Top Banner
Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook Discretized Minimal Surface and Gluon Scattering Amplitudes in N=4 SYM at Strong Coupling Katsushi Ito Tokyo Institute of Technology June 29– July 2, 2009@Integrability in Gauge and String Theory S. Dobashi, K.I. and K. Iwasaki, arXiv:0805.3594, JHEP 07 (2008)088 S. Dobashi and K.I., arXiv:0901.3046, Nucl. Phys. B819 (2009) 18 Katsushi Ito gluon amplitudes
15

Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

Aug 14, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.

. ..

.

.

Discretized Minimal Surface and Gluon ScatteringAmplitudes in N=4 SYM at Strong Coupling

Katsushi Ito

Tokyo Institute of Technology

June 29– July 2, 2009@Integrability in Gauge and String TheoryS. Dobashi, K.I. and K. Iwasaki, arXiv:0805.3594, JHEP 07 (2008)088

S. Dobashi and K.I., arXiv:0901.3046, Nucl. Phys. B819 (2009) 18

Katsushi Ito gluon amplitudes

Page 2: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.Gluon Scattering Amplitudes in N = 4 SYM

Planar L-loop, n-point amplitude

A(L)n (k1, · · · , kn) = A(0)

n (k1, · · · , kn)M(L)n (ε)

the BDS conjecture Bern-Dixon-Smirnov, Anastasiou-Bern-Dixon-Kosower

lnMn(ε) =A2

ε2+

A1

ε

− 1

16f(λ)

nX

i=1

ln

µ2

−si,i+1

«

”2

− g(λ)

4

nX

i=1

ln

µ2

−si,i+1

«

+f(λ)

4F (BDS)

n (0) + C

For n = 4

F BDS4 =

1

2log2

“s

t

+2π2

3

For n ≥ 5, F BDSn (0) = 1

2

Pni=1 gn,i ( Mandelstam variables:

t[r]i ≡ (ki + ... + ki+r−1)

2)

gn,i = −[n/2]−1X

r=2

ln

−t[r]i

−t[r+1]i

!

ln

−t[r]i+1

−t[r+1]i

!

+ Dn,i + Ln,i +3

2ζ2

Katsushi Ito gluon amplitudes

Page 3: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.Test of the BDS conjecture (Weak Coupling)

explicit loop calculation

4-point up to 3-loops [BDS]5-point up to 2-loops [Cachazo et. al. , Bern et. al.]n(≥ 6)-point 1-loop [Bern et. al.]

Discrepancy in 6-point 2-loop amplitude[Bern et. al. 0803.1465]Gluon amplitudes=Wilson loop [Drummond et. al. 0803.1466]

ln MMHV6 = ln W (C6) + const., F WL

6 = F BDS6 + R6(u), R6 6= 0

Non-trivial dependence comes from the function of the cross-ratio

uij,kl =x2

ijx2kl

x2ikx2

jl

, (x2ij = t

[j−i]i )

For n = 6, u13,46, u24,15, u35,26 are independent cross ratios.

Katsushi Ito gluon amplitudes

Page 4: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

Gluon amplitudes = Wilson loop with light-like boundaries

ends at r = R2

zIR→ 0 (zIR → ∞)

yµ: surrounded by the light-likesegments

Mn ∼ exp(−SNG)

k1

k2

r=0

y

SNG: the value of the Nambu-Goto action for the surface surrounded light-likesegments = Area of the minimal surfacestatic gauge: surface y0(y1, y2), r(y1, y2) parametrized by (y1, y2)

SNG =R2

Z

dy1dy2

p

1 + (∂ir)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

r2

Euler-Lagrange equations

∂i

∂L

∂(∂iy0)

«

= 0, ∂i

∂L

∂(∂ir)

«

− ∂L

∂r= 0,

non-linear differential equations, difficult to solve

Test of the BDS conjecture at Strong Coupling

Katsushi Ito gluon amplitudes

Page 5: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.Alday-Maldacena’s Solution

4-point amplitude (s = t): s = −(k1 + k2)2, t = −(k1 + k4)

2

boundary condition:r(±1, y2) = r(y1,±1) = 0,y0(±1, y2) = ±y2,y0(y1,±1) = ±y1

solution: y0 = y1y2,

r =p

(1 − y21)(1 − y2

2)

-1-0.5

00.5

1y1

-1

-0.500.5

1y2

-1

-0.5

0

0.5

1

y0

-1-0.5

00.5

1y1

-1

-0.500.5

1y2

-1-0.5

00.5

1y1

-1

-0.5

0

0.5

1

y20

0.250.5

0.751

r

-1-0.5

00.5

1y1

general (s, t)-solution (SO(2, 4) transformation)conformal boost (b)+scale transformation (a)

r′ =ar

1 + by0, y′

0 =a√

1 + b2y0

1 + by0, y′

1 =ay1

1 + by0, y′

2 =ay2

1 + by0

−s(2π)2 = 8a2

(1−b)2, −t(2π)2 = 8a2

(1+b)2

The area agrees with the BDS formula. Higher-point amplitudes?

Katsushi Ito gluon amplitudes

Page 6: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.Numerical Solutions of Minimal Surfaces in AdS

discretization

square lattice with spacing h = 2M

(i, j) (i, j = 0, · · · , M)y0[i, j] = y0(−1 + hi,−1 + hj)r[i, j] = r(−1 + hi,−1 + hj).

h

h

(i,j)

-1 +1-1

1

y_1

y_2

E-L Equations→ 2(M − 1)2 nonlinear simultaneous equations for y0[i, j] and r[i, j]

Use the same momentum configurations as in Astefanesei-Dobashi-Ito-NastaseSolve these equations numerically. (Newton’s method)Evaluate the action S =

P

L[i, j]h2 using the radial cut-off regularization

S[rc] =R

r(y1,y2)≥rcdy1dy2L

Sdis[rc] =P

r[i,j]≥rcL[i, j]h2

r

y

y

1

2

r=rc

quantitative check of the gluon amplitude/Wilson loop duality and theBDS conjecture at strong coupling

some hints to obtain exact solutions

Katsushi Ito gluon amplitudes

Page 7: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.Minimal surface:4-point amplitude

-1 -0.5 0 0.5 1 -1-0.5

0 0.5

1-1

-0.5 0

0.5 1

y0M=50

exact sol.

y1y2

y0

-1 -0.5 0 0.5 1 -1-0.5

0 0.5

1 0

0.2 0.4 0.6 0.8

1r M=50

exact sol

y1y2

r

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

y 0

rho

M=300y0=rho2/2

y1 = y2 section (M = 300)

S4[rc, b] =

Z

S

dy1dy2L, L =1

(1 − y21)(1 − y2

2)

S: region surrounded by the cut-off curve C

r2c = (1 − y2

1)(1 − y22)

1

(1 + by1y2)2

S4[rc, b] =1

4log

2

r2c

−8π2s

!

+1

4log

2

r2c

−8π2t

!

−1

4log

2(

s

t)−3.289... + O(r

2c log r

2c).

FBDS4 = −

1

4log

2(

s

t) −

π2

3= −

1

4log

2(

s

t) − 3.28987...

Katsushi Ito gluon amplitudes

Page 8: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.Numerical check of the BDS formula: 4-pt amplitude

M = 520

5

10

15

20

25

30

35

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S 4[r c

,b]

rc

b=0.0b=0.0(S4)

b=0.4b=0.4(S4

b=0.8b=0.8(S4)

S[rc, b] vs Sdis[rc, b]

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(Sdi

s 4-SBD

S 4)/S

dis 4

rc

b=0.0b=0.0(exact)

b=0.4b=0.4(exact)

b=0.8b=0.8(exact)

(Sdis4 − SBDS

4 )/Sdis4

Finite rc correction ≤ 6%

numerical error becomes large rc ≤ 0.2 (and large b)

Katsushi Ito gluon amplitudes

Page 9: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.n-point amplitude (conjecture)

S̃n[rc] =18

n∑i=1

(log

r2c

−8π2si,i+1

)2

+Fn(p1, · · · , pn)+O(r2c log2 rc),

Fn = −12FBDS

n + Rn(uij,kl)

remainder function: Rn

It is difficult to distinguish finite rc correction and remainderfunction, numerically.

Gdisn [rc, b] = Sdis

n [rc, b] − Sdisn [rc, 0] : smaller rc correction

Katsushi Ito gluon amplitudes

Page 10: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.Difference of areas with different boost parameters

4-point amplitude:

0

1

2

3

4

5

6

7

8

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

G4[r

c, b]

rc

b=0.2b=0.2 (BDS)

b=0.4b=0.4 (BDS)

b=0.6b=0.6 (BDS)

b=0.8b=0.8 (BDS)

Gdis[rc, b] vs GBDS [rc, b]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.2 0.25 0.3 0.35 0.4 0.45 0.5

(Gdi

s 4-G

BDS 4)

/Gdi

s 4

rc

b=0.4b=0.4(exact)

b=0.6b=0.6(exact)

b=0.8b=0.8(exact)

(Gdis − GBDS)/Gdis

small rc: large fluctuation, large rc: large rc correction(∼10%)

difference 5% at rc = 0.3If we find deviation larger than finite rc correction, thissuggests the existence of the remainder function Rn.

Katsushi Ito gluon amplitudes

Page 11: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.Highre-point amplitudes

6-point solution1

-1 -0.5 0 0.5 1 -1-0.5

0 0.5

1-1

-0.5 0

0.5 1

y0M=50

eq. (2.7)

y1y2

y0

-1 -0.5 0 0.5 1 -1-0.5

0 0.5

1 0

0.2 0.4 0.6 0.8

1 1.2

r M=50eq. (2.7)

y1y2

r

6-point solution2

-1 -0.5 0 0.5 1 -1-0.5

0 0.5

1-1

-0.5 0

0.5 1

y0M=50y1 |y2|

y1y2

y0

-1 -0.5 0 0.5 1 -1-0.5

0 0.5

1 0

0.2 0.4 0.6 0.8

1r M=50

eq. (2.9)

y1y2

r

8-point

-1 -0.5 0 0.5 1 -1-0.5

0 0.5

1 0

0.2 0.4 0.6 0.8

1y0

M=50|y1 y2|

y1y2

y0

-1 -0.5 0 0.5 1 -1-0.5

0 0.5

1 0

0.2 0.4 0.6 0.8

1 1.2

r M=50eq. (2.11)

y1y2

r

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y 2

y1

b=0.0b=0.4b=0.8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y 2

y1

b=0.0b=0.4b=0.8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y 2

y1

b=0.0b=0.4b=0.8

Katsushi Ito gluon amplitudes

Page 12: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.6-point amplitude solution 1

Sdis[rc, b] vs SBDS

5

10

15

20

25

30

35

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S 6(1

) [r c,b

]

rc

b=0.0b=0.0(BDS)

b=0.4b=0.4(BDS)

b=0.8b=0.8(BDS)

Gdis[rc, b] vs GBDS [rc, b]

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

G6(1

) [r c, b

]

rc

b=0.2b=0.2 (BDS)

b=0.4b=0.4 (BDS)

cross ratios are independent of b: u1 = u2 = u3 = 1

SBDS(1)6 [rc, b] =

1

8

n

2 log2(

r2c(1 − b)

8) + 2 log

2(

r2c(1 + b)2

8) + log

2 r2c

4+ log

2(

r2c(1 + b)2

16)o

−1

2

n

log 2 log(1 − b) − 2 log 2 log(1 + b) − 2 log(1 − b) log(1 + b)

+1

2log

2(1 − b) + 3 log

2(1 + b)

o

−3π2

16

=⇒ Rdis6 does not depend on b and is non-zero constant.

Katsushi Ito gluon amplitudes

Page 13: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.6-point amplitude solution 2

Sdis[rc, b] vs SBDS [rc, b]

5

10

15

20

25

30

35

40

45

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S 6(2

) [r c,b

]

rc

b=0.0b=0.0(BDS)

b=0.4b=0.4(BDS)

b=0.8b=0.8(BDS)

Gdis[rc, b] vs GBDS [rc, b]

0

1

2

3

4

5

6

7

8

9

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

G6(2

) [r c, b

]

rc

b=0.2b=0.2 (BDS)

b=0.4b=0.4 (BDS)

b=0.6b=0.6 (BDS)

b=0.8b=0.8 (BDS)

cross ratios are independent of b: u1 = u2 = u3 = 1

SBDS(2)6 [rc, b] =

1

8

n

log2(

r2c(1 − b)2

8) + log

2(

r2c(1 + b)2

8) + 2 log

2(

r2c(1 + b)

8) + 2 log

2(

r2c(1 − b)

8)o

−1

2

n 3

2log

2(1 − b) +

3

2log

2(1 + b) − 2 log(1 − b) log(1 + b)

o

−3π2

16

Katsushi Ito gluon amplitudes

Page 14: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.8-point amplitude

Sdis[rc, b] SBDS [rc, b]

0

5

10

15

20

25

30

35

40

45

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S 6(2

) [r c,b

]

rc

b=0.0b=0.0(BDS)

b=0.4b=0.4(BDS)

b=0.8b=0.8(BDS)

Gdis[rc, b] vs GBDS [rc, b]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

F 8[r c

, b]

rc

b=0.2b=0.2 (BDS)

b=0.4b=0.4 (BDS)

b=0.6b=0.6 (BDS)

b=0.8b=0.8 (BDS)

cross ratios are independent of b: uijkl = 1

SBDS8 [rc, b] =

1

8

n

4 log2(

r2c(1 + b)2

8) + 4 log

2(

r2c

4)o

−1

2

n

4 log2(1 + b) − 4 log 2 log(1 + b) −

π2

6

o

−π2

2

Katsushi Ito gluon amplitudes

Page 15: Discretized Minimal Surface and Gluon Scattering ... · Introduction AdS/CFT correspondence and Gluon amplitudes Numerial Solutions of minimal surface in AdS Conclusions and Outlook..

. . . . . .

IntroductionAdS/CFT correspondence and Gluon amplitudes

Numerial Solutions of minimal surface in AdSConclusions and Outlook

.

.Conclusions and Outlook

For the 4-point amplitude, M = 520 data is numerically consistent withthe BDS formula.

For the 6 and 8-point amplitudes, the present numerical solutions suggestnon-zero constant remainder functions Rn.

Non-trivial momentum configurations =⇒Rn(u).Compare the deviation with the results from weak coupling analysisAnastasiou et al., 0902.2245

Improve numerical solutions (larger M)

AdS3 constraints: r2 − y20 + y2

1 + y22 = 1

Jevicki-Jin-Kalousios 0712.1193, Alday-Maldacena 0903.4701; 0904.0663

Newton method→contragradient method

Hints to obtain exact solution ( without AdS3 constraints)Numerical check of underlying integrable structure at strong coupling(dual conformal symmetry, fermionic T-duality, Yangian)

non-AdS geometry (finite temperature) Ito-Nastase-Iwasaki

Katsushi Ito gluon amplitudes