Top Banner
Glob Change Biol. 2019;1–15. wileyonlinelibrary.com/journal/gcb | 1 © 2019 John Wiley & Sons Ltd Received: 17 October 2018 | Revised: 21 March 2019 | Accepted: 25 March 2019 DOI: 10.1111/gcb.14632 PRIMARY RESEARCH ARTICLE Dissecting the nonlinear response of maize yield to high temperature stress with model‐data integration Peng Zhu 1,2 | Qianlai Zhuang 1,3 | Sotirios V. Archontoulis 4 | Carl Bernacchi 5,6 | Christoph Müller 7 Abbreviations: AGB, aboveground biomass; An, anthesis; BGR, daily biomass growth rate, AGB divided by growing season length; ET, evapotranspiration; GDD, growing degree days; GFP, grain filling period; GSL, growing season length; HDD, high temperature degree days; HDD VP , HDD An and HDD GFP , HDD during vegetative period, anthesis and GFP; HI, harvest index, yield/AGB; IWDRVI, integrated wide dynamic range vegetation index; MEM, model ensemble mean; PET, potential evapotranspiration; S Yield T , S BGR T , S GSL T and S HI T , temperature sensitivity of yield, BGR, GSL and HI; VP, vegetative period; WDRVI, wide dynamic range vegetation index; WS, water stress. 1 Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 2 School of Global Policy and Strategy, University of California San Diego, La Jolla, California 3 Department of Agronomy, Purdue University, West Lafayette, Indiana 4 Department of Agronomy, Iowa State University, Ames, Iowa 5 Department of Plant Biology, University of Illinois at Urbana‐Champaign, Urbana, Illinois 6 Global Change and Photosynthesis Research Unit, USDA‐ARS, Urbana, Illinois 7 Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany Correspondence Qianlai Zhuang, Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN. Email: [email protected] Funding information National Science Foundation, Grant/Award Number: IIS ‐ 1027955; NASA, Grant/Award Number: NNX09AI26G Abstract Evidence suggests that global maize yield declines with a warming climate, particu‐ larly with extreme heat events. However, the degree to which important maize pro‐ cesses such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is neces‐ sary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensem‐ ble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensi‐ fied sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (−4.6 ± 1.0%/°C) than by WS (−1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO 2 might be overestimated in crop models, because elevated CO 2 brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricul‐ tural management need to be better accounted for to adequately estimate the ef‐ fects of heat stress. KEYWORDS crop model, crop phenological stages, harvest index, high temperature stress, satellite observations, water stress
15

Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

Jul 13, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

Glob Change Biol. 2019;1–15. wileyonlinelibrary.com/journal/gcb  | 1© 2019 John Wiley & Sons Ltd

Received:17October2018  |  Revised:21March2019  |  Accepted:25March2019DOI: 10.1111/gcb.14632

P R I M A R Y R E S E A R C H A R T I C L E

Dissecting the nonlinear response of maize yield to high temperature stress with model‐data integration

Peng Zhu1,2  | Qianlai Zhuang1,3 | Sotirios V. Archontoulis4 | Carl Bernacchi5,6 | Christoph Müller7

Abbreviations:AGB,abovegroundbiomass;An,anthesis;BGR,dailybiomassgrowthrate,AGBdividedbygrowingseasonlength;ET,evapotranspiration;GDD,growingdegreedays;GFP,grainfillingperiod;GSL,growingseasonlength;HDD,hightemperaturedegreedays;HDDVP,HDDAn and HDDGFP,HDDduringvegetativeperiod,anthesisandGFP;HI,harvestindex,yield/AGB;IWDRVI,integratedwidedynamicrangevegetationindex;MEM,modelensemblemean;PET,potentialevapotranspiration;SYield

T, SBGR

T, SGSL

Tand SHI

T,temperature

sensitivityofyield,BGR,GSLandHI;VP,vegetativeperiod;WDRVI,widedynamicrangevegetationindex;WS,waterstress.

1DepartmentofEarth,Atmospheric,andPlanetarySciences,PurdueUniversity,WestLafayette,Indiana2SchoolofGlobalPolicyandStrategy,UniversityofCaliforniaSanDiego,LaJolla,California3DepartmentofAgronomy,PurdueUniversity,WestLafayette,Indiana4DepartmentofAgronomy,IowaStateUniversity,Ames,Iowa5DepartmentofPlantBiology,UniversityofIllinoisatUrbana‐Champaign,Urbana,Illinois6GlobalChangeandPhotosynthesisResearchUnit,USDA‐ARS,Urbana,Illinois7PotsdamInstituteforClimateImpactResearch(PIK),Potsdam,Germany

CorrespondenceQianlaiZhuang,DepartmentofEarth,Atmospheric,andPlanetarySciences,PurdueUniversity,WestLafayette,IN.Email:[email protected]

Funding informationNationalScienceFoundation,Grant/AwardNumber:IIS‐1027955;NASA,Grant/AwardNumber:NNX09AI26G

AbstractEvidencesuggeststhatglobalmaizeyielddeclineswithawarmingclimate,particu‐larlywithextremeheatevents.However,thedegreetowhichimportantmaizepro‐cessessuchasbiomassgrowthrate,growingseasonlength(GSL)andgrainformationareimpactedbyanincreaseintemperatureisuncertain.Suchknowledgeisneces‐sary to understand yield responses anddevelop crop adaptation strategies underwarmerclimate.Herecropmodels,satelliteobservations,survey,andfielddatawereintegratedtoinvestigatehowhightemperaturestressinfluencesmaizeyieldintheU.S.Midwest.Weshowedthatbothobservationalevidenceandcropmodelensem‐blemean(MEM)suggeststhenonlinearsensitivityinyieldwasdrivenbytheintensi‐fiedsensitivityofharvestindex(HI),butMEMunderestimatedthewarmingeffectsthroughHIandoverstatedtheeffectsthroughGSL.FurtheranalysisshowedthattheintensifiedsensitivityinHImainlyresultsfromagreatersensitivityofyieldtohightemperaturestressduringthegrainfillingperiod,whichexplainedmorethanhalfoftheyieldreduction.Whenwarmingeffectsweredecomposedintodirectheatstressandindirectwaterstress(WS),observationaldatasuggestthatyieldismorereducedbydirectheatstress(−4.6±1.0%/°C)thanbyWS(−1.7±0.65%/°C),whereasMEMgivesoppositeresults.Thisdiscrepancyimpliesthatyieldreductionbyheatstressisunderestimated,whereastheyieldbenefitofincreasingatmosphericCO2 mightbeoverestimated in cropmodels, becauseelevatedCO2 bringsyieldbenefit throughwaterconservationeffectbutproduceslimitedbenefitoverheatstress.Ouranalysisthroughintegratingdataandcropmodelssuggeststhatfutureadaptationstrategiesshouldbetargetedattheheatstressduringgrainformationandchangesinagricul‐turalmanagementneedtobebetteraccountedfortoadequatelyestimatetheef‐fectsofheatstress.

K E Y W O R D S

cropmodel,cropphenologicalstages,harvestindex,hightemperaturestress,satelliteobservations,waterstress

Page 2: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

2  |     ZHU et al.

1  | INTRODUC TION

Astheworld'slargestproducerofmaize,theUnitedStateshasseenasteadyincreaseinmaizeyieldsincetheGreenRevolution(Assefaetal.,2017),whileincreasesinconcurrentheatanddroughtacrosstheUnitedStatessincethe1950shaveposedasignificantriskformaizeproduction(MazdiyasniandAghaKouchak,2015;Schaubergeretal.,2017)andresultedinstagnatedcropproductioninmanyproducingareas(Olesenetal.,2011).Futurewarmingmightmoreseverelyde‐creasecropyieldwithfrequentextremeheatevents(Rahmstorf,&Coumou,2011;Schlenker&Roberts,2009),whichcausesoxidativedamagetochloroplasts(Crafts‐Brandner&Salvucci2002;Siebers,Yendrek,&Drag,2015),destroysreproductivestructures(Commuri&Jones,2001),andacceleratescropsenescence (Lobell,Sibley,&Ivan Ortiz‐Monasterio, 2012; Ruiz‐Vera, Siebers, Jaiswal, Ort, &Bernacchi,2018).Withwarmerclimates,currentagriculturalsystemmodelsneedtobeupgradedtobetterrepresentcropresponsestotemperature‐relatedclimateextremesand thus copewith theup‐comingchallengesofincreasingfooddemands.

In recent decades, multiple approaches have been adoptedtomaintainyield increases through improvedmanagementprac‐ticesandbreedingtechnology,likeimprovedherbicideandweedmanagement techniques, higher planting density, and new culti‐varswithlongergrainfillingperiod(GFP)(Assefaetal.,2016;Tao,Yokozawa,Xu,Hayashi,&Zhang,2006;Tollenaar&Wu,1999;Zhuetal.,2018).However,theactualeffectsoftheseintensifiedman‐agementpracticesmightbecounterproductiveduetothediverseenvironmentalconditionsandtheirinteractionwithmanagementpractices(Lobelletal.,2014).Therefore,itisnecessarytobetterunderstandtheresponseofcropyieldtoclimaticvariationinfieldconditions.

Theobservedvariationinmaizeyieldistheproductofmanyin‐teractiveprocesses thatmakeamechanisticunderstandingof thedriversofthisvariationdifficult.Throughoutthelifecycleofmaizeplants,yieldisdrivenbybiomassaccumulationandpartitioningbe‐tween organs (Lizaso et al., 2018). Biomass accumulation can beexpressedasgrowingseason length (GSL)×averagedailybiomassgrowth rate (BGR). The partitioning of biomass to grains is oftenquantified using harvest index (HI=yield/above‐ground biomassaccumulation).Thus,finalyieldistheproductofBGR,GSLandHI.WarminginfluenceonmaizeyieldcanbetherebydissectedastheinfluenceonGSL,BGRandHI.Warmer temperatureoftenmeansashorterGSLwithaccelerateddevelopmentrate(Cheikh&Jones,1994).However, the influenceofwarmingonBGRandHI ismorecomplexthanGSL.Thedirectionandmagnitudeofinfluencedependonwhetherthethresholdtemperaturehasbeenexceeded,whilethethresholdtemperatureseemstobevariableamongdifferentvariet‐iesandphenologicalstages(Rezaei,Webber,Gaiser,Naab,&Ewert,2015;Sánchez,Rasmussen,&Porter,2014).

As aC4 plant,maize often has a higher optimal temperaturefor photosynthesis than C3 plants, thus warmer leaf tempera‐tures in early vegetative growth can potentially lead to either

no impacts or a positive impact onmaize photosynthetic activ‐ity (Crafts‐Brandner & Salvucci, 2002; Parent & Tardieu, 2012).However,maizeyieldbecomesincreasinglysensitivetohightem‐peratureduringreproductivedevelopment(Cheikh&Jones,1994;Siebersetal.,2017).Thus,thesamelevelofwarmingtreatmentindifferent stagesmight result indifferentor evenopposite influ‐enceonmaizeyield(Siebersetal.,2017).Inparticular,identifyingcroppingsystemvulnerabilitiesanddevisingtargetedadaptationstrategiestodealwithfuturewarmingshouldbeonthepremiseofaclearunderstandingofhowcropyieldsrespondtowarmingduringdifferentdevelopmentstages.Duetolimitedknowledgeofcropstages(Butler&Huybers,2015),analysesonthesensitivityofcropyieldstotemperaturetypicallyignorethattheresponsetotemperatureisstagedependent(Cheikh&Jones,1994;Siebersetal.,2017).Thismightleadtoconsiderableuncertaintywhenpro‐jectingcropyieldunderfuturewarmerclimate.

Field warming experiments have been devised to explorethe effects of warming in different growth stages on crop yield(Hatfield & Prueger, 2015; Ruiz‐Vera et al., 2018; Siebers et al.,2017).Ithasbeensuggestedthatmaizegrainyieldissignificantlyreduced under heat stress through pollen viability that in turndetermines kernel number and HI, which explained most of thevariation inmaize yield (Edreira&Otegui, 2012, 2013; Lizaso etal.,2018). In termsof the timingofheating treatment, itappearsthatkernelnumberperplantwasmorereducedbyheatingduringsilkingthanbeforeanthesis(Edreira&Otegui,2012).Influenceofheatingonphenological development is alsoevident.Grain yieldwassignificantlyreducedduetoshorteningofGFPwhentempera‐tures were increased from 25°C to 31°C, despite the enhancedgrain filling rate (Dias& Lidon, 2009).Heating during pre‐silkingcausedalargerdelayinsilkingdatethaninanthesisdate,leadingtoalengthenedanthesis‐silkinginterval(Cicchino,RattalinoEdreira,Uribelarrea,&Otegui,2010),whichisagoodindicatorofthefinalmaizeyield (Bolanos&Edmeades,1996).However, theseexperi‐mentsareoftenlimitedtosmallscalesandcouldnotrepresentthecomplexanddiversecropsystems,makingtheconclusionhardtobeextrapolatedtootherregions.

Cropmodelshaveshownthepotential tosimulateandrepro‐ducethelarge‐scalespatiotemporalvariabilityofcropyield(Elliottetal.,2015;Mülleretal.,2017).Generally,cropmodelsrepresentourunderstandingofresponseofcropplantstoclimaticvariation,soil nutrient status, hydrological conditions, andagronomicman‐agementpractices.Theyarenormallyabletoadequatelysimulateaverageconditionsbutfailtohandleclimateextremes(Eitzingeretal.,2013;Lobelletal.,2012;Sánchezetal.,2014).Suchlimitationiscriticaltoevaluatecropresponseunderongoingclimaticchange,whichisexpectedtobringmoreextremeweatherfortheagricul‐tural sector across theworld. In addition, somebasic knowledgemighthavenotbeenupdatedfordecades.Forexample,thedefaultparametersrelatedtothephysiologicalpropertyofcropvarietiesmightbeunabletoreflecttherecentprogressincultivarsthroughbreedingtechniques.Thus,itmightbringsubstantialuncertainties

Page 3: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

     |  3ZHU et al.

whenusing thesemodels to reproducehistoric or project futurecropyield.Recently,anensembleofmulti‐modeloutputhasbeenwidelyusedasan improvedwayofevaluatingandprojectingcli‐matechangeandmanagementeffectsoncropproductionwithre‐duceduncertainty (Assenget al., 2014;Rötter,Carter,Olesen,&Porter,2011).

Newtechniquesemployingsatellitedatahavebeenincreasinglyused in theagricultural sector tomapcrop types,delineate irriga‐tion/non‐irrigation boundary, derive crop phenology information,and project field crop yield (Azzari, Jain, & Lobell, 2017; Deines,Kendall,&Hyndman,2017;Guanetal.,2017;Lobell,Thau,Seifert,Engle,&Little,2015;Zhuetal.,2018).Suchobservationalinforma‐tioncouldbeimportantinputdatatodrivecropmodelsorcalibratemodelparameters.Thederivedcropphenologyinformationislikelytoprovideobservationalevidencetocharacterizetheregional‐scalespatiotemporalpatternsoffieldcropgrowthstatus(Zhuetal.,2018)andthusassist theunderstandingof responseofcropyield tocli‐maticvariationduringdifferentgrowthstages.

Here we integrated satellite‐derived crop stage information,regionalcropmodeloutput,surveyedyielddatafromtheUnitedStates Department of Agriculture (USDA) and site‐level experi‐mentdatatodissecthowhightemperaturesinfluencemaizeyieldthrough different physiological processes. Surveyed yield data,togetherwithsatellite‐basedcropstageinformationandmodeledmaize aboveground biomass (AGB) calibrated against site‐mea‐suredAGB,enabledus to retrievecounty‐levelGSL,BGR (AGB/GSL) andHI (Yield/AGB). Thiswas used to decompose the tem‐perature sensitivity of yield (SYield

T) into the temperature sensitiv‐

ities ofBGR (SBGRT),GSL (SGSL

T), andHI (SHI

T),whichwere estimated

withapanelmodel(Schaubergeretal.,2017;Schlenker&Roberts,2009;Tack,Barkley,&Nalley,2015).Eachcomponentcharacter‐izesthetemperatureresponseofnetassimilationratedeterminedby photosynthesis and respiration (SBGR

T), plant development rate

(SGSLT),andreproductivegrowthdeterminedbygrainsizeandgrain

weight (SHIT), respectively. In addition,SYield

T, SBGR

T, SGSL

T, and SHI

T based

onmultiplecropmodeloutputswerealsoanalyzedtocomplementthe survey and satellite data. The relative contribution of directheatstressandindirectwaterstress (WS)toyieldreductionwasfurtherestimatedusingstatisticalmodelandcropmodel simula‐tionto investigatetheunderlyingdriverofmaizeyieldreductionwithclimaticwarming.Inthisstudy,wefocusedonthreeMidweststatesdominatedbyrainfedmaize—Indiana,Illinois,andIowa—thataccount forapproximately40%ofU.S.maizeproduction (USDA,2015). Thus, the conclusions drawn from this study are likely toprovideinsightforunderstandingthetemperatureresponseofthewholeU.S.rainfedmaizeproduction.

2  | MATERIAL S AND METHODS

2.1 | Satellite data derived crop stage information

In this study,8‐day timeseriesof250mdaily surface reflectanceMODISdatasetsonboardEarthObservingSystem(EOS)Terraand

Aqua satellite platforms:MOD09Q1 (2000–2015) andMYD09Q1(2002–2015)Collection6,wereused.Hereascaledwidedynamicrangevegetation index (WDRVI)wasusedtomonitorthegrowingstatusofmaizeplants(Gitelson,2004),becauseWDRVIhasahighersensitivitytochangesatmoderatetohighbiomassthanthenormal‐izeddifferencevegetationindex(NDVI).ThescaledWDRVIiscalcu‐latedwiththefollowingequation:

whereρred and ρNIRaretheMODISsurfacereflectanceintheredandNIRbands,respectively.Thescalingfactorαisintroducedtodegradethe fractionof theNIRreflectanceatmoderate‐to‐highgreenvegetation(Guindin‐Garcia,Gitelson,Arkebauer,Shanahan,&Weiss, 2012). Hereα was set as 0.1 as a comparison ofmul‐tiplevegetation indexes indicatesWDRVIwithα=0.1showedastrong linear correlationwith corn green LAI (Guindin‐Garcia etal., 2012). BeforeWDRVI calculation, the reflectancedatawerequality‐filteredusingthequalitycontrolflags.Onlythedatapass‐ingthehighestqualitycontroltestareretained.Ahybridmethodcombiningshapemodelfitting(SMF)andthreshold‐basedanalysiswasimplementedtoderivemaizephenologyusingMODISWDRVIdata at 250×250m spatial resolution from 2000 to 2015 (Zhuet al., 2018). Shape model was obtained by averaging multipleyearsWDRVIobservationstocharacterizetheclimatologyofcorngrowthcycle (Zhuetal.,2018).Theshapemodelwas thengeo‐metricallyscaledtofiteachWDRVItimeseries,sothepredefinedphenologicaldatesontheshapemodelcanbescaledlikewisetoestimatephenologicaldatesforeachpixel.Wehavederivedfourkeymaizegrowthstagesofemergence(lateMay),silking(MiddleJuly),dent(lateAugust),andmaturity(lateSeptember)acrossthefour states: Indiana, Illinois, Iowa, andNebraska. Verification atthe state level showed a good agreement betweenMODIS‐de‐rived maize phenology and the National Agricultural StatisticsService (NASS)–reported statemean phenological dates (Zhu etal., 2018). In this study,we focusedon the three rainfed states:Iowa,Illinois,andIndiana.

2.2 | Derivation of county‐level maize yield, AGB, GSL, and HI

Theobservedvariationinmaizeyieldistheendresultofintegra‐tionofmanyprocesseswithdifferentsensitivitiestohightemper‐aturestress.Tothisend,wedecomposethetotalyieldvariationintothreecomponents:BGR,GSL,andHI.County‐levelcorngrainyielddatasetfrom2000to2015coveringthethreestates(Illinois,Indiana, Iowa)was retrieved from theQuick Stats 2.0 database.The unit system formaize yield is bushel per acre (bu/ac). Thisdatasetwasusedtogetherwithremotesensingmodeledcounty‐levelAGBtoestimateHI (Yield/AGB).HIgenerallycharacterizesdrymatterpartitioningbetweensourceorganandsinkorganand

(1)NDVI=(�NIR−�red

)/(�NIR+�red

)

(2)WDRVI=100×

[(�−1

)+

(�+1

)×NDVI

][(�+1

)+

(�−1

)×NDVI

]

Page 4: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

4  |     ZHU et al.

is mainly related to processes determining grain size and grainweight.

Thirty‐two site‐year maize AGB data measured at the end ofgrowing season across theU.S.Midwestwere collected (details ongeolocationandyearinformationcanbefoundinTableS1).Thisfieldexperimentmeasurementwasusedtoconstructa regressionmodelbetweenWDRVI andAGB. To this end,WDRVI in 3×3 pixelwin‐dowscenteredonthesitemeasuredAGBwasobtainedandaqualitycontrolprocedurewasappliedtotheWDRVItimeseriestoremovelow‐quality, cloud/aerosol‐contaminated observations. Pearson cor‐relationwasthenestimatedbetweentheWDRVItimeseriescenteredonthesiteandthesurroundingeightpixels.ThreeWDRVItimese‐riesscoringthehighestcorrelationandthecenteronewereaveragedforconstructingtheregressionmodel.Previousstudieshaveshowedtheintegratedenhancedvegetationindex(EVI)overthegrowingsea‐sonisagoodproxyofvegetationAGB(Ponce‐Camposetal.,2013).Similarly,we integratedWDRVI (IWDRVI)by summingWDRVIoverthegrowingseason,whichwasbasedonthepreviousstudy‐retrievedphenologydates(Zhuetal.,2018).Alinearregressionmodelwascon‐structedbetweeninsitumeasuredAGBandprocessedIWDRVIwiththeabovemethod.ThemodelshowsIWDRVIhasagoodexplainingpower(R2=0.75,p<0.0001)withtheequation:AGB=(16.4 ± 2.5)∗

IWDRVI(0.8±0.08)(±SE)(Figure1).WealsoappliedthesameproceduretoNDVIandenhancedvegetationindex2(EVI2),whicharealsocom‐monlyusedvegetationindexesfortemporalmonitoringofvegetationgreennessandproductivity,buttheR2ofNDVI(R2=0.68)andEVI2(R2=0.64)islowerthantheoneusingWDRVIasthepredictor.Withthis regressionmodel,AGBwasspatiallyestimatedwithsatellite‐re‐trievedIWDRVI.Finally,the16yearsofsatellitedataderivedGSLandAGBwereintegratedtocountyleveltoestimateHI(Yield/AGB)anddailyBGR(AGB/GSL)foreachcounty.

2.3 | Statistical analysis of temperature sensitivity across different growth stages

Temperaturesensitivityofmaizeyield(SYieldT

)wasestimatedusingapanel datamodel (Equation3)with growing seasonmean surfaceair temperature (Tsa) and precipitation (Prcp) as the explanatoryvariables:

�1tcapturestheyieldincreasingtrendinrecentyears.Countyi cor‐respondstofixedeffectsofcountyiandaccountsfortime‐invariantcountydifferences, like the soilquality. t stands foreachyear.εi,t standsfortheerrortermforcountyiatyeart.�2 or � ln (Yield)

�Tsadefines

thetemperaturesensitivityofyield.ThetemperaturesensitivityofBGR(SBGR

T),HI(SHI

T),andGSL(SGSL

T)canbeestimatedwithEquation(3)

inasimilarway.Here,thedependentvariableYield(BGR,GSLandHI)waslogged,sotheestimatedtemperaturesensitivityrepresentsthepercentagechangeinYield(BGR,GSLandHI)with1°Ctempera‐tureincrease.

TheclimatedatausedherewereobtainedfromtheUniversityofIdahoGriddedSurfaceMeteorologicalData(http://metdata.north‐westknowledge.net/)withaspatialresolutionof4km(Abatzoglou,2013). It is a gridded product covering continental United Statesfrom1979to2016.Thisdatasetiscreatedbycombiningtheattri‐butesoftwodatasets:temporallyrichdatafromtheNorthAmericanLandDataAssimilationSystemPhase2(Mitchell,2004)andspatiallyrichdatafromtheParameter‐elevationRegressionsonIndependentSlopesModel(PRISM)(Dalyetal.,2008).AftervalidationusinganextensivenetworkofweatherstationsacrosstheUnitedStates,thisdataset proved to be suitable for application in a landscape‐scaleecologicalmodel.ThengrowingseasonmeanTsaandPrcpwerees‐timatedby integratingdaily climatevariable according toMODIS‐derivedgrowingseasonstartingandendingdate.

AsYield=HI ⋅BGR ⋅GSL,SYieldTcanbewrittenasfollows:

Theseequationsindicatethatthepercentagechangeinyieldwith1°CwarmingcanbedissectedintopercentagechangesinBGR,GSL,andHI,whichcorrespondstophysiologicalprocessesofcarbonassim‐ilationratethroughphotosynthesis,cropdevelopmentrate,andmaizereproductive growth determining biomass partitioning, respectively.We furtherdivided thedatasetofyield,BGR,GSL,andHI into fivegroupsaccordingtothequintileofmeangrowingseasontemperature.Thisseparationhelpsustounderstandhowmaizephysiologicalpro‐cessesrespondtowarmingastemperatureincreases.

Althoughthecoefficientinalinearmodeliseasytointerpret,theactualresponseofcropyieldandassociatedphysiologicalprocesses

(3)log(Yieldi,t

)= �1t+�2Tsai,t+�3Prcpi,t+Countyi+�i,t

(4)� ln (Yield)

�Tsa=� ln (HI)

�Tsa+� ln (BGR)

�Tsa+� ln (GSL)

�Tsa

(5)�Yield

Yield ⋅�Tsa=

�HI

HI ⋅�Tsa+

�BGR

BGR ⋅�Tsa+

�GSL

GSL ⋅�Tsa

F I G U R E 1   Theregressionmodelusedtorelatetheintegratedwidedynamicrangevegetationindex(IWDRVI)withabovegroundbiomass(AGB).Eachpointcorrespondstoasite‐measuredAGBandMODIS‐derivedIWDRVI.Theshadedareaindicatesthe95%confidenceinterval

8.6 8.8 9 9.2

Log(IWDRVI)

9.6

9.8

10

10.2

Log(

AG

B)

AGB = 16.4IWDRVI0.8

R = 0.752

Page 5: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

     |  5ZHU et al.

toclimatevariablesismorelikelytobenonlinear(Rezaeietal.,2015;Schlenker&Roberts,2009).Therefore,analternativemodel(6)wasusedbyaddingaquadraticfunctionofTsaandPrcptocapturethenonlinearclimaticresponseofyieldformation:

ThesensitivityofHI,GSL,andBGRcanbemodeledsimilarlybyreplacingYieldwiththecorrespondingvariables.

The total temperaturesensitivityofyieldestimatedabovecanbe regarded as the integrated effects of high temperature stressandthermaltimeaccumulationduringdifferentphenologicalstages.Followingpreviousstudies(Schlenker&Roberts,2009;Tacketal.,2015),yieldsensitivitywasexpressedas:

Herehigh temperature stress isquantifiedwithhigh tempera‐turedegreedays (HDD),whichcharacterizesthehigher‐than‐opti‐malthermaltimeaccumulation.Growingdegreedays(GDD)drivescropdevelopmentandcharacterizesthethermaltimeaccumulationintheabsenceofextremeconditions.sstandsforthethreegrowthstagesVP,An,andGFP.BasedonEquation(7),warmingeffectsonyieldthroughHDDinGFPcanbeestimatedas �Yield

�HDDGFP

�HDDGFP

�Tsa.

When daily maximum temperatures exceed 30 degree, maizekernelsetwasshowntobereducedby1.7%perdegreedayunderrainfedconditionsinAfrica(Lobell,Bänziger,Magorokosho,&Vivek,2011).Herewe alsoused30degree as the threshold to estimateHDDtocharacterizehightemperaturestress.GDDandHDDwereestimated with the following equations using hourly temperaturevalues,whichwereobtainedbyfittingasinefunctiontointerpolatedailymaximumTsaandminimumTsa.

where t represents thehourly timestep,N is the totalnumberofhours ineachgrowingperiod,andDD isdegreedays. Ithasbeenprovedthatinterpolatingdailytemperaturetohourlyvalueisbetterincapturingsub‐dailyheatstress(Tacketal.,2015).

Theselectedthreeperiodsaregenerallydistinguishedbytheirmainrolesindeterminingthefinalyield:vegetativeperiodisrelatedtoleafdevelopmentandexpansion,anthesisisrelatedtopollinationanddeterminesgrainnumber,andGFPisrelatedtophotosynthatetranslocationtokernelsanddeterminesgrainweight.Maizegrowth

stageinformationisretrievedfromthepreviousstudy(Zhuetal.,2018). VP is defined as the duration from emergence to 10daysaheadofsilking.GFPisdefinedasthedurationfrom10daysaftersilking tomaturity. Althoughwe did not exactly extract anthesistimingfromtheremotesensingdata,apreviousstudysuggeststhattheanthesisisaround1weekbeforesilking(Bolanos&Edmeades,1996).Hence,inthisstudy,weuse10daysbeforeandaftersilkingdateasaconservativeestimationofanthesis.

ToobtainthesensitivityofmaizeyieldtoGDDandHDDindif‐ferentgrowthstages,thefollowingpanelmodelwasusedfollow‐ingpreviousstudies(Schlenker&Roberts,2009;Tacketal.,2015):

where�0tcapturestheyieldincreasingtrend,Countyicorrespondstothecountyfixedeffects,and�1−�6definesthesensitivityofyieldtoGDDandHDDinthethreegrowthstages.Thus,yieldsensitivitytoHDDcanbeestimatedwiththefirst‐orderdifference:

IntermsofthesensitivityofHDDtowarminginVP(

�HDDVP

�Tsa

),an‐

thesis(

�HDDAn

�Tsa

),andGFP

(�HDDGFP

�Tsa

),dailytemperaturewasuniformlyin‐

creasedby1°Cor2°CforeachstageandthenthedifferencebetweenHDDunderwarmingscenarioandtheoriginalHDDwasusedasthesensitivity of HDD to warming. Finally, warming effects on yieldthrough high temperature stress (HDD) in different growth stagescanbeestimatedwiththecorrespondingtermsinEquation(7).

2.4 | Relative contribution of heat and water stress to yield decline

Warming trendsnot only increase the frequencyof extremeheateventsbutalsoWSbyregulatingbothwaterdemandandwatersup‐ply(Lobelletal.,2013).Thusthewarminginfluenceonyieldcanbeinterpretedasthejointeffectofhightemperaturestress(HDD)andWSwiththefollowingequation:

HDD, GDD, andWSwere integrated over thewhole growingseason.

SensitivityofHDD,GDD,andWStotemperature(

�HDD

�Tsa,�GDD

�Tsa,�WS

�Tsa

)

wasestimatedwithsimplelinearmodelthroughregressingcounty‐levelHDD(GDD,WS)overtemperature.

ToestimatetheyieldsensitivitytoHDD,GDD,andWS,wecon‐structapanelmodeltoregressyieldoverHDD,GDDandWS:

where�0tcaptures the linear increasingtrendofyieldandCountyi correspondstothecountyfixedeffects.Then,

(6)log

(Yieldi,t

)= �1t+�2Tsai,t+�3Tsa

2i,t+�4Prcpi,t

+�5Prcp2i,t+Countyi+�i,t

(7)�Yield

�Tsa=

�Yield

�HDD

�HDD

�Tsa+

�Yield

�GDD

�GDD

�Tsa

=

3∑s=1

�Yield

�HDDs

�HDDs

�Tsa+

�Yield

�GDDs

�GDDs

�Tsa

(8)GDD308

=

N�t=1

DDt,DDt=

⎧⎪⎪⎨⎪⎪⎩

0,when Tsa<8

Tsa−8,when 8≤Tsa<30

22,when Tsa≥30

⎫⎪⎪⎬⎪⎪⎭

(9)HDD∞

30=

N�t=1

DDt,DDt=

⎧⎪⎨⎪⎩

0,when Tsa<30

Tsa−30,when Tsa≥30

⎫⎪⎬⎪⎭

(10)Yieldi,t= �0t+�1GDD

VPi,t

+�2HDDVPi,t

+�3GDDAni,t+�4HDD

Ani,t

+ �5GDDGFPi,t

+�6HDDGFPi,t

+�7Prcpi,t+Countyi+�i,t

(11)�2=�Yield

�HDDVP; �4=

�Yield

�HDDAn; �6=

�Yield

�HDDGFP

(12)�Yield

�Tsa=�Yield

�HDD

�HDD

�Tsa+�Yield

�GDD

�GDD

�Tsa+�Yield

�WS

�WS

�Tsa

(13)Yieldi,t=�0t+�1GDDi,t+�2HDDi,t

+�3WSi,t+Countyi+�i,t

Page 6: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

6  |     ZHU et al.

WarmingeffectsonyieldthroughhightemperaturestressandWScanbethusseparatelyestimatedas�2

�HDD

�Tsa and �3

�WS

�Tsa.

Here,WSwas characterized by the ratio of potential evapo‐transpiration (PET) to evapotranspiration (ET). ET and PET from2001 to 2015 based onMODIS ET product (MOD16) were em‐ployed. This product has a spatial resolution of 1kmwith 8‐daytemporalresolution.ETandPETinMOD16wereestimatedusingtheimprovedETalgorithmbasedonthePenman–Monteithequa‐tion with MODIS‐derived land surface temperature, vegetationcover, andglobalmeteorologydata (Mu,Zhao,&Running,2011).AlthoughvariousmetricshavebeenproposedtomeasureWS(Jinetal.,2016),thereisnoconsensusonwhichoneisthebest.Sofar,thisobservationaldata‐generatedETproductistheonlyonewithfinespatialandtemporalresolution.MODIS‐basedgrowingseasonPET/ETwascalculatedforpixelswith70%areacoveredbymaizecroplandandthenaveragedtocounty level tobeconsistentwiththeothervariables.

2.5 | Uncertainty quantification

Our sensitivity analysis depends on yield statistical data, satel‐lite‐derivedphenologicaldate,andvegetationindexes.Allofthesevariablesaresubjecttouncertainties:(1)uncertaintiesinthecountyyieldstatisticaldataandsatellite‐derivedGSL, IWDRVI; (2)uncer‐taintiesofparametersintheregressionmodelconvertingIWDRVItoAGB.Herewequantifiedtheuncertaintiesrootedinthesedatasetsthroughrunningthepanelmodelforthousandstimeswiththesam‐plesgeneratedfromagivenparameter'sconfidenceinterval.

We estimated each county's yield uncertainty based on fieldlevelyielddatapublished inapreviousstudy (Lobelletal.,2014),whereeachcountyincludes100samplesofyieldreports.Thisdata‐setenablesustouse1,000timesbootstraptoestimatethestan‐darderror(SE)ofyieldineachcounty.ThenormalizedSE(SE/mean)isshowninFigureS1.Asthefielddataendin2012andwefound92%normalizedSEduring2000–2012weresmallerthan10%,weset the normalizedSE during 2013–2015 as 10%,whichwill be aconservativeestimationofyieldassociateduncertainty.As to theuncertainty related toGSL,we similarly estimated its SE through1,000 timesbootstrapbasedonMODIS‐derivedpixel levelmaizeGSL informationwithin each county (Figure S2). In terms ofBGRandHI,weusedthefollowingequationstoestimatetheassociateduncertainty.

ThenormalizedSE(SE/mean)forBGRandHIisshowninFiguresS9andS10.

WiththeestimatedSEforeachvariablecorrespondingtoeachcounty‐year,1,000randomsamplesweregeneratedwithinits95%confidenceinterval(mean ± 1.96∗SE).Therefore,werunthepanelmodel(Equations3,10,and13)1,000timeswitheachsampleset.Themean of panelmodel‐reported temperature sensitivity confi‐denceintervalwasusedtoquantifytheuncertaintyrelatedtothedatasource.

2.6 | Crop model output

Here,nineglobalgriddedcropmodelsimulationsat0.5°×0.5°reso‐lutionwereselectedbasedonwhethermaizeyield, totalbiomass,andgrowingseasondurationweresubmitted.Thesesimulationsre‐sultedfromthejointeffortoftheAgriculturalModelIntercomparisonand Improvement Project (AgMIP) (Rosenzweig et al., 2013) andInter‐Sectoral Impact Model Intercomparison Project 1 (ISIMIP1)(Warszawskietal.,2014)forassessingtheimpactofclimatechangeandmanagementpracticesonglobalstaplecropproduction.Wese‐lectedrainfedmaizesimulationforcedbyWFDEI.CRU,asthisforc‐ingdatacoveredthelongestsimulationuntil2012.Intermsofthemanagementscenario,“harmnon”wasselected,meaningthesimu‐lationusingharmonizedfertilizerinputsandassumptionsongrow‐ingseasons.MoredetailsonthesimulationprotocolcouldbefoundinElliottetal. (2015)and thedataset isdescribed.Then thedailyclimate data (temperature and precipitation)were integrated overthegrowingseasontoestimatethetemperaturesensitivityofyield,BGR,HI,andGSLwithmodeloutputs.

The nine crop models used here can be basically divided intotwogroups: (a)designedsolely foragricultural systems, likepAPSIM,pDSSAT,pDSSAT‐pt(pDSSAT‐ptispDSSATmodelwiththePriestley–TaylormethodestimatingpotentialET),GEPIC,PEGASUS,andCGMS‐WOFOST(b)evolvingfromtheterrestrialecosystemmodelandcoveringboth natural and agro ecosystems, like CLM‐Crop, LPJ‐GUESS, andLPJmL.Modelsinthefirstgroupoftenhaveamoredetailedrepresenta‐tionofcropdevelopmentprocessesandhaveadifferentparameteriza‐tionofhightemperaturestressovercropvegetativeandreproductivestages.MoredetailsonhowtemperaturestresswasimplementedintheninecropmodelscanbefoundinTableS2.

We then applied the abovementioned statistical models to0.5×0.5 gridded AgMIP outputs to investigate (a) howwarmerclimatesinfluencemaizeyieldthroughdifferentprocessesrelatedtoBGR,GSL,andHI;and(b)therelativecontributionofhightem‐peraturestress(characterizedwithHDD)andWStomaizeyieldincropmodels.WeemployedmodeloutputET,yield,andestimatedPETusingthePenman–MonteithequationforcedbyWFDEI.CRUaswell.

(14)�1=�Yield

�GDD, �2=

�Yield

�HDD, �3=

�Yield

�WS

(15)BGR=AGB

GSL=�IWDRVI�

GSL

(16)HI=Yield

AGB=

Yield

�IWDRVI�

(17)Var(BGR)=

(�BGR

��

)2

Var(�)+

(�BGR

��

)2

Var(�)

+

(�BGR

�IWDRVI

)2

Var(IWDRVI)+

(�BGR

�GSL

)2

Var(GSL)

(18)Var(HI)=

(�HI

��

)2

Var(�)+

(�HI

��

)2

Var(�)

+

(�HI

�IWDRVI

)2

Var(IWDRVI)+

(�HI

�Yield

)2

Var(Yield)

Page 7: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

     |  7ZHU et al.

2.7 | APSIM model experiment

TheAPSIMmodelisaprocess‐basedcropmodelthatexplicitlyac‐countsforthehightemperaturestressandWSduringdifferentcropgrowthstages,whichisalsoincludedinISIMIP1(pAPSIM,thepar‐allelversionAPSIM). Itsimulatesanumberofcropsundervariousclimaticandmanagementconditions,andhenceisusedworldwideto address various research questions related to agricultural sys‐tems(Holzworthetal.,2014).TheAPSIM‐MaizemoduleisinheritedfromtheCERESMaize,withmodificationsonstressrepresentation,biomass growth rate, and phenological development. This flexibleprocess‐basedmodelallowsustoinvestigatethedifferentrolesofhigh temperature stress across stages in determining maize yieldvariation.

WaterstressinAPSIMiscalculatedastheratioofwatersupplytowaterdemand.Waterdemandisdrivenbythepotentialbiomassgrowthrateandtranspirationefficiency that isadjusted forvaporpressuredeficit(VPD).Watersupplyiscalculatedastheamountofwaterabovethecrop'swiltingpointinsoil layerscontainingroots.ThisamountismultipliedbyaKLfactorthataccountsfortheabilityofrootstoextractwaterfromasoil layer.Astemperaturerises, itwillincreasewaterdemandthroughVPDandwillreducethesupplyofsoilwaterthroughelevatedET.

Here,wedesignedtwogrid‐basedsimulationexperiments tofurtherinvestigatehowWSandhightemperaturestressinfluencemaizeyieldwithincreasingtemperature:sim1isacontrolsimula‐tionusingdefaulttemperaturestressandWS;sim2isasimulationwith temperature stress blocked. More details on model setupcan be found in the Supplementary Information. Here we onlyblock high temperature stress, becauseWS ismore complex tomanipulate.Sim1 includesbothhigh temperature stressandWSduring photosynthesis, anthesis, and grain filling, whereas sim2onlyincludesWS.Thus,hightemperaturestresscanbeseparatelyestimatedbycomparingthetwosimulationoutputs.Thesimula‐tion isrunforthethreestatesover2000−2015andforcedwithUniversityofIdahoGriddedSurfaceMeteorologicalDataaswell.Soilparameters,suchassoilhydraulicpropertiesandsoilorganicmatter fractions,wereextracted fromtheStateSoilGeographic(STATSGO) database, as collected by the National CooperativeSoilSurveyoverthecourseofacentury.Foreachsimulationgrid,the soil information was obtained through the R package “soilDB” (http://ncss‐tech.github.io/AQP/). Management informationlikeplantingdensityand fertilizer applicationamountwas takenfromtheUSDANASSsurveyreportatthestatelevel.CropsowingdatewasderivedfromtheCropCalendarDataset(Sacks,Deryng,Foley,&Ramankutty, 2010). The genericmaizehybrid (“B_110”)included inAPSIMversion7.7wasusedand itreferstoahybridwitha110‐dayrelativematurity.Thephenology‐relatedparame‐ters characterizingGFP thermal time requirementwere spatiallyparameterized based onMODIS‐derived crop stage information(Zhuetal.,2018).Spatiallyexplicitparametersareexpectedtoim‐provemodelsimulationwithabettermatchwiththeactualmaizephenologicaldevelopment.

3  | RESULTS

Accordingtotheregressionmodel(Figure1),spatiallyexplicitAGBwas estimated with MODIS‐derived IWDRVI. BGR, GSL, and HIat county levelwerealso retrieved.Theirmulti‐yearmean revealsthereisaclearvariationinthespatialpatternofBGR,HI,andyield,and lower values are often identified in those southern counties(Figure2).However,GSLisrelativelyhomogeneousacrossthecoun‐ties,implyingvarietieswithdifferentmaturitygroupswereselectedtoadapt to the local thermal timeenvironment.Thus thecorrela‐tionbetweenGSLandyieldisquitelow(R2=0.004),butthisdoesnotcontradict the fact that longerGSL leads tohigheryield foragivensite.Thespatialvariationofyield ismorecorrelatedwithHI(R2=0.88)andBGR(R2=0.74),implyingthedominantroleofdailybiomassaccumulationandpartitioningtograin indrivingtheyieldvariationspatially.

SYieldT was estimated and then decomposed into three compo‐

nents: SBGRT

, SHIT, and SGSL

T with Equation (5). Each component rep‐

resents different physiological controls of temperature on maizeyield through reproductive growth during anthesis and GFP (SHI

T),

photosynthesisdominatedcarbonassimilation(SBGRT),andplantde‐

velopmentrate(SGSLT).AlthoughSYield

Tvariesconsiderablyamongindi‐

vidualcropmodels,asimilarestimationofSYieldTisidentifiedbetween

themodelensemblemean(MEM,−7.1±3.1%per°C)andobserva‐tions(−7.2±0.9%per°C)(Figure3).Whenwelookedintoeachcom‐ponent,MEMoverestimatedSGSL

TwhileunderestimatedSHI

Tcompared

withthecorrespondingestimationbasedonobservationalevidence.Asmodelparametersarenormallybasedontheknowledgeofcropdevelopmentandgrowthprocesseslate20thcentury,thisdiscrep‐ancyprobablysuggeststhatthedevelopmentrateofnewlyadoptedmaizecultivarmighthavebetteradapted towarmerclimatewhilelittleprogresshasbeenachievedfordealingwithwarmingeffectsduringmaize reproductivegrowth. Instead,managementpracticesintendedtoimproveyield,suchashigherapplicationofnitrogenfer‐tilizer,mightleadtohighersensitivityofheatstressduringgrainfor‐mationprocesses (Ordóñez,Savin,Cossani,&Slafer,2015;Wahid,Gelani,Ashraf,&Foolad,2007).IntermsofthesensitivityofBGR,bothMEManddatashowaweakresponse,consistentwiththefactthatmaizephotosynthesishasarelativelyhighoptimaltemperature(Dekov,Tsonev,&Yordanov,2000).Somemodels,likeLPJ‐GUESS,overestimated thewarming influenceonBGRbutunderestimatedtheinfluenceonHI,whichsuggeststhatinthesemodels,excessivetemperaturestressisimposedonprocessesrelatedtophotosynthe‐siswhilethestressduringgrainformationisoverlooked.

Thetemperaturesensitivityanalysiswasfurtherdividedintofivegroupsbasedon thequintileofgrowingseasonmean temperature,which provides an insight into how temperature sensitivity evolvesas the mean temperature increases in the future. Generally, SYield

T

estimated with observational evidence is significantly enhanced inwarmerdivisions,whichchangesfrom0.3±1.1%perdegreeCelsiusto−16.6±4.3%perdegreeCelsius fromthe lowest tohighest tem‐perature quintile (Figure4a). It is noted that the increase inSYield

T is

mainly driven by SHIT,whichvariesfrom1.5±1.4%perdegreeCelsisu

Page 8: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

8  |     ZHU et al.

to −12.6 ±3.8%perdegreeCelsius,correspondingly.Thisresultcon‐firmstheconclusionbasedonfieldexperimentsthatwarmingduringgrain formation ismore influential (Edreira&Otegui, 2012; Siebers

etal.,2017).Despiteincreasingbackgroundtemperature,SGSLTkeeps

a relatively stable valueof approximately−2.6%perdegreeCelsiusand SBGR

T shows a small enhancement. Therefore, it can be inferred

F I G U R E 2   Spatialpatternofmulti‐yearmeanbiomassgrowthrate(BGR),growingseasonlength(GSL),harvestindex(HI),andYieldatcountylevelover2000–2015acrossthethreeMidweststates(a–d).Correlationbetweenyieldandmulti‐yearmeanBGR,GSL,andHIwitheachpointrepresentingacounty(e–g).ThecorrelationanalysissuggeststhatyieldvariationisspatiallycorrelatedwithHIandBGRbutnotGSL

38

40

42

44

−96 −93 −90 −87 −84

Longitude

Latit

ude

170

160

150

140

130

120

Mean yield over 2000−2015

38

40

42

44

−96 −93 −90 −87 −84

Longitude

Latit

ude

0.50.480.460.440.420.4

Mean harvest index over 2000−2015

38

40

42

44

−96 −93 −90 −87 −84Longitude

Latit

ude

1716.51615.515gC per m /day

Mean biomass growth rate over 2000−2015

38

40

42

44

−96 −93 −90 −87 −84Longitude

Latit

ude

135

130

125

120

days

Mean grow season length over 2000−2015

2

100 120 140 160 180

0.35

0.4

0.45

0.5

0.55

Har

vest

inde

x

Yield (bu/ac)

100 120 140 160 18015

15.5

16

16.5

17

17.5

18

Bio

mas

s gr

owth

rat

e (g

C/m

2 /day

)

Yield (bu/ac)

100 120 140 160 180115

120

125

130

135

140

Gro

win

g se

ason

leng

th (

days

)

Yield (bu/ac)

bu/ac

R = 0.74 R = 0.88R = 0.004 222

(a) (b)

(c) (d)

(e) (f) (g)

Page 9: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

     |  9ZHU et al.

that warming‐induced yield decline is mainly driven by GSL in thethreelowertemperaturedivisions,whereastheeffectsofwarmingonHIbecomemoredominant in the twohigher temperaturedivisions(Figure4a).

Whenmodeloutputwassimilarlydividedbasedonthequintileofgrowingseasonmeantemperature,MEMofSYield

T, SBGR

T, SGSL

T, and SHI

T

wasusedtogaininsightintohowwarmingeffectswererepresentedin crop models. The individual model performance is shown inFigureS6.Comparedwiththeestimationswithobservationaldata,

MEM reproduces the patterns ofSYieldT

, SBGRT

, SGSLT

, and SHIT across the

temperature gradient (Figure 4b). Changes in MEM SHIT drive the

increasing SYieldT (Figure 4b), but SHI

T is underestimated relative to

observationaldata. In termsofSGSLT, it isoverestimated forall five

temperaturequintiles(approximately−5.4%perdegreeCelsiusrel‐ative to −2.6%perdegreeCelsiusinobservationaldataestimation).ThestableSGSL

Testimatedwithbothcropmodelsandobservational

datasuggeststhatmaizeplantdevelopmentisquasi‐linearlydrivenbytemperature(Edreira&Otegui,2012;Hatfield&Prueger,2015)

F I G U R E 3   Temperaturesensitivityofyield,harvestindex(HI),biomassgrowthrate(BGR),andgrowingseasonlength(GSL)basedonsatellitedataandNationalAgriculturalStatisticsService‐reportedyield(greyverticalline)andcropmodels,wherethehorizontalcolorlineswithintheshadedareaindicatesensitivityestimationineachmodelandverticalpurplelinesindicatemodelensembleestimation.Theerrorbarsrepresentthe95%confidenceintervalofestimatedsensitivity.Theobservationaldata‐basedtemperaturesensitivityuncertaintieswereestimatedthroughresampling.ThemeansensitivityandconfidenceintervalforMEMandobservationaldataarealsoreportedin TableS3.ThisfiguresuggeststhatyieldsensitivityismainlydrivenbyHI,butmodelensembleoverestimatedeffectsthroughGSL

Yield HI BGR GSL−12

−10

−8

−6

−4

−2

0

2

4

Tem

pera

ture

sen

sitiv

ity (

% p

er °

C)

ObsModel ensemblepAPSIMCLM-CroppDSSATpDSSAT−ptGEPICLPJ−GUESSLPJmLPEGASUSCGMS-WOFOST

F I G U R E 4   Temperaturesensitivityofyield,harvestindex(HI),biomassgrowthrate(BGR),andgrowingseasonlength(GSL)whenyield,HI,BGR,andGSLweredividedbythequintileofgrowingseasonmeantemperaturebasedonsatellitedataandNationalAgriculturalStatisticsServiceyield(a)andbasedoncropmodels(b).Theerrorbarsin(a)representthe95%confidenceintervalofestimatedsensitivity.Boxplotsin(b)indicatethemedian(horizontalline),25th–75thpercentile(graybox),and5th–95thpercentile(whiskers)ofcropmodel‐estimatedtemperaturesensitivity.ThisfiguresuggeststhatthenonlinearresponseofyieldsensitivityismainlydrivenbyHI.Althoughthemodelensembleshowsasimilarpattern,itoverestimatedeffectsthroughGSL

(a) (b)

Page 10: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

10  |     ZHU et al.

and is relativelymore heat tolerant comparedwithwheat plants,whichshowanacceleratedsenescencewhenexposedtoheatstress(Lobelletal.,2012).ThesmallenhancementinSBGR

Testimatedwith

bothcropmodelandobservationaldatasuggeststhatphotosynthe‐sis‐dominatedBGR is likely to be slightly influenced under futurewarmer climate, whichmight result from the higher optimal tem‐peratureofC4photosynthesis.

Wealsousedanalternativepanelmodel(Equation6)byaddingquadraticfunctionofTsaandPrcptocapturethenonlinearresponseofyield,HI,BGR,andGSLtoclimatevariation.Thetemperaturere‐sponseofyield,HI,BGR,andGSLwasexpressedasthenormalizedquadraticfunctionoftemperature.Thisalternativeanalysisdemon‐stratedthatastemperaturerises,thenonlinearresponseofyieldismainlydrivenbyHIwhileyielddeclinethroughGSLislinear,whichisinlinewiththestatisticalanalysisusinggroupedtemperaturegra‐dient(Figure5).ThetemperatureresponsecurvesalsoconfirmthattheoptimaltemperatureofBGRishigherthanthatofHIandyield(Edreira&Otegui,2012).

AsthenonlinearreductionofyieldandHIbywarmingremainsunclear, apaneldatamodelwasused to investigate thedifferent

sensitivity of yield to HDD during vegetative period(

�Yield

�HDDVP

),

anthesis(

�Yield

�HDDAn

), and GFP

(�Yield

�HDDGFP

). The analysis suggests that

yieldisthemostsensitivetoHDDduringGFP(−0.46 ±0.07%perdegreedays)(Figure6a),whichisinlinewithfieldheatingexperi‐ments (Edreira, Mayer, & Otegui, 2014; Ruiz‐Vera et al., 2018;Siebersetal.,2017).TheyieldsensitivitytoHDDduringanthesis(−0.33 ±0.11%perdegreedays)isslightlyhigherthanHDDduringVP(−0.30 ±0.12%perdegreedays)(Figure6a).TheyieldsensitivitytoGDDissmallinallthreeperiodsandevenshowsapositiveresponseforGDDinVPandGFP(Figure6a).Meanwhile,theincreaseinHDDduringGFPisthelargestofthethreestages,probablyduetothehigh background temperature (Figure 6b). According to Equation(7),whenauniform1°Cand2°Cwarmingisappliedtowholegrow‐ing season temperature, yield is reduced by 5.9% and 21.7%, re‐spectively.When1°C(2°C)warmingwasseparatelyappliedtoHDDduring “VP,” “Anthesis,”and “GFP,”maizeyieldwillbe reducedby1.8%(6.9%),1.3%(5.2%),and3.3%(13.1%),respectively(Figure6c).This nonuniform response suggests that the warming‐inducedhigherHDDduringGFPexclusivelyaccountedformorethanhalfofyieldreductionandwasthemaindriverofyielddecline.

Inadditiontodirectheatstress,itwaspreviouslysuggestedthatanextremeheateventmightthreatenmaizeyieldindirectlythrough

F I G U R E 5   ResponseofYield(a),biomassgrowthrate(BGR)(b),growingseasonlength(GSL)(c),andharvestindex(HI)(d)togrowingseasonmeantemperature.TheverticaldashedlinesindicatetheoptimalmeantemperatureofYield,HI,orBGRderivedfromobservationalevidence.Theresponsefunctionisnormalizedbythemaximumvalueineachresponse.TheX‐axisrangeisdeterminedbytheminimumandmaximummeangrowingseasontemperatureacrosstheU.S.Midwestduring2000–2015.TheconfidenceintervaloftemperatureresponsecurveforeachmodelresultsisalsoreportedinFigureS8

Nor

mal

ized

BG

R r

espo

nse

pAPSIMCLM-CroppDSSATpDSSAT−ptGEPICLPJ−GUESSLPJmLPEGASUSCGMS-WOFOST

pAPSIMCLM-CroppDSSATpDSSAT−ptGEPICLPJ−GUESSLPJmLPEGASUSCGMS-WOFOST

(a) (b)

(c) (d)

Page 11: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

     |  11ZHU et al.

WS (Lobell et al., 2013).Abetter discernmentof theeffect ofWSandheatstresswouldhelpfarmerstomakeproperdecisionstobet‐teradapttofuturewarmingchallenges.ApanelmodelanalysiswasusedheretoestimatetherelativecontributionofWS(PET/ET)andhigh temperaturestress (HDD)onyield.Themodel result suggeststhat1°Cwarmingwill increaseGDD,HDD,andWSby50±3.3 de‐gree days, 17±1.2 degree days, and 0.011±8 × 10

−4, respectively(Figure7a).However,aunit increase inGDD,HDD,andWScausesyielddeclineof−0.0054±0.001%,−0.27 ±0.04%,and−1.54 ±0.48%,respectively(Figure7a).Takentogether,theregressionmodelshowsthat1°Cwarmingwillreduceyieldby0.27± 0.15%,4.6±1.0%,and1.7 ±0.65% through GDD, HDD, andWS, respectively (Figure 7a),suggestingthatthewarmertemperaturereducesmaizeyieldmainlythroughdirecthightemperaturestress.Themeansensitivityandcon‐fidenceintervalisalsoreportedinTableS4.

When the samepanelmodelwas applied to cropmodel outputfromAgMIP, themodel results generally showed smallwarming ef‐fectsthroughGDDbutvariedsubstantially intermsofthewarmingeffectsthroughWSandHDD.Comparedwiththeobservationalev‐idence,MEMunderestimated thedirect high temperature influencethroughHDDbutoverestimated the indirect influence throughWS(Figure 7b). As suggested in a field CO2 enrichment experiment onmaize,water conservation effects of increasingCO2might result inmoreyieldbenefitunderWSconditions(Hussainetal.,2013;Jinetal.,2017)but itsyieldbenefitunderheatstressmaybe limited(Siebersetal.,2015).This impliesthat incurrentcropmodelsthedirecthightemperaturestressonyieldisunderestimated,whereastheyieldben‐efitofelevatedatmosphericCO2 isoverestimated.ThisdiscrepancycouldbiastheprojectionofmaizeyieldvariationgivenfuturehigheratmosphericCO2 andmorefrequentheatwaves.

F I G U R E 6   SensitivityofmaizeyieldbasedonNationalAgriculturalStatisticsServicereporttogrowingdegreedays(GDD)andhightemperaturedegreedays(HDD)indifferentgrowingstages:vegetativeperiod(VP),anthesis,andgrainfillingperiod(GFP)(a).BoxplotofHDDincreaseinresponseto1°Cand2°Cwarming(b).Boxplotsindicatethemedian,25–75thpercentile,and5th–95thpercentileofHDDincreaseacrossallcountiesduring2000–2015.Estimationofyieldreductionisbasedontotheregressionmodel(Equation7).Yieldreductionof“Allseason”indicatesthetemperaturewasincreaseduniformlyacrossthewholegrowingseason,whereas“VP,”“Anthesis,”and“GFP”meanstemperaturewasincreasedexclusivelyforHDDduring“VP,”“Anthesis,”and“GFP.”Theyieldreductionherecharacterizestherelativecontributionofhightemperaturestressduringaspecificmaizestage.Errorbarsin(a)and(c)representthe95%confidenceintervalofestimatedsensitivitythroughresampling,whicharealsoreportedinTablesS4andS5

VP Flowering GFP−0.6

−0.4

−0.2

0

0.2

Yie

ld s

ensi

tivity

(%

/deg

ree

days

)

GDDHDD

0

20

40

60

80

100

HD

D in

crea

se (

degr

ee d

ays)

VPAnthesisGFP

1°C warmer 2°C warmer

(a) (b) (c)

1°C warmer 2 °C warmer−25

−20

−15

−10

−5

0

Yie

ld r

educ

tion

thro

ugh

HD

D (

%)

TotalVPAnthesisGFP

F I G U R E 7   Theeffectofwarming‐induceddirectheat(HDD)andindirectwaterstress(WS)onmaizeyieldbasedonNationalAgriculturalStatisticsServiceyieldreport,MODIS‐derivedcropstagesinformation,andMODISPET/ETproduct(MOD16)(a).Thenumbersmarkedonthearrowsindicatetheeffectsof1°Cwarmingonyieldthroughgrowingdegreedays(GDD),hightemperaturedegreedays(HDD),andwaterstress(WS),correspondingtothecoefficientsinEquation(12).ComparisonofwarmingeffectsonmaizeyieldthroughGDD,HDD,andWS(potentialevapotranspiration[PET]/evapotranspiration[ET])estimatedfromobservationalevidenceandcropmodels(b).Errorbarsforobservationaldatarepresentthe95%confidenceintervalthroughsampling(detailsinTableS6)anderrorbarsinmodelensemblerepresentthestanddeviationofmulti‐modelestimatedyieldresponses(b)

pAPSIMCLM-CroppDSSATpDSSAT−ptGEPICLPJ−GUESSLPJmLPEGASUSCGMS-WOFOST

Model ensemble

(a) (b)

War

min

g ef

fect

s on

yie

ld (

% p

er °

C)

PET/ET

50 ± 3.3

17 ± 1.2

0.011 ± 0.0008

–0.000054 ± 0.00001

–0.0027 ± 0.0004

–1.54 ± 0.48

GDD HDD

Page 12: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

12  |     ZHU et al.

AlthoughtheMEMsuggestsa lower influenceof temperaturethroughHDD,thereareindividualmodelswithcloseestimationtoobservationaldata.Forexample, theAPSIMcropmodel suggestsahigher influenceoftemperaturethroughHDDthanthroughWS(Figure7b).WealsoappliedtheAPSIMmodeldefaultWSmetric,theratioofwatersupplytowaterdemand,astheWStermtocon‐structanalternativepanelmodeltotestwhethertheresultsarero‐busttotheselectionofWSmetric.ThisalternativemetricproducedasimilarestimationofwarmingeffectsonyieldthroughGDD,HDD,andWSastheoneusingPET/ETastheWSmetric(FigureS4).

AmodelexperimentwasdesignedtobetterunderstandhowWSandheatstressinfluencemaizeyieldthroughdifferentphysiologicalprocesses.Inthisexperiment,sim1isthecontrolrunwithbothhightemperaturestressandWS,whereassim2blockedthehightempera‐turestress.Theresultsshowthatastemperatureincreases,thereisnosignificantchangeinSBGR

T and SGSL

Tbetweensim1andsim2butSHI

Tissig‐

nificantlyenhancedinsim2(Figure8).AsGSLismainlydrivenbyther‐maltimeaccumulation,SGSL

Tshowsasimilarresponsewithincreasing

backgroundtemperatureinbothsim1andsim2.Thus,theothertwocomponentsSBGR

T and SHI

Trepresentthemaineffectsofhightempera‐

turestressonyield.Thecomparisonbetweensim1andsim2suggeststhat,astemperaturerises,hightemperaturestressreducesmaizeyieldprimarilythroughprocessrelatedtograinformation,whereasthehightemperature‐inducedWS influencesyieldmainly throughprocessesrelatedtoBGR,suchasphotosynthesisorrespiration(Figure8).

4  | DISCUSSION

By integrating satellite observations, cropmodel simulations, sur‐veys, and experimental data,we examined the response ofmaizeyieldanditsconstituentprocessestohightemperaturestressinananalyticalway.The results suggest that thenonlinear responseof

yield (SYieldT

) can be decomposed into small effects on SBGR

T, linear

(SGSLT

), andnon‐linear

(SHIT

) processes, and thatheat stressduring

GFPposesastrikingthreatformaizeyielddecline.Photosynthesis‐dominatedBGRisonlymarginallyinfluencedbytemperaturestress,whichis likelytoresultfromthehigheroptimaltemperatureofC4 photosynthesis. With the advancement in computing power and

finer spatial and spectral information brought with new satellitedata,themethodologyherecanbereadilyextrapolatedtootherre‐gions and further improve our understanding of maize and othercropyieldperformanceunderextremeconditions.

Our analysis also pinpoints both strengths andweaknesses ofcropmodelsincharacteringhightemperaturestressonmaizeyieldandprovidesanimportantfeedbackforthecropmodelingcommu‐nity.MostmodelsunderestimatedthewarmingeffectsthroughHIwhileoverstatedthetemperaturesensitivityofGSL.Meanwhile,theindirectWSeffectwasoverestimated inmostcropmodels,whichmight bring substantial uncertainties when projectingmaize yieldunderfuturehotterconditions.Oneexplanationforthediscrepancybetween estimations based on model and observational datasetsis possibly the issue of different scales, since crop models oper‐ated at 0.5◦

× 0.5◦gridsandobservationaldatasetswereanalyzedatthecountylevel.However, it ismorelikelyduetothelimitationofmodels inaccuratelyrepresentingheatstress influence,suchasslowupdatesofkeyparametersrelatedtoheatanddroughtresis‐tanceandlackofexplicitlyaccountingforheatstresseffectduringthedevelopmentstagesofdifferentmaizecultivars.Rezaei,Siebert,Hüging,andEwert(2018)alsofoundthatignoringcultivarchangesinanalysesofhistoricchangesinphenologyleadstoanoverestimateofthetemperaturesensitivityofthephenologyofwinterwheatinGermany.A similarmodel parametrization biasmay exist in othercrops,e.g.maizeintheUnitedStates.

Inaddition,mostevaluatedmodels,exceptCLM‐Crop, lackacanopyenergybalanceschemetosimulate leaftemperatureandthereforeuseair temperature insteadof leaftemperaturetopa‐rameterize effects of heat stress.However, air temperature candeviate significantly from leaf temperature, especiallyunderdryconditionsorelevatedCO2wherecanopiescanbeseveraldegreeshotter than theairdue to reduced transpiration.Thus, improve‐mentincanopyenergybalanceamongallmodelsisnecessaryforbetterrepresentingtheheatstresseffectsoncropyield(Webberetal.,2017).

The selected metric here to quantify heat stress andWS isalso importantforevaluatingtheirrelativecontributionstoyielddecline. Threshold‐based thermal time accumulation has beenwidelyusedtocharacterizeheatstress(Deryng,Sacks,Barford,&Ramankutty,2011;Lobelletal.,2012;Schlenker&Roberts,2009).

F I G U R E 8   Temperaturesensitivityofyield,harvestindex(HI),growingseasonlength(GSL),anddailybiomassgrowthrate(BGR)dividedbyquintileofgrowingseasonmeantemperatureintwoAPSIMsimulationresults.sim1(circle)isthesimulationwithbothwaterandhightemperaturestressandsim2(triangle)isthesimulationwithonlywaterstress

1st 2nd 3rd 4th 5th

−20

−15

−10

−5

0

5

Quintile of temperature

YieldHIGSLBAR

Sim1

Sim2

Tem

pera

ture

sen

sitiv

ity (

% p

er °

C)

Page 13: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

     |  13ZHU et al.

IntermsofWS,severalmetricshavebeenproposed,suchasVPD,PET/ET, soil moisture content, and the ratio of water supply towater demand (Jin et al., 2016; Lobell et al., 2014).HigherVPDmeansanincreaseinatmosphericwaterdemandandcandecreasephotosynthetic activity through reducing stomatal conductance.Soilwatercontentregulatestransportofwaterinthesoil–plant–atmospherecontinuumanddeterminestheamountofextractablewater by crop plants. PET/ET and the ratio of water supply towaterdemandaccountsforbothatmosphericwaterdemandandsoilwateravailability.These twometricsalsogiveasimilaresti‐mateofWSeffectsonmaizeyield(FigureS4).DuetothedifferentrolesofVPDandsoilwatercontentindeterminingtheplantphys‐iologicalprocesses, itmightbeuseful todisentangle thetwoef‐fects.However,therearelimitedcontrolledexperimentsdesignedtoaddressthedifferentresponsesofcropplantstoatmosphericwaterdemand(VPD)andsoilwaterdryness,partlybecauseVPDisoftenhardtobecontrolled inthefieldconditions (Grayetal.,2016). In this context, more field experiments are necessary tomechanisticallyunderstandthe relativecontributionofdifferentsourcesofWSoncropyield.

Overall, our analysis through model‐data integration suggeststhat warming‐induced decline in maize yield is mainly driven bydirectheatstress imposedonreproductiveprocesses,whereasin‐directWSonlycontributesasmallfraction.Therefore,futureadap‐tationstrategiesshouldbetargetedattheheatstressduringgrainformation.Asmodelparameterizationusedhereoftenrepresentsastaticmanagementsystemfromaroundtheyear2000(Elliottetal.,2015), the discrepancy in temperature sensitivity between cropmodelsimulationsandobservationaldatasuggeststhatchangesinmanagement systems need to be better accounted for to achieveprogressinheatstressestimates(Glotter&Elliott,2016).

ACKNOWLEDG EMENTS

We thank three anonymous reviewers whose comments signifi‐cantlyimprovedthisstudy.ThisresearchwassupportedbyanNSFproject (IIS‐1027955) and a NASA LCLUC project (NNX09AI26G)toQ.Z.WeacknowledgetheRosenHighPerformanceComputingCenteratPurdueforcomputingsupport.

ORCID

Peng Zhu https://orcid.org/0000‐0001‐7835‐3971

Christoph Müller https://orcid.org/0000‐0002‐9491‐3550

R E FE R E N C E S

Abatzoglou,J.T.(2013).Developmentofgriddedsurfacemeteorologicaldataforecologicalapplicationsandmodelling.International Journal of Climatology,33,121–131.https://doi.org/10.1002/joc.3413

Assefa, Y., Prasad, P. V.V., Carter, P.,Hinds,M., Bhalla,G., Schon, R.,…Ciampitti,I.A.(2017).Anewinsightintocornyield:Trendsfrom1987 through 2015. Crop Science, 57(5), 2799–2811. https://doi.org/10.2135/cropsci2017.01.0066

Assefa,Y.,VaraPrasad,P.V.,Carter,P.,Hinds,M.,Bhalla,G.,Schon,R.,…Ciampitti,I.A.(2016).YieldresponsestoplantingdensityforUSmoderncornhybrids:Asynthesis‐analysis.Crop Science,56,2802–2817.https://doi.org/10.2135/cropsci2016.04.0215

Asseng,S.,Ewert,F.,Martre,P.,Rötter,R.P.,Lobell,D.B.,Cammarano,D.,…Zhu,Y..(2014).Risingtemperaturesreduceglobalwheatpro‐duction. Nature Climate Change,5,143–147.

Azzari,G.,Jain,M.,&Lobell,D.B.(2017).Towardsfineresolutionglobalmapsofcropyields:Testingmultiplemethodsandsatellitesinthreecountries.Remote Sensing of Environment,202,129–141.https://doi.org/10.1016/j.rse.2017.04.014

Bolanos, J., & Edmeades, G. O. (1996). The importance of the an‐thesis‐silking interval in breeding for drought tolerance intropical maize. Field Crops Research, 48(1), 65–80. https://doi.org/10.1016/0378‐4290(96)00036‐6

Butler, E. E., & Huybers, P. (2015). Variations in the sensitivity of USmaizeyield toextreme temperaturesby regionandgrowthphase.Environmental Research Letters,10(3),034009.

Cheikh, N. C., & Jones, R. J. (1994). Disruption of kernel growth anddevelopment by heat stress: Role of cytokinin/ABA balance.Plant Physiology,106,45–51.

Cicchino, M., Rattalino Edreira, J. I., Uribelarrea, M., & Otegui, M. E.(2010).Heatstressinfield‐grownmaize:Responseofphysiologicaldeterminantsofgrainyield.Crop Science,50,1438–1448.https://doi.org/10.2135/cropsci2009.10.0574

Commuri,P.D.,&Jones,R.J. (2001).Hightemperaturesduringendo‐spermcelldivisioninmaize.Crop Science,41(4),1122–1130.https://doi.org/10.2135/cropsci2001.4141122x

Crafts‐Brandner,S.J.,&Salvucci,M.E.(2002).Sensitivityofphotosyn‐thesis in aC4plant,maize, toheat stress.Plant Physiology,129(4),1773–1780.

Daly,C.,Halbleib,M.,Smith,J.I.,Gibson,W.P.,Doggett,M.K.,Taylor,G.H.,…Pasteris,P.P. (2008).Physiographically sensitivemappingof climatological temperature and precipitation across the conter‐minous United States. International Journal of Climatology, 28(15),2031–2064.https://doi.org/10.1002/joc.1688

Deines,J.M.,Kendall,A.D.,&Hyndman,D.W.(2017).AnnualirrigationdynamicsintheU.S.Northernhighplainsderivedfromlandsatsat‐ellite data. Geophysical Research Letters,44,9350–9360.https://doi.org/10.1002/2017GL074071

Dekov,I.,Tsonev,T.,&Yordanov,I. (2000).Effectsofwaterstressandhigh‐temperaturestressonthestructureandactivityofphotosyn‐theticapparatusofZea mays and Helianthus annuus. Photosynthetica,38,361–366.

Deryng, D., Sacks, W. J., Barford, C. C., & Ramankutty, N. (2011).Simulatingtheeffectsofclimateandagriculturalmanagementprac‐ticesonglobalcropyield.Global Biogeochemical Cycles,25(2).https://doi.org/10.1029/2009GB003765

Dias,A.S.,&Lidon,F.C.(2009).Evaluationofgrainfillingrateanddu‐ration inbreadanddurumwheat,underheatstressafteranthesis.Journal of Agronomy and Crop Science,195,137–147.

Edreira,J.I.R.,Mayer,L.I.,&Otegui,M.E.(2014).Heatstressintem‐perate and tropical maize hybrids: Kernel growth, water relationsandassimilateavailabilityforgrainfilling.Field Crops Research,166,162–172.https://doi.org/10.1016/j.fcr.2014.06.018

Edreira,J.I.R.,&Otegui,M.E.(2012).Heatstressintemperateandtrop‐ical maize hybrids: Differences in crop growth, biomass partition‐ingand reservesuse.Field Crops Research,130,87–98.https://doi.org/10.1016/j.fcr.2012.02.009

Edreira,J.I.R.,&Otegui,M.E.(2013).Heatstressintemperateandtrop‐icalmaizehybrids:Anovelapproachforassessingsourcesofkernellossinfieldconditions.Field Crops Research,142,58–67.https://doi.org/10.1016/j.fcr.2012.11.009

Eitzinger,J.,Thaler,S.,Schmid,E.,Strauss,F.,Ferrise,R.,Moriondo,M.,…Çaylak,O.(2013).Sensitivitiesofcropmodelstoextremeweather

Page 14: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

14  |     ZHU et al.

conditionsduringfloweringperioddemonstratedformaizeandwin‐terwheat in Austria. Journal of Agricultural Science,151, 813–835.https://doi.org/10.1017/S0021859612000779

Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K.J., Büchner, M., … Sheffield, J. (2015). The Global Gridded CropModel Intercomparison: Data and modeling protocols for Phase1 (v1.0). Geoscientific Model Development, 8, 261–277. https://doi.org/10.5194/gmd‐8‐261‐2015

Gitelson, A. A. (2004). Wide dynamic range vegetation index forremote quantification of biophysical characteristics of vege‐tation. Journal of Plant Physiology, 161, 165–173. https://doi.org/10.1078/0176‐1617‐01176

Glotter,M.,& Elliott, J. (2016). SimulatingUS agriculture in amodernDustBowldrought.Nature Plants,3(1),16193.

Gray,S.B.,Dermody,O.,Klein,S.P.,Locke,A.M.,McGrath,J.M.,Paul,R.E.,…Leakey,A.D.B.(2016).Intensifyingdroughteliminatestheexpected benefits of elevated carbon dioxide for soybean.Nature Plants,2(9),16132.https://doi.org/10.1038/nplants.2016.132

Guan,K.,Wu, J.,Kimball, J. S.,Anderson,M.C.,Frolking,S., Li,B.O.,… Lobell, D. B. (2017). The shared and unique values of optical,fluorescence, thermal and microwave satellite data for estimatinglarge‐scalecropyields.Remote Sensing of Environment,199,333–349.https://doi.org/10.1016/j.rse.2017.06.043

Guindin‐Garcia, N., Gitelson, A. A., Arkebauer, T. J., Shanahan, J., &Weiss,A. (2012).AnevaluationofMODIS8‐and16‐daycompos‐iteproductsformonitoringmaizegreenleafareaindex.Agricultural and Forest Meteorology, 161, 15–25. https://doi.org/10.1016/j.agrformet.2012.03.012

Hatfield,J.L.,&Prueger,J.H.(2015).Temperatureextremes:Effectonplant growth and development.Weather and Climate Extremes,10,4–10.https://doi.org/10.1016/j.wace.2015.08.001

Holzworth,D.P.,Huth,N. I.,deVoil,P.G.,Zurcher,E.J.,Herrmann,N.I.,McLean,G.,…Keating,B.A. (2014).APSIM–Evolutiontowardsanewgenerationofagricultural systemssimulation.Environmental Modelling & Software, 62, 327–350. https://doi.org/10.1016/j.envsoft.2014.07.009

Hussain,M. Z., VanLoocke, A., Siebers,M.H., Ruiz‐Vera,U.M., CodyMarkelz,R.J.,Leakey,A.D.B.,…Bernacchi,C.J.(2013).Futurecar‐bondioxideconcentrationdecreasescanopyevapotranspirationandsoilwaterdepletionbyfield‐grownmaize.Global Change Biology,19,1572–1584.https://doi.org/10.1111/gcb.12155

Jin, Z., Zhuang, Q., Tan, Z., Dukes, J. S., Zheng, B., & Melillo, J. M.(2016).Domaizemodels capture the impactsofheatanddroughtstresses on yield? Using algorithm ensembles to identify success‐ful approaches.Global Change Biology,22, 3112–3126. https://doi.org/10.1111/gcb.13376

Jin, Z., Zhuang, Q., Wang, J., Archontoulis, S. V., Zobel, Z., &Kotamarthi,V.R. (2017). The combined and separate impactsofclimateextremesonthecurrentandfutureUSrainfedmaizeandsoybeanproductionunderelevatedCO2. Global Change Biology,23,2687–2704.

Lizaso,J.I.,Ruiz‐Ramos,M.,Rodríguez,L.,Gabaldon‐Leal,C.,Oliveira,J.A.,Lorite,I.J.,…Rodríguez,A.(2018).Impactofhightemperaturesinmaize:Phenologyandyieldcomponents.Field Crops Research,216,129–140.https://doi.org/10.1016/j.fcr.2017.11.013

Lobell,D.B.,Bänziger,M.,Magorokosho,C.,&Vivek,B.(2011).Nonlinearheat effects on Africanmaize as evidenced by historical yield tri‐als. Nature Climate Change, 1, 42–45. https://doi.org/10.1038/nclimate1043

Lobell,D.B.,Hammer,G.L.,McLean,G.,Messina,C.,Roberts,M.J.,&Schlenker,W.(2013).Thecriticalroleofextremeheatformaizepro‐ductionintheUnitedStates.Nature Climate Change,3(5),497–501.https://doi.org/10.1038/nclimate1832

Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B.,Rejesus,R.M.,&Hammer,G.L.(2014).Greatersensitivitytodrought

accompaniesmaizeyieldincreaseintheU.S.Midwest.Science,344,516–519.https://doi.org/10.1126/science.1251423

Lobell,D.B.,Sibley,A.,&IvanOrtiz‐Monasterio,J.(2012).ExtremeheateffectsonwheatsenescenceinIndia.Nature Climate Change,2,186–189.https://doi.org/10.1038/nclimate1356

Lobell,D.B.,Thau,D.,Seifert,C.,Engle,E.,&Little,B.(2015).Ascalablesatellite‐based crop yield mapper. Remote Sensing of Environment,164,324–333.https://doi.org/10.1016/j.rse.2015.04.021

Mazdiyasni,O.,&AghaKouchak,A.(2015).Substantialincreaseincon‐currentdroughtsandheatwavesintheUnitedStates.Proceedings of the National Academy of Sciences,112,11484–11489.

Mitchell,K.E. (2004).Themulti‐institutionNorthAmericanLandDataAssimilation System (NLDAS): Utilizing multiple GCIP productsand partners in a continental distributed hydrological modelingsystem. Journal of Geophysical Research, 109, D07S90. https://doi.org/10.1029/2003JD003823

Mu,Q.,Zhao,M.,&Running,S.W.(2011).ImprovementstoaMODISglobalterrestrialevapotranspirationalgorithm.Remote Sensing of Environment,115(8),1781–1800.https://doi.org/10.1016/j.rse.2011.02.019

Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J.,Ciais,P.,…Yang,H. (2017).Globalgriddedcropmodelevaluation:Benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 10, 1403–1422. https://doi.org/10.5194/gmd‐10‐1403‐2017

Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B.,Peltonen‐Sainio, P., … Micale, F. (2011). Impacts and adaptation ofEuropeancropproductionsystemstoclimatechange.European Journal of Agronomy,34,96–112.https://doi.org/10.1016/j.eja.2010.11.003

Ordóñez, R. A., Savin, R., Cossani, C.M., & Slafer,G. A. (2015). Yieldresponsetoheatstressasaffectedbynitrogenavailabilityinmaize.Field Crops Research, 183, 184–203. https://doi.org/10.1016/j.fcr.2015.07.010

Parent,B.,&Tardieu,F.(2012).Temperatureresponsesofdevelopmen‐talprocesseshavenotbeenaffectedbybreedingindifferentecolog‐icalareasfor17cropspecies.New Phytologist,194,760–774.

Ponce‐Campos,G. E.,Moran,M. S.,Huete,A., Zhang, Y., Bresloff,C.,Huxman, T. E.,… Starks, P. J. (2013). Ecosystem resilience despitelarge‐scalealteredhydroclimaticconditions.Nature,494,349–352.https://doi.org/10.1038/nature11836

Rahmstorf, S., & Coumou, D. (2011). Increase of extreme events in awarming world. Proceedings of the National Academy of Sciences,108,17905–17909.https://doi.org/10.1073/pnas.1101766108

Rezaei,E.E.,Siebert,S.,Hüging,H.,&Ewert,F.(2018).Climatechangeef‐fectonwheatphenologydependsoncultivarchange.Scientific Reports,8(1),4891.https://doi.org/10.1038/s41598‐018‐23101‐2

Rezaei,E.E.,Webber,H.,Gaiser,T.,Naab, J.,&Ewert,F. (2015).Heatstress in cereals: Mechanisms and modelling. European Journal of Agronomy,64,98–113.https://doi.org/10.1016/j.eja.2014.10.003

Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K.J., Thorburn, P., … Winter, J. M. (2013). The Agricultural ModelIntercomparison and Improvement Project (AgMIP): Protocols andpilot studies. Special Issue: Agricultural prediction using climatemodelensembles.Agricultural and Forest Meteorology,170,166–182.https://doi.org/10.1016/j.agrformet.2012.09.011

Rötter,R.P.,Carter,T.R.,Olesen,J.E.,&Porter,J.R.(2011).Crop‐climatemodelsneedanoverhaul.Nature Climate Change,1,175–177.https://doi.org/10.1038/nclimate1152

Ruiz‐Vera,U.M.,Siebers,M.H.,Jaiswal,D.,Ort,D.R.,&Bernacchi,C.J.(2018).Canopywarmingacceleratesdevelopmentinsoybeanandmaize,offsettingthedelayinsoybeanreproductivedevelopmentbyelevatedCO2concentrations.Plant, Cell & Environment,1(12):2806–2820.https://doi.org/10.1111/pce.13410

Sacks,W.J.,Deryng,D.,Foley,J.A.,&Ramankutty,N.(2010).Cropplant‐ingdates:Ananalysisofglobalpatterns.Global Ecology Biogeography,19,607–620.https://doi.org/10.1111/j.1466‐8238.2010.00551.x

Page 15: Dissecting the nonlinear response of maize yield to high ...Engle, & Little, 2015; Zhu et al., 2018). Such observational informa‐ tion could be important ρinput data to drive crop

     |  15ZHU et al.

Sánchez,B.,Rasmussen,A.,&Porter,J.R.(2014).Temperaturesandthegrowthanddevelopmentofmaizeandrice:Areview.Global Change Biology,20,408–417.https://doi.org/10.1111/gcb.12389

Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P.,Deryng,D.,…Frieler,K.(2017).ConsistentnegativeresponseofUScropstohightemperaturesinobservationsandcropmodels.Nature. Communications,8,13931.https://doi.org/10.1038/ncomms13931

Schlenker,W.,&Roberts,M. J. (2009).Nonlinear temperatureeffectsindicate severedamages toU.S. cropyieldsunder climate change.Proceedings of the National Academy of Sciences,106,15594–15598.https://doi.org/10.1073/pnas.0906865106

Siebers,M. H., Slattery, R. A., Yendrek, C. R., Locke, A.M., Drag, D.,Ainsworth,E.A.,…Ort,D.R. (2017).Simulatedheatwavesduringmaize reproductive stages alter reproductive growth but have nolasting effect when applied during vegetative stages. Agriculture, Ecosystems and Environment,240,162–170.https://doi.org/10.1016/j.agee.2016.11.008

Siebers,M.H.,Yendrek,C.R.,Drag,D.,etal.(2015).Heatwavesimposedduringearlypoddevelopmentinsoybean(Glycine max)causesignif‐icantyieldlossdespitearapidrecoveryfromoxidativestress.Global Change Biology,21(8),3114–3125.

Tack,J.,Barkley,A.,&Nalley,L.L.(2015).EffectofwarmingtemperaturesonUSwheatyields.Proceedings of the National Academy of Sciences,112,6931–6936.https://doi.org/10.1073/pnas.1415181112

Tao, F., Yokozawa,M., Xu, Y.,Hayashi, Y.,&Zhang, Z. (2006).ClimatechangesandtrendsinphenologyandyieldsoffieldcropsinChina,1981–2000. Agricultural and Forest Meteorology,138,82–92.https://doi.org/10.1016/j.agrformet.2006.03.014

Tollenaar,M.,&Wu,J.(1999).Yieldimprovementintemperatemaizeisattributabletogreaterstresstolerance.Crop Science,39,1597–1604.https://doi.org/10.2135/cropsci1999.3961597x

USDA. (2015). World Agricultural Supply and Demand Estimates. Washington,D.C.:UnitedStatesDepartmentofAgriculture,1–40.

Wahid,A.,Gelani,S.,Ashraf,M.,&Foolad,M.R.(2007).Heattolerancein plants: An overview.Environmental and Experimental Botany, 61,199–223.https://doi.org/10.1016/j.envexpbot.2007.05.011

Warszawski,L.,Frieler,K.,Huber,V.,Piontek,F.,Serdeczny,O.,&Schewe,J. (2014). The Inter‐Sectoral Impact Model Intercomparison Project(ISI–MIP): Project framework.Proceedings of the National Academy of Sciences,111,3228–3232.https://doi.org/10.1073/pnas.1312330110

Webber,H.,Martre,P.,Asseng,S.,Kimball,B.,White,J.,Ottman,M.,…Ewert,F. (2017).Canopytemperatureforsimulationofheatstressin irrigatedwheat ina semi‐aridenvironment:Amulti‐modelcom‐parison.Field Crops Research. 202,21–35.https://doi.org/10.1016/j.fcr.2015.10.009

Zhu,P., Jin,Z.,Zhuang,Q.,Ciais,P.,Bernacchi,C.,Wang,X.,…Lobell,D. (2018). The important but weakening maize yield benefit ofgrainfillingprolongationintheUSMidwest.Global Change Biology,24(10):4718–4730.https://doi.org/10.1111/gcb.14356

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle. 

How to cite this article:ZhuP,ZhuangQ,ArchontoulisSV,BernacchiC,MüllerC.Dissectingthenonlinearresponseofmaizeyieldtohightemperaturestresswithmodel‐dataintegration. Glob Change Biol. 2019;00:1–15. https://doi.org/10.1111/gcb.14632