactory

68-75 % - fairly good

76 - 83 % - good

84 - 90% - better than good

90 - 100 % - very good

Histology and cytophysiology

The coursework of Histology and Cytophysiology includes 40 hours of lectures and 80 hours of labs conducted during two semesters. It is ended with the Final Exam in second semester. Final Exam consist of practical recognizing of slides and final test. Practical recognizing of slides will be conducted during the last labs (the presence is obligatory). The final test will be timed in the schedule of session. The labs and lectures are prepared in a week cycle.

Page 22: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Teachers:

1. prof. dr hab. Alina Grzanka 2. mgr Maciej Gagat3. mgr Magdalena Izdebska

Contact: mgr Maciej Gagat [email protected]

Syllabus

I. Department of Histology and Embryology

II. Head of the unit: Assoc. Prof. Alina Grzanka, Ph.D.

III. Faculty of Medicine, Medical Program, 2nd

year, 3rd

semester (winter)

IV. Course coordinator: Assoc. Prof. Alina Grzanka, Ph.D.

V. Form of classes: lectures, tutorials

VI. Form of crediting: Exam, 6 ECTS points

VII. Number of hours: 20 (lectures), 40 (tutorials)

VIII. Aim of the course:

Lectures

The aim is to present the information on structure and function of cells and tissues. The lectures also provide students with a brief introduction into the molecular

biology of the cell.

Tutorials

continuation of some problems introduced in lectures

acquaintance with scientific research conducted at the Department of Histology and Embryology

work with the cytological and histological preparations

estimation of cellular structures at the electron microscopy level

IX. Topics of lectures / tutorials:

Lectures:

1. Skin – structure and functions: subcutaneous tissue, dermis, epidermis, skin vascularization and innervation.

2. Digestive system – structure and functions (part 1): oral cavity, oesophagus.

3. Digestive system – structure and functions (part 2): stomach, small intestine.

4. Glands of digestive system.

5. Respiratory system – structure and functions: nasal cavity, larynx, trachea. Composition and formation of surfactant.

6. Endocrine system (part 1). Endocrine glands: hypophysis (adenohypophysis, neurohypophysis), thyroid, parathyroid, thymus, unicellular endocrine glands.

7. Endocrine system (part 2). Endocrine glands: adrenal gland, pituitary gland, pineal gland.

Page 23: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

8. Urinary system – structure and functions: kidney, nephron, renal pelvis, glomeruli, juxtaglomerular apparatus.

9. Central nervous system: structure of the spinal cord and cerebral cortex, cerebral meninges.

10. Peripheral nervous system: peripheral nerves, autonomic nervous system.

11. Photoreceptor and audioreceptor systems.

12. Circulatory system: structure of heart, conduction system of heart.

13. Lymphatic system: lymphatic nodules, tonsils, lymphatic tissues, mucosa-associated lymphatic tissue (MALT).

14. Female reproductive system – structure and functions: ovary, oviduct, vagina.

15. Male reproductive system – structure and functions: testis, epididymis, deferent duct.

Tutorials:

1. Skin and accessory structures.

2. Digestive system (part 1).

3. Digestive system (part 2).

4. Glands of digestive system.

5. Respiratory system.

6. Endocrine system (part 1).

7. Endocrine system (part 2).

8. Urinary system.

9. Central nervous system.

10. Peripheral nervous system.

11. Sense organs.

12. Circulatory system.

13. Lymphatic system.

14. Female reproductive system.

15. Male reproductive system.

16. Final test; practical exam.

X. Self-study topics:

-----------

XI. Booklist:

Basic:

Junqueira LC, Carneiro J. Basic Histology: Text and Atlas. McGraw-Hill 2005; Eleventh Edition.

Mescher AL. Junqueira's Basic Histology: Text and Atlas. McGraw-Hill, 2009; Twelve Edition.

Additional:

Page 24: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Ross MH, Kaye GI, Pawlina W. Histology. A text and atlas with cell and molecular biology. Williams &Wilkins 2003; Fourth Edition.

Sobotta/Hammersen. Histology, A Colour Atlas of Cytology, Histology and Microscopic Anatomy. Urban & Schwarzenberg 1996.

XII. Detailed list of required practical skills and confirmation of completing:

Name:

Year of study:

Group:

Academic year:

Date Confirmation of completing Notes

Recognizing of normal human organs on slides stained with

different histological techniques.

Rules and regulations

Obligatory textbook:Junqueira LC, Carneiro J. Basic Histology: Text and Atlas. McGraw-Hill 2005; Eleventh Edition.

Mescher AL. Junqueira's Basic Histology: Text and Atlas. McGraw-Hill, 2009; Twelve Edition.

Additional textbooks:Ross MH, Kaye GI, Pawlina W. Histology. A text and atlas with cell and molecular biology. Williams

&Wilkins 2003; Fourth Edition.Sobotta/Hammersen. Histology, A Colour Atlas of Cytology, Histology and Microscopic Anatomy. Urban &

Schwarzenberg 1996.

Requirements

1. Students are obliged to prepare the part of material for each lab from the last topic.

2. The labs are obligatory. In the case of the illness a sick leave has to be delivered. Other absences due to important reason must be documented.

3. Two unjustified and undocumented absences make it impossible to pass the semester and take the Final test.

4. Each Student is obliged to come for the labs on time. Delayed Students can enter the class only if the time of delaying does not exceed 15 minutes from the moment a lab has been started.

5. In the case of absence or delay (more than 15 minutes) the Student is obliged to pass the material which was covered during the labs within 2 weeks.

Page 25: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

6. In the case of fail the entrance test the Student is obligated retake the test within 2 weeks.

7. If Student does not pass the failed material during fixed time, he or she is obligated to retake the test within the last 2 weeks of each semester.

8. Students are obliged to bring pencils, color pencils and worksheets.

9. Students are obligated to complete worksheets during each lab.

10. Students are obligated to clean up after themselves.

11. Any accidents, injuries and other emergencies must be immediately reported to the practice leader.

12. Eating, drinking, and using mobile phones during the labs are prohibited.

Point system

1. Each lab (except the first labs in the first semester and second semester) will be entered with 10-questioned test. For each correct answer Student will receive two points. Only students who will gain at least 6 points pass the test.

2. The labs in the first semester will be passed if all entrance tests and worksheets are passed.

3. Practical recognizing of slides will be concerned with recognizing of histological preparations and electronograms.

4. Students can take the Final Exam on condition that they pass labs and the practical.

5. Students are eligible to be exempt from Final Exam if all entrance tests and worksheets are passed the first time (only if they hold a mark above 70% form each entrance test).

Final Exam

1. The Final Exam consists of multiple choice questions (only one answer correct).

2. Students who failed the Final Exam are obliged to retake the test.

3. The final scores of the Final Exam are not changeable.

4. The scores of the failed Final Exam and the retake will be confirmed by a signature in the Student Book as two separated scores but not as the mean of these two.

5. An excuse for absence should be submitted to the examiner the next day, or in justified circumstances, within three days after the Final Exam.

6. The Final Exam will be assessed according to given marks:

(Fail) – less than 60%

Page 26: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

(3) – 60%

(3,5) – 65 %

(4) – 70%

(4,5) – 80 %

(5) – 90%

Embryology

The aim is to present the development of the human embryo from the fertilization of the ovum to the fetus stage. This course helps student to understand the development, final form and relationships of tissues and organs. Moreover, the course will provide students with the knowledge on the critical stages of normal development and the effects of common teratogens, genetic mutations and environmental hazards on it.

Teachers:

prof. dr hab. Alina Grzanka

Contact: [email protected]

Syllabus

I. Department of Histology and Embryology

II. Head of the unit: Assoc. Prof. Alina Grzanka, Ph.D.

III. Faculty of Medicine, Medical Program, 2nd year, 3rd semester (winter)

IV. Course coordinator: Assoc. Prof. Alina Grzanka, Ph.D.

V. Form of classes: lectures

VI. Form of crediting/Assessment: Credit only, 2 ECTS points

VII. Number of hours: 15 (lectures)

VIII. Aim of the course:

Lectures

The aim is to present the development of the human embryo from the fertilization of the ovum to the fetus stage. This course helps student to understand the development, final form and relationships of tissues and organs. Moreover, the course will provide students with the knowledge on the critical stages

Page 27: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

of normal development and the effects of common teratogens, genetic mutations and environmental hazards on it.

IX. Topics of lectures:

Lectures:

1. Introduction to embryology. Historical perspectives.

2. Gametogenesis and oogenesis, spermatogenesis. Abnormal gametes.

3. Transport of gametes and fertilization.

4. Cleavage and implantation. Ectopic pregnancy.

5. Gastrulation.

6. Basic embryonic body plan. Development of ectodermal, mesodermal and endodermal germ layers.

7. Fetal membranes – structure and significance.

8. Umbilical cord – structure and function. Development of placenta.

9. The mature placenta. Placental circulation and physiology.

10. Development of the cardiovascular and digestive systems. Clinical correlations.

11. Development of the respiratory, urogenital and nervous systems. Clinical correlations.

12. Development of the endocrine system and body cavities. Clinical correlations.

13. Development of the integumentary system. Clinical correlations.

14. Multiple pregnancies. In vitro fertilization and cloning.

15. Human birth defects. Types of abnormalities.

X. Self-study topics:

-----------

XI. Booklist:

Basic:

Carlson BM. Human embryology and developmental biology. Mosby 2004; Third Edition.

Additional:

Moore KL, Persaud TVN. The developing human. Clinically oriented embryology. Saunders 2003; Seventh Edition.

Page 28: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

XII. Detailed list of required practical skills and confirmation of completing:

-----------

Rules and regulations

Credit form of coursework:

13. The coursework consist of lectures from embryology.

14. The coursework is ended with the Final Test.

Credit form of tutorials:

No concern

Credit form of colloquium:

No concern

Form of exam:

The coursework will be passed according to scores of the Final Test.

Rules of make-up the unjustified classes missed:

No concern

Deadline to deliver elaboration, raports or different forms required in the unit:

No concern

General and detailed Management of Health and Safety at Work Regulations required during teaching programme in the unit:

Student are obligated to comply with general Management of Health and Safety at Work Regulations

Physiology with elements of clinical physiology

Physiology with elements of clinical physiology course is designed to provide students with understanding of physiological mechanisms of human body functions, at the cellular and organ level as well as integrative functioning of the human body. Course content will include neural and hormonal homeostatic control mechanisms, study of the musculoskeletal, circulatory, respiratory, digestive, urinary, reproductive, endocrine organ systems and the physiology of blood, kidney, principles of acid- base balance and metabolism. Principles of exercise physiology will be emphasized throughout the course.

Page 29: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Teachers:

1. Prof. dr hab. Małgorzata Tafil-Klawe2. dr hab. Dariusz Soszyński, prof. UMK 3. dr Piotr Złomańczuk 4. dr Katarzyna Dmitruk5. dr Wieńczysława Adamczyk6. dr Daria Pracka7. dr Tadeusz Pracki8. dr Blanka Milczarek9. mgr Małgorzata Gałązka

Contact: [email protected], [email protected]

Syllabus

I. Department of Physiology

II. Head of the Unit: prof. db. Małgorzata Tafil-Klawe

III. Faculty of Medicine, Medical Program, II year

IV. Course coordinator: prof. dr hab. Małgorzata Tafil-Klawe

V. Form of the classes: lecture, classes

VI. Assessment criteria: exam, ECTS 16 pts

VII. Number of hours: 60 hours of classes, 120 hours of classes

VIII. Course aims:

Physiology with elements of clinical physiology course is designed to provide students with

understanding of physiological mechanisms of human body functions, at the cellular and organ level

as well as integrative functioning of the human body. Course content will include neural and

hormonal homeostatic control mechanisms, study of the musculoskeletal, circulatory, respiratory,

digestive, urinary, reproductive, endocrine organ systems and the physiology of blood, kidney,

principles of acid- base balance and metabolism. Principles of exercise physiology will be

emphasized throughout the course.

IX. Lecture topics:

1. The fundamentals of neurophysiology: neuron structure, types of neurons.

2. Synaptic conductivity, ionic currents and channels, ion- and metabotropic receptors and

neurotansmitters.

3. Higher functions of central nervous system.

4. Biological clocks -their formal properties and neurophysiological basis.

Page 30: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

5. Normal anatomy of the heart. Phenomenon of electrical, mechanical and acoustic work-related

myocardial infarction.

6. Cardiac hemodynamics.

7. Mechanisms regulating cardiac function.

8. Normal anatomy of the circulatory system. Vasculature.

9. Cardiovascular regulation. The mechanisms regulating blood pressure.

10. Lung structure and function - lung ventilation.

11. The exchange of gases in the lungs. Transport of gases by blood. Diffusion of gases in the tissues.

12. Control of breathing. Neural and chemical control of breathing.

13. The fundamentals of clinical neurophysiology: EEG physiology,

14. Emotional responses

15. Adaptive significance of emotional states,

16. Lateralization of cerebral hemispheres," male brain" and "female brain".

17. Physical activity and human health.

18. Adaptation mechanisms: the influence of high mountain environment on human body.

19. Adaptation mechanisms: the influence of high pressure on human body.

20. Adaptation mechanisms: the influence of temperature pressure on human body.

21. Circadian rhythms.

22. Energy balance.

23. Homeostasis.

24. The role of hepcidine in iron level regulation in plasma.

25. Primary and secondary haemostasis.

26. Haemostasis system balance.

27. The autoregulatory mechanisms in kidneys.

28. RAA system and its functions.

29. The influence of endocrine system in the regulation of blood volume and pressure.

30. Psychoneuroimmunology- is it better to be an optimist or pessimist.

X. Classes topics:

1. The structure of membranes. Membrane channels. Membrane transport.

2. Resting and action potential in nervous cell.

3. Synaptic condutivity. Types of synapses.

4. The physiology of the skeletal and smooth muscle.

Page 31: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

5. Autonomic nervous system.

6. Reflex action of the central nervous system. Movement and posture control.

7. The physiology of senses. Sensation and perception.

8. Brain and immunity - anatomical and functional basis for interaction of the neuroendocrine

system with immune system.

9. Termoregulation and thermal states of the body according to set-point theory. Pathogenesis and

significance of fever.

10. Biological clocks - their formal properties and neurophysiological basis. Physiology of the EEG.

11. The role of autonomic and limbic system in hormonal regulation. The role of the hypothalamus

in endocrinology. Neural control of the pituitary gland. Control of the pituitary gland glandular

part. Pituitary hormones - mechanism of interaction. Feedback loops.

12. Pancreatic endocrine function. Adrenal steroids - regulation of the synthesis, secretion and the

mechanisms of interaction. Stress and adrenal function. The role of adrenal androgens and

estrogen. Hypothalamus - pituitary – gonads axis.

13. The mechanisms of interaction between ovarian and testicular hormones. Pregnancy, childbirth,

lactation – the endocrine specificity.

14. Hormons as the modulators of brain ontogeny. The mediators of cyclical changes. Mediators

induced by environmental changes. Mediators of brain development and sex differentiation of

the brain.

15. Blood. Composition of blood. Blood group. Morphology and physiology of erythrocytes,

leukocytes and thrombocytes. ESR. Cross - matching blood test. Immunological mechanisms.

Haemostasis. Hemostatic balance.

16. Functional anatomy of kidneys. Structure of nephron. Mechanisms of filtration, tubular

resorption and secretion. Autoregulation mechanisms in kidney.Urinary excretion. The effect of

physical exercise on urinary excretion.

17. Heart -electrical, mechanical and acoustic phenomenon.

18. Cardiac hemodynamics.

19. The mechanisms of regulation of the heart. Receptors.

20. Electrocardiogram- recording and results interpretation.

21. The effect of physical exercise on the cardiovascular system. Effort tests.

22. Blood pressure regulating mechanisms. Blood flow. Regulation of blood circulation in the brain,

lungs, skeletal muscle, kidney, liver. Heart and circulatory system before birth.

Page 32: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

23. Structure and function of the respiratory system. The ventilation of the lungs.

24. Spirometry- recording and results interpretation.

25. Nervous and chemical regulation of breathing.

26. Mechanism of respiratory adaptation- the man at high altitude, high-pressure environment and

during physical activity.

27. Physiology of the digestive system.

28. Endocrine activity of digestive system

29. Acid-base balance.

30. Metabolism. The energy balance of the body. Overweight, obesity, "homo sedentarius” disease

of civilization.

XI. The scope of the material for self-development:

1. Membrane channels and their functions.

2. Practical application of membrane channels.

3. News in the world of hormones.

4. Adaptive mechanisms of the human body.

5. Circadian rhythms, elements of chronomedicine and chronobiology.

6. Invasive and noninvasive diagnosis of the circulatory system.

7. Respiratory diagnostic methods.

8. Adaptive mechanisms of the human body.

XII. Learning outcomes:

After completion the course, student:

1. explains the mechanisms of the human body function,

2. understands integration processes and interactions between different systems,

3. performs basic ECG examinations its interpretation,

4. performs effort test, lists and explains the indications and contraindications to effort tests.

5. is able to plan physical training and choose the appropriate physical activity to age, health

conditions and lifestyle to improve overall physical fitness .

XIII. Required textbooks:

1. Raff H, Levitzky M, Medical Physiology: A Systems Approach, 1st edition, Lange McGraw-Hill, 2011

2. Guyton AC, Hall JE, The Textbook of Medical Physiology, 11th edition, Elsevier Saunders, 2006;

3. Seeley RR, Stephens TD, Tate P, Anatomy and Physiology, 6th edition, McGraw- Hill, 2006;

4. Purves D. et. al., Neuroscience, 3rd edition, Sinauer, 2004

Page 33: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Rules and regulations

Head of the Unit: Prof. dr. hab. med. Małgorzata Tafil-Klawe

Subject: Physiology with elements of clinical physiology

Faculty of Medicine

1. Physiology course consists of lectures and laboratories/seminars.

2. Both lecture and laboratory/seminar attendance is mandatory.

1. A formal excuse (see NCU policy) is required for each absence. The written excuse has to be delivered to the TA as soon as possible after the absentee return.

2. All absentees are required to obtain the credit for unattended classes. The time and terms of credit acquisition are decided by a respective TA.

3. At the beginning of the academic year, it is a duty of every student to familiarize her / him-self with both electronic and paper information distribution systems utilized within the Department of Physiology.

4. Students are expected to be familiar with all the current ordinances and information from electronic and paper information systems.

5. Each student attending laboratory/seminar has to fulfill the following entry requirements:

a. arrive to the place of class meeting on time;

b. dress according to the safety code requirements;

c. be aware of the safety code requirements;

d. fulfill the knowledge requirements for the current class.

6. During a class student may be asked to leave the room and acquire the credit for the class in the alternative time in the following circumstances:

a. student does not fulfill requirements described in pt. 5;

b. student behavior interferes with work of other student and/or TA’s work;

c. student is not actively participating in the current lab/seminar;

d. student does not follow the safety code guidelines.

Page 34: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

7. The terms of lab/seminar credit acquisition are presented by the TA at the beginning of each subject block.

8. Student is allowed to take mid-term tests only after acquiring credits for all labs/seminars in a respective subject block.

9. Mid-term tests are administered at the end of each subject block. The detailed timing of the test is decided and announced by a respective TA.

10.The subject matter covered by a given mid-term test includes:

a. knowledge presented during labs/seminars;

b. relevant knowledge presented during lectures;

c. information contained in the written/electronic resources indicated by a TA.

11.Student may retake a mid-term test twice. However, it is within a TA’s discretion to allow for the retakes.

12.The lack of formal justification for an absence during a test eliminates the student’s right to take the test.

13.The justified absence during a test does not alter the student’s eligibility to take a test.

14.In order to pass the Physiology Course in a given semester all lab/seminar credits have to be acquired and all relevant tests have to be passed.

15.A failure to meet the requirements described in pt. 14 results in necessity to verify student’s knowledge by the departmental commission.

16.Members of the departmental commission are nominated by the Department of Physiology Chairwoman.

17.Labs/seminars are scored by graded or pass/fail systems.

18.The time and form of final exam are decided and announced by the Department of Physiology Chairwoman.

The Department of Physiology Student Code of Conduct is based on § 24 of NCU Code of Conduct.

History and propedeutics of medicine

Weekly lectures. Prerequisite: second-year medical student. Students become acquainted with the evolution of the concept of medicine as a science throughout the ages. Various socio-medical traditions and the evolution of patient – physician interactions are also presented. Milestones in the development of medicine, as well as the major historical figures and concepts are discussed.

Page 35: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Teacher:

1. dr Jakub Szmytkowski

Contact: dr Jakub Szmytkowski [email protected]

Syllabus

I. Department of History of Medicine and Nursing

II. Head of the unit: dr hab. Walentyna Korpalska

III. Faculty of Medicine, Medical Program, year 2

IV. Course Coordinator: Jakub Szmytkowski MD PhD

V. Form of classes: lectures

VI. Form of crediting: Exam, 2 ECTS points

VII. Number of hours: 30 h

VIII. Aim of the course:

To convey basic knowledge about: medicine as a science, the socio-medical traditions, the evolution of the concept of human health and disease throughout history, the reactions to disease, therapy, physicians and nurses. To explain the terms: science, medicine, health, disease, ethical norm. To help students develop the ability to understand cause-and-effect relationships in the development of populations. To teach the students to fully utilize modern and historical medical literature and perform critical analyses of historical information.

IX. Topics of lectures:

1. Ludwik Rydygier – the patron of the Collegium Medicum

2. History of medicine as a science, its scope and scientific tools. Historical sources. Introduction to the history of Polish medicine.

3. Medicine in the first civilizations: Mesopotamia, Egypt, China , India

4. Medicine in ancient Greece – clerics, philosophers, physicians. Hippocrates and his school of thought.

5. Post – Hippocratic medicine. The Alexandrian school.

6. Medicine in ancient Rome. Galen – the great reformer of medicine and pharmacology.

7. Medieval medicine. Arab medicine. Avicenna.

Page 36: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

8. Medicine in medieval Europe. Secular medical schools in Montpellier and Salerno.

9. The beginnings of Polish university medicine. The medical faculty of the Cracow Academy.

10. Major figures in medieval medicine.

11. The Renaissance of medicine.

12. The evolving concepts of health and disease.

13. Historic aspects of public healthcare. The history of hospitals from temple and poorhouse to modern scientific and therapeutic institutions.

14. Paracelsus, Andreas Vesalius, William Harvey – the founding fathers of modern medicine.

15. The separation of surgery from medicine. The development of surgery and medicine until the 18th century.

16. The foundations of modern medicine. The development of preclinical and basic sciences.

17. The development of clinical medicine. Old and new Vienna schools.

18. Therapeutic nihilism and skepticism. The 19th century – the age of pathologists.

19. Surgery in the 19th and early 20th centuries.

20. The history of anesthesia, aseptics and antiseptics.

21. The development of clinical laboratory diagnostics.

22. Medical microbiology. Louis Pasteur, Robert Koch.

23. Polish microbiologists – Odo Bujwid, Rudolf Weigl.

24. Radiology – a new diagnostic and therapeutic tool. The reception of W.K. Roentgen’s discovery in Poland.

25. Maria Curie – Skłodowska.

26. Early medications.

27. Pharmacology and its impact on the development of therapy.

28. Polish medicine of the 19th and 20th centuries.

29. Natural and unconventional treatment methods – history and present day.

X. Self-study topics:

-----------

XI. Booklist:

Basic:

Page 37: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

The Western Medical Tradition: 800 BC to AD 1800;.

Lawrence I. Conrad, Michael Neve, Vivian Nutton, Roy Porter, and Andrew Wear

The Western Medical Tradition: 1800 AD to 2000 AD

W. F. Bynum, Anne Hardy, Stephen Jacyna, Christopher Lawrence, E. M. Tansey

Cambridge University Press 2006

Additional reading:

Cambridge History of Medicine, edited by Roy Porter

Cambridge University Press 1996

XII. Detailed list of required practical skills and confirmation of completing:

Students become acquainted with the evolution of the concept of medicine as a science throughout the ages. Various socio-medical traditions and the evolution of patient – physician interactions are also presented. Milestones in the development of medicine, as well as the major historical figures and concepts are discussed.

Rules and regulations

1.Attendance during lectures is mandatory.

2.The students are kindly requested to switch off mobile phones and other electronic equipment before entering the classroom.

3.Please be punctual – come on time or do not come at all.

4.The lecture presentations will be made available to the students – do remember, however, that they constitute copyrighted material.

Medical statistics

The course is aimed at providing students with knowledge and practical skills concerning basic statistical methods. After the course students should understand an be able to apply such tools as estimating parameters of probability distribution of a stochastic variable: quantiles, expectation value, standard deviation, asymmetry, kurtosis etc. from data for a statistical sample. They should be able as well to estimate degree of correlation between two stochastic variables, to calculate parameters of the linear regression and to test simplest statistical hypotheses.

Teachers:

1. dr hab. Przemysław Staszewski, prof. UMK

2. dr Anita Dąbrowska

Page 38: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Contact: [email protected]

Syllabus

I. Chair of Theoretical Foundations of Biomedical Sciences and Medical Computer Science

II. Head of the unit: dr hab. Przemysław Staszewski, Prof. UMK

III. Faculty of Medicine, Medical Program, 2nd year

IV. Course coordinator: dr hab. Przemysław Staszewski, Prof. UMK

V. Form of classes: lectures, tutorials

VI. Form of crediting/Assessment: Credit with grade, 2 ECTS points

VII. Number of hours: 15 (lectures), 20 (tutorials)

VIII. Aim of the course:

Lectures:

Basic notions of probability theory: random events and their properties, probability and its properties,

combinatorial formulae, conditional probability, independent events, Bernoulli experiment and Bernoulli

scheme.

Random variables: One-dimensional random variables: discrete and continuous. Examples of important

distribution functions of random variables: binomial distribution, Poisson distribution, normal

distribution.

Parameters of distribution functions of random variables: mean (expectation) value, variance, moments

and central moments of order n, median.

Statistical inference for probabilistic experiments of two possible outcomes:

de Moivre-Laplace theorem. A statistical hypothesis, significance level and significance test, statistical

hypothesis testing, test functions. Verifying statistical hypotheses of p=p0 and p≤p0 . The power of a

statistical test. Estimation of the parameter p. A confidence level and confidence interval.

Two-dimensional random variables. Populations and samples of two-dimensional random variables.

Examples of significance tests and their applications: A chi-square test for fit of a distribution, A chi-

square test for independence, Student’s t-test.

Pearson’s linear correlation coefficient.

Computer laboratory classes:

Solving simple problems of probability theory using combinatorics.

Determination and analysis of the distribution parameters of a sample.

Verification of statistical hypotheses given in the lectures.

Page 39: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Determination of the coefficient of linear correlation to verify the dependence of random variables.

IX. Self-study topics:

-----------

X. Booklist:

Medical Statistics at a Glance, Aviva Petrie & Caroline Sabin, Blackwell, 2005.

Essentials of Statistics In Heath Information Technology, Carol E. Osborn, Jones & Bartlett, 2007.

XI. Detailed list of required practical skills and confirmation of completing

List of acquirements: Applcation of Bayes theorem, law of total probability and conditional probability in

solving medical problems; Determining the shape and estimation of the parameters of distribution

function of random variable; Standardizing the random variable and using the tables of distributions of

random variables; Interval estimation of distribution parameters, confidence interval; Putting and

verification of hypotheses, the choice of parametric and nonparametric tests of significance, checking

assumptions of the tests; Application of computer programs to medical statistics calculations.

Teaching method: lecture and computer laboratory classes.

Crediting conditions: classes credit.

Computer science

The course is aimed at providing students with practical skills in using the MS Office suite with particular stress on advanced functions of the MS Word, MS Excel, and MS PowerPoint desktop applications. After the course students should be able to write and format a document with inserted figures or graphs, tables etc.; they should be able to apply MS Excel for elementary data processing, basic statistical and mathematical analysis, plot production etc.; finally, they should be able to prepare MS PowerPoint presentations with imported elements such as figures, plots, formulae etc.

Teachers:

1. mgr Artur Jasionowski

2. dr n. med. Magdalena Wietlicka-Piszcz

Contact: [email protected]

Page 40: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Syllabus

I. Chair of Theoretical Foundations of Biomedical Sciences and Medical Computer Science

II. Head of the unit: Dr hab. Krzysztof Stefański, prof. UMK

III. Faculty of Medicine, Medical Program, II year

IV. Course coordinator: Dr hab. Krzysztof Stefański, prof. UMK

V. Form of classes: tutorials at computer laboratory

VI. Form of crediting: credit with a grade, 3 ECTS points

VII. Number of hours: 45

VIII. Aim of the course:

Instructing students how to apply MS Office and efficiently use Internet.

IX. Topics of tutorials:

Application of word processor MS Word for creating and formatting documents

Formatting symbols and paragraphs. Spell-checking. Formatting documents with styles. Using equation editor. Symbol inserting. Mail merge.

Application of spreadsheet program MS Excel for generating lists of data, data analysis and creating charts Inserting data and formulae into the spreadsheet cells, formatting and addressing, formatting numbers, date and time. Creating data series.

Functions – an overview of elementary functions . Nesting of functions. Logical functions, Date and time functions, searching and addressing functions. Solving tasks using logical functions and date and time functions.

Data visualisation: creating text diagrams, conditional formatting of data. Creating bar charts, line charts , pie charts and formatting their elements.

Array functions and creating their plots. Single-argument functions. Double-argument functions. Creating surface charts.

Datebases with Excel: creating and processing databases. Importing data from Access.

Application of statistical functions with Analysis ToolPak: creating histograms, testing statistical hypotheses, determining linear and nonlinear regressions.

Generating databases with MS Access

Defining tables, data types. Editing table data. Browsing and editing data. Data filtration. Query creating. Sheet creating. Using report kreator.

Page 41: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Introduction to creating web pages with HTML

HTML file structure, references, lists, tables, graphics, etc.

X. Self-study topics: individual work with computer.XI. Booklist:

1. Steve Lambert, M. Dow Lambert III, and Joan Preppernau, Microsoft® Office Access 2007 Step by Step, Microsoft Press 2007

2. Curtis D. Frye, Microsoft® Office Excel 2007 Step by Step, Microsoft Press 2007

3. Joyce Cox and Joan Preppernau, Microsoft® Office Word 2007 Step by Step, Microsoft Press 2007

4. Steven M. Schafer , Html, Xhtml, And Css Bible, John Wiley & Sons 2010.

XII. Detailed list of required practical skills and confirmation of completing:

Full name of the student:

Course, group:

School year:

Practical skill date

of crediting

signature of

the authorized teacher

remarks

Creatin and formatting documents with MS Word:

formattting paragraphs, usage of styles; inserting of

tabe of contents, footnotes, formulae, and symbols;

checking of correctness.

Creating tables of data and their analysis with MS

Excel: dressing cells, formatting numbers, dates and

Page 42: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

text; creating data series, using selected functions.. .

Visualizing data with MS Excel – creating plots,

Using statistical functions: tools of descriptive

statistics, creating histograms, creating pivot tables,

testing statistical hypotheses, application of simple

linear regressions.

Databases in MS Excel: creating simple databases,

adding data, sorting and filtering data, importing

data from other files.

Databases with MS Access: defining tables and

relations between them; editing data, adding and

removing of records, searching and filtering data,

querry creating, using simple criteria. Creating

formularies and reports..

Creating WWW pages with HTML: inserting blocks of

text, lists, tables and graphic elements..

Computer science

The course is aimed at providing students with practical skills in using the MS Office suite with particular stress on advanced functions of the MS Word, MS Excel, and MS PowerPoint desktop applications. After the course students should be able to write and format a document with inserted figures or graphs, tables etc.; they should be able to apply MS Excel for elementary data processing, basic statistical and mathematical analysis, plot production etc.; finally, they should be able to prepare MS PowerPoint presentations with imported elements such as figures, plots, formulae etc.

Teachers:

Page 43: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

3. mgr Artur Jasionowski

4. dr n. med. Magdalena Wietlicka-Piszcz

Contact: [email protected]

Syllabus

XII. Chair of Theoretical Foundations of Biomedical Sciences and Medical Computer Science

XIII. Head of the unit: Dr hab. Krzysztof Stefański, prof. UMK

XIV. Faculty of Medicine, Medical Program, II year

XV. Course coordinator: Dr hab. Krzysztof Stefański, prof. UMK

XVI. Form of classes: tutorials at computer laboratory

XVII. Form of crediting: credit with a grade, 3 ECTS points

XVIII. Number of hours: 45

XIX. Aim of the course:

Instructing students how to apply MS Office and efficiently use Internet.

XX. Topics of tutorials:

Application of word processor MS Word for creating and formatting documents

Formatting symbols and paragraphs. Spell-checking. Formatting documents with styles. Using equation editor. Symbol inserting. Mail merge.

Application of spreadsheet program MS Excel for generating lists of data, data analysis and creating charts Inserting data and formulae into the spreadsheet cells, formatting and addressing, formatting numbers, date and time. Creating data series.

Functions – an overview of elementary functions . Nesting of functions. Logical functions, Date and time functions, searching and addressing functions. Solving tasks using logical functions and date and time functions.

Data visualisation: creating text diagrams, conditional formatting of data. Creating bar charts, line charts , pie charts and formatting their elements.

Array functions and creating their plots. Single-argument functions. Double-argument functions. Creating surface charts.

Datebases with Excel: creating and processing databases. Importing data from Access.

Application of statistical functions with Analysis ToolPak: creating histograms, testing statistical hypotheses, determining linear and nonlinear regressions.

Page 44: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Generating databases with MS Access

Defining tables, data types. Editing table data. Browsing and editing data. Data filtration. Query creating. Sheet creating. Using report kreator.

Introduction to creating web pages with HTML

HTML file structure, references, lists, tables, graphics, etc.

XXI. Self-study topics: individual work with computer.XXII. Booklist: 1. Steve Lambert, M. Dow Lambert III, and Joan Preppernau, Microsoft® Office Access 2007 Step by Step, Microsoft Press 2007

2. Curtis D. Frye, Microsoft® Office Excel 2007 Step by Step, Microsoft Press 2007

3. Joyce Cox and Joan Preppernau, Microsoft® Office Word 2007 Step by Step, Microsoft Press 2007

4. Steven M. Schafer , Html, Xhtml, And Css Bible, John Wiley & Sons 2010.

XII. Detailed list of required practical skills and confirmation of completing:

Full name of the student:

Course, group:

School year:

Practical skill date

of crediting

signature of

the authorized teacher

remarks

Creatin and formatting documents with MS Word:

formattting paragraphs, usage of styles; inserting of

tabe of contents, footnotes, formulae, and symbols;

Page 45: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

checking of correctness.

Creating tables of data and their analysis with MS

Excel: dressing cells, formatting numbers, dates and

text; creating data series, using selected functions.. .

Visualizing data with MS Excel – creating plots,

Using statistical functions: tools of descriptive

statistics, creating histograms, creating pivot tables,

testing statistical hypotheses, application of simple

linear regressions.

Databases in MS Excel: creating simple databases,

adding data, sorting and filtering data, importing

data from other files.

Databases with MS Access: defining tables and

relations between them; editing data, adding and

removing of records, searching and filtering data,

querry creating, using simple criteria. Creating

formularies and reports..

Creating WWW pages with HTML: inserting blocks of

text, lists, tables and graphic elements..

Clinical immunology

The course includes laboratory exercises focused on the presentation and individual preparation of the selected immunological techniques most commonly used for the evaluation of phenotypical and functional characteristics of innate and adaptive immune systems. The main topics will include: peripheral blood lymphocyte isolation and cultures, flow cytometry and FACS analysis, monocyte and lymphocyte subsets isolation using antibody-coated magnetic beads, identification of functional subsets of T cells by staining for cytokines, stimulation of lymphocyte proliferation by treatment with polyclonal mitogens or specific bacterial antigen, measurements of apoptosis, ELISA tests for cytokines identification, phagocytosis evaluation techniques.

Page 46: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Teachers:

dr Lidia Gackowska

dr Anna Helmin-Basa

dr Andrzej Eljaszkiewicz

mgr Izabela Kubiszewska

mgr Milena Januszewska

Contact: [email protected], [email protected]

Syllabus

I. Name of the unit offering the course: Clinical Immunology

II. Head of the unit: dr hab. Jacek Michałkiewicz Prof. UKM

III. Faculty of Medicine, Medical Program, 2nd year

IV. Course coordinator: dr hab. Jacek Michałkiewicz Prof. UKM

V. Form of classes: lectures, tutorials

VI. Form of crediting: Credit with grade, 5 ECTS points

VII. Number of hours: 30 (lectures), 30 (tutorials)

VIII. Aim of the course:

The immunology course for the group of the foreign medical students studying at Faculty of Medicine second year will involve the basic subjects concerning the structures and functions of the immune system and their significance in health and disease.

The course includes laboratory exercises (starting Feb, 16th 2011) focused on the presentation and individual preparation of the selected immunological techniques most commonly used for the evaluation of phenotypical and functional characteristics of innate and adaptive immune systems. The main topics will include: peripheral blood lymphocyte isolation and cultures, flow cytometry and FACS analysis, monocyte and lymphocyte subsets isolation using antibody-coated magnetic beads, identification of functional subsets of T cells by staining for cytokines, stimulation of lymphocyte

Page 47: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

proliferation by treatment with polyclonal mitogens or specific bacterial antigen, measurements of apoptosis, ELISA tests for cytokines identification, phagocytosis evaluation techniques.

The second part of the course will include lectures on clinical immunology (starting next year). The main topics will involve the introduction to immunology, basic features of innate and adaptive immune systems, the immune system failures in the course of infection, allergy, hypersensitivity, autoimmunity and transplantation.

IX. Topics of lectures / tutorials:

The main topics concerning innate immunity – the introduction to the laboratory exercises:

General mechanisms of innate immune system action

Phagocytosis-types of cells involved, effector mechanisms, regulations

Pathogen recognition receptors (Toll and NOD systems)

Complement system main characteristics

Leucocyte rolling, adhesion, leucocyte extravasation

The main topics concerning adaptive immunity- the introduction to the laboratory exercises:

Lymphocyte receptors generation

Mechanisms of antigen recognition by lymphocytes

Antigen presenting cells (professional and non-professional)

Co-stimulation as a second and third signal of T cells induction

Exercise 1. 15-16.02.2011

Topic: Innate immunity – the introduction to the laboratory exercises:

dr hab. Jacek Michałkiewicz, Prof. UMK

Exercise 2. 22-23.02.2011

Topic: Cells of the Immune System and Antigen Recognition

Izabela Kubiszewska, MSc

Exercise 3. 01-02.03.2011

Topic: Mechanisms of cytotoxicity

Milena Urbańska, MSc

Exercise 4. 08-09.03.2011

Topic: Components of the innate immune system – the evaluation of the function of phagocytic cells.

Page 48: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

Izabela Kubiszewska, MSc

Exercise 5. 15-16.03.2011

Topic: Adaptive immunity –the introduction to the laboratory exercises:

dr hab. Jacek Michałkiewicz, Prof. UMK

Exercise 6.22-23.03.2011

Topic: Flow cytometric measurement of intracellular proteins

Andrzej Eljaszewicz, MSc

Exercise 7.29-30.03.2011

Topic: Cell isolation and culture procedures in immunology.

Izabela Kubiszewska, MSc

X. Self-study topics:

-----------

XI. Booklist:

Basic literature

1. Kenneth M. Murphy, Paul Travers, Mark Walpor

2. Janeway’s Immunobiology, Garland Science available online at:

3. http://www.ncbi.nlm.nih.gov/books/NBK10757/ (free)

4. http://www.ncbi.nlm.nih.gov/sites/entrez?db=books (free)

5. David Male, Ivan Roitt, Johathan Brostoff Immunology, Mosby.

6. Abbas, Lichtman: Basic Immunology, Sauders.

7. Helen Chapel, Mansel Haeney, Siraj Misbah, Neil Snowden Essentials of Clinical Immunology, Blackwell.

8. W. Luttmann, K. Bratke, M. Kupper, D. Myrtek Immunology Elsevier Science & Technology

Additional literature:

1. Manjula Reddy, et al; “Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell culture: an in vitro model to monitor cellular immune function” Journal of Immunological Methods 2004. 293:127-142

2. Marzio R. et al.; „CD69 and regulation of the immune function“; Immunopharmacology and immunotoxicology 1999. 21:565-582

Page 49: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions

3. Claman Prussin, Dean D. Metcalfe; “Detection in intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies”; Journal of Immunological Methods 1995. 188:117-128

4. Sewell W.A., et al.;”Determination of intracellular cytokines by flow-cytometry following whole-blood culture”; Journal of Immunological Methods 1997. 209:67-74

5. Beate Mascher; et al.; “Expression and kinetic of cytokines determinated by intracellular staining using flow cytometry”; Journal of Immunological Methods 1999. 223:115-121

6. V Hemalatha, P Srikanth, M Mallika; SUPERANTIGENS – CONCEPTS, CLINICAL DISEASE AND THERAPY; Indian Journal of Medical; (2004) 22 (4):204-211;

7. Ulrich Sack, Atilla Tarnock, Gregor Rothe

8. Cellular Diagnostic - basic principles, methods and applications of flow cytometry, ifcc.

Rules and regulations

1. The clinical immunology course includes lectures (30hours) and tutorials (30 hours)

2. Attendance is obligatory at each lecture and tutorial.

3. Each change between the groups must be approved by the teacher.

4. Students are expected to be punctual.

5. In case of absence students must present a sick leave.

6. Students should have the basic knowledge of the tutorial topics as well as have to actively participate in the classes in order to accomplish the course.

7. Each tutorial includes a 10-point quiz, which is a form of evaluation of students’ knowledge,

8. Students who did not take the test because of the absence need to pass it individually no later than two weeks after return from the sick leave.

9. To pass tutorials students need to collect 60% of total points

10. Students who receive less that 60% must take a test from knowledge presented in all tutorials.

11. The clinical immunology course ends with a credit-grade assigned for lectures and 60% of tutorials.

Page 50: · Web viewSaturated and unsaturated fatty acids, their nomenclature and structure. Acylglycerols, phosphoacylglycerols, sphingolipids, steroids, eicosanoids. Structure and functions