Top Banner
18 Discrete Space-Time Options Pricing fsrforum jaargang 12 • editie #5 Discrete Space-Time Options Pricing 19 Discrete Space-Time Options Pricing Ilya Gikhman This paper presents a formal ap- proach to the derivatives pricing. In this paper we will study derivatives pricing in a discrete space-time approximation. The primary princi- ple of the pricing theory we intro- duce in the paper is the notion of equality of investment which based on the investors goal : ‘investing in a greater return’. We say that two investments are equal at a moment of time if their instantaneous rates of return at this moment at are equal. If equality of two investments holds any moment of time over [ t , T ] then these investments are equal on [ t , T ]. This definition represents investment equality, IE law or principle which will be applied throughout of the paper for definition of a derivative price. Next we use cash flow notion that implies a series of transactions as a specifi- cation of somewhat broad notion of investment. It is not difficult to see that this concept of the investment equality is a perfect and more accurate than the present value, PV concept. Indeed, if two investments are equal in IE sense then they are equal for any possible scenario or simply to say always. On the other hand, it is clear that if two investments are equal in IE sense then they are equal in the PV. The inverse statement is incor- rect. More accurately, if two investments are equal in the PV sense then it is easy to present exam- ple of a scenario that demonstrates arbitrage opportunity. In this example, the present value of two investments are equal while one investment has a higher rate of return over a time subinter- val and lower over another subinterval than other investment. As far as PV suggests equal price for two investments one can sell a lower rate instrument over the correspondent subinterval and buy the instrument with higher rate of return instrument. Then at the end of this period investor would sell short higher priced instrument which promises lower rate of return over the next period and buy for lower price other instrument which promises higher rate of return. At the end of the period the investor has pure profit for the scenario though two investments have equal PV. This type of the example illustrates the fact that PV reduction of cash flows insufficient to be used as a definition of the equality of two cash flows. Nevertheless, PV reduction might be helpful for construction of the market estimates of the spot or future prices. Bearing in mind that price def- inition depends on a scenario we should be aware that any spot price calculated with the help of PV or other rule implies risk. This risk for buyer is measured by the probability of the events for which scenario’s price is bellow than spot price. 1. Plain Vanilla options valuation. Let us introduce the definition of the plain vanilla option contracts which is a class option cov- ered European and American types. An option is a right to buy or sell an asset at a known price, within a given period of time. The known price, K is called exercise or strike price. The last date, T of the lifetime of the option is called maturity. The right to buy is known as the call option, while the right to sell is the put option. The price of the option also referred to as premium. European options can only be exercised at maturity, whereas American type of the options can be exercised at any moment up to maturity. Let S ( t ) denote an asset spot price at date t, t 0. For- mally an European option contract is defined by its payoff at expiration. The call and put values at expiration T are defined by formulas C ( T , S ( T ) ) = max { S ( T ) – K , 0 } (1.1) P ( T , S ( T ) ) = max { K – S ( T ) , 0 } Thus, a buyer of the call option would agree to exercise the right to buy the underlying asset in case if the value of the call option at maturity T is positive, i.e. if C ( T , S ( T ) ) > 0. It is clear that there is no sense in realization of the right when C ( T , S ( T ) ) 0. On the other hand a buyer of the put option would exercise the right to sell the underlying asset in case if S ( T ) < K, i.e. a put holder is interested to sell asset with price S ( T ) for K when S ( T ) < K. That is a holder of the put option can exercise the right to sell the option when P ( T , S ( T ) ) > 0. Otherwise, if P ( T , S ( T ) ) 0 the right will not be exercised. The option pricing problem is to determine the call ( put ) option price at any moment of time t before the expiration date T. To illustrate pricing methodology we begin with a simple example. Next we use the terms asset, stock, or secu- rity as synonyms. Example 1. Let a stock price at t = 0 be S ( 0 ) = 2 and at T = 1 stock take the values S ( 1 ) = { 5 , 1 }. Introduce the probability space of scenarios of the problem. Denote ω = { u , d }, where u denotes the scenario { S ( 0 ) = 2, S ( 1 ) = 5 }, and d = { S ( 0 ) = 2, S ( 1 ) = 1 }. Putting strike price K = 2 we enable to define the call option price for each scenario. Denote C ( t , x ; T , K , ) the value of the call option for fixed scenario at the moment t , given S ( t ) = x. Here t , x are variables of the function C ( ), while T, K, are interpreted as parameters. The value of param- eters T and K are assumed to be fixed and for the writing simplicity we will omit them next. Let us specify the value of the option along the scenario u . Applying IE principle we arrive at the equation with respect to unknown C ( t = 0 , S ( 0 ) = 2 ; u ) The solution of the equation is C ( 0 , 2 ; u ) = 1.2. Then as far as the option payoff for the scenario u is max { 1 - 2 , 0 } = 0 we put by definition C ( 0 , 2 ; d ) = 0. There is no sense to pay for the option a sum if option value in the future moment is 0. Therefore, by definition we put C ( 0 , 2 ; d ) = 0. The security distribution is the probabilities of the two scenarios: P u = P ( u ), P d = P ( d ). This distribution is assigned then to the option premium. Thus Let us consider two stocks that have probabilities P 1 ( u ) = P 2 ( d ) = 0.99 and P 1 ( d ) = P 2 ( u ) = 0.01 correspondingly. The call option price is the random variable taking values : C i ( 0 , 2 ; u ) = 1, C i ( 0 , 2 ; d ) = 0 , i = 1, 2. Then *) The average rate of return on 1 st stock is equal to 1.48 and – 0.43 on 2 nd stock. **) The average rate of return on call option written on 1 st stock while the average rate of return on call option written on the 2 nd stock is equal to 1.5 %. Assume that market price at t = 0 is equal to the mean of the option at this moment. The expectations of the options price on the 1 st and the 2 nd stocks at t = 0 are c 1 ( 0 , 2 ) = E C 1 ( 0 , 2 ; ) = 1.2 × 0.99 = 1.188 c 2 ( 0 , 2 ) = E C 2 ( 0 , 2 ; ) = 1.2 × 0.01 = 0.012 Other possible estimate of the spot option prices can be based on the PV concept. Assuming that the risk free inter- est is equal to 0 we see that » As far as PV suggests equal price for two investments one can sell a lower rate instrument over the correspondent subinterval and buy the instrument with higher rate of return instrument. We say that two investments are equal at a moment of time if their instantaneous rates of return at this moment are equal. The difference between possible spot prices is the value of risk taken by investors.
8

Discrete space time option pricing forum fsr

May 06, 2015

Download

Documents

Ilya Gikhman
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Discrete space time option pricing forum fsr

18

• D

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ng

fsrforum

• ja

arga

ng 1

2 • ed

itie

#5

Dis

cret

e Sp

ace-

Tim

e O

ptio

ns P

rici

ng •

19

Dis

cret

e Sp

ace-

Tim

e O

ptio

ns P

ricin

g

Ilya

Gik

hm

an

This

pap

er

pre

sents

a f

orm

al a

p-

pro

ach t

o t

he d

eri

vati

ves

pri

cing. In

this

pap

er

we w

ill s

tudy

deri

vati

ves

pri

cing in a

dis

crete

spac

e-t

ime

appro

xim

atio

n. Th

e p

rim

ary

pri

nci

-

ple

of

the p

rici

ng t

heory

we intr

o-

duce

in t

he p

aper

is t

he n

oti

on o

f

equal

ity

of

inve

stm

ent

whic

h b

ased

on t

he inve

stors

goal

: ‘in

vest

ing in

a gre

ater

retu

rn’.

We

say

that

tw

o in

vest

men

ts a

re e

qual

at

a m

omen

t of

tim

e if

th

eir

inst

anta

neo

us

rate

s of

retu

rn a

t th

is m

omen

t at

are

equ

al. I

f eq

ual

ity

of t

wo

inve

stm

ents

hol

ds a

ny

mom

ent

of t

ime

over

[ t

, T

] t

hen

th

ese

inve

stm

ents

are

equ

al o

n [

t ,

T ]

. Th

is d

efin

itio

n r

epre

sen

ts in

vest

men

t

equ

alit

y, I

E l

aw o

r pr

inci

ple

wh

ich

wil

l be

app

lied

th

rou

ghou

t of

th

e pa

per

for

defi

nit

ion

of

a

deri

vati

ve p

rice

. Nex

t w

e u

se c

ash

flow

not

ion

th

at im

plie

s a

seri

es o

f tra

nsa

ctio

ns

as a

spe

cifi

-

cati

on o

f som

ewh

at b

road

not

ion

of i

nve

stm

ent.

It is

not

diff

icul

t to

see

that

this

con

cept

of t

he in

vest

men

t equ

alit

y is

a p

erfe

ct a

nd m

ore

accu

rate

than

the

pres

ent v

alue

, PV

con

cept

. Ind

eed,

if tw

o in

vest

men

ts a

re e

qual

in I

E s

ense

then

they

are

equa

l for

any

pos

sibl

e sc

enar

io o

r si

mpl

y to

say

alw

ays.

On

the

othe

r ha

nd, i

t is

cle

ar t

hat

if tw

o

inve

stm

ents

are

equ

al in

IE

sen

se t

hen

they

are

equ

al in

the

PV.

The

inve

rse

stat

emen

t is

inco

r-

rect

. Mor

e ac

cura

tely

, if t

wo

inve

stm

ents

are

equ

al in

the

PV

sen

se th

en it

is e

asy

to p

rese

nt e

xam

-

ple

of a

sce

nari

o th

at d

emon

stra

tes

arbi

trag

e op

port

unit

y. I

n th

is e

xam

ple,

the

pre

sent

val

ue o

f

two

inve

stm

ents

are

equ

al w

hile

one

inve

stm

ent

has

a hi

gher

rat

e of

ret

urn

over

a t

ime

subi

nter

-

val a

nd lo

wer

ove

r an

othe

r su

bint

erva

l tha

n ot

her

inve

stm

ent.

As

far

as P

V s

ugge

sts

equa

l pri

ce

for

two

inve

stm

ents

one

can

sel

l a lo

wer

rat

e in

stru

men

t ov

er t

he c

orre

spon

dent

sub

inte

rval

and

buy

the

inst

rum

ent w

ith

high

er r

ate

of r

etur

n in

stru

men

t. T

hen

at th

e en

d of

this

per

iod

inve

stor

wou

ld s

ell

shor

t hi

gher

pri

ced

inst

rum

ent

whi

ch p

rom

ises

low

er r

ate

of r

etur

n ov

er t

he n

ext

peri

od a

nd b

uy fo

r lo

wer

pri

ce o

ther

inst

rum

ent w

hich

pro

mis

es h

ighe

r ra

te o

f ret

urn.

At t

he e

nd

of t

he p

erio

d th

e in

vest

or h

as p

ure

prof

it fo

r th

e sc

enar

io t

houg

h tw

o in

vest

men

ts h

ave

equa

l PV.

This

type

of t

he e

xam

ple

illus

trat

es th

e fa

ct th

at P

V r

educ

tion

of c

ash

flow

s in

suffi

cien

t to

be u

sed

as a

def

init

ion

of t

he e

qual

ity

of t

wo

cash

flow

s. N

ever

thel

ess,

PV

red

ucti

on m

ight

be

help

ful f

or

cons

truc

tion

of t

he m

arke

t es

tim

ates

of t

he s

pot

or fu

ture

pri

ces.

Bea

ring

in m

ind

that

pri

ce d

ef-

init

ion

depe

nds

on a

sce

nari

o w

e sh

ould

be

awar

e th

at a

ny s

pot

pric

e ca

lcul

ated

wit

h th

e he

lp o

f

PV

or

othe

r ru

le im

plie

s ri

sk. T

his

risk

for

buye

r is

mea

sure

d by

the

pro

babi

lity

of t

he e

vent

s fo

r

whi

ch s

cena

rio’

s pr

ice

is b

ello

w t

han

spot

pri

ce.

1. P

lain

Van

illa

opti

on

s va

luat

ion

.L

et u

s in

trod

uce

th

e de

fin

itio

n o

f th

e pl

ain

van

illa

opt

ion

con

trac

ts w

hic

h is

a c

lass

opt

ion

cov

-

ered

Eu

rope

an a

nd

Am

eric

an t

ypes

. An

opt

ion

is a

rig

ht

to b

uy

or s

ell a

n a

sset

at

a kn

own

pri

ce,

wit

hin

a g

iven

per

iod

of ti

me.

Th

e kn

own

pri

ce, K

is c

alle

d ex

erci

se o

r st

rike

pri

ce. T

he

last

dat

e,

T o

f th

e li

feti

me

of t

he

opti

on i

s ca

lled

mat

uri

ty. T

he

righ

t to

bu

y is

kn

own

as

the

call

opt

ion

,

wh

ile

the

righ

t to

sel

l is

th

e pu

t op

tion

. T

he

pric

e of

th

e op

tion

als

o re

ferr

ed t

o as

pre

miu

m.

Eu

rope

an o

ptio

ns

can

on

ly b

e ex

erci

sed

at m

atu

rity

, wh

erea

s A

mer

ican

typ

e of

th

e op

tion

s ca

n

be e

xerc

ised

at

any

mom

ent

up

to m

atu

rity

.

Let

S (

t )

den

ote

an a

sset

spo

t pr

ice

at d

ate

t, t

0. F

or-

mal

ly a

n E

uro

pean

opt

ion

con

trac

t is

def

ined

by

its

payo

ff

at e

xpir

atio

n.

Th

e ca

ll a

nd

put

valu

es a

t ex

pira

tion

T a

re

defi

ned

by

form

ula

s

C (

T ,

S (

T )

) =

max

{ S

( T

) –

K ,

0 }

(1

.1)

P (

T ,

S (

T )

) =

max

{ K

– S

( T

) ,

0 }

Th

us,

a b

uye

r of

th

e ca

ll o

ptio

n w

ould

agr

ee t

o ex

erci

se t

he

righ

t to

bu

y th

e u

nde

rlyi

ng

asse

t in

cas

e if

th

e va

lue

of t

he

call

opt

ion

at

mat

uri

ty T

is

posi

tive

, i.e

. if

C (

T ,

S (

T )

) >

0. I

t is

cle

ar t

hat

th

ere

is n

o se

nse

in r

eali

zati

on o

f th

e ri

ght

wh

en C

( T

, S

( T

) )

0

. O

n t

he

oth

er h

and

a bu

yer

of t

he

put

opti

on w

ould

exe

rcis

e th

e ri

ght

to s

ell

the

un

derl

yin

g

asse

t in

cas

e if

S (

T )

< K

, i.e

. a p

ut

hol

der

is in

tere

sted

to

sell

ass

et w

ith

pri

ce S

( T

) f

or K

wh

en S

( T

) <

K. T

hat

is

a h

olde

r of

th

e pu

t op

tion

can

exe

rcis

e th

e ri

ght

to s

ell

the

opti

on w

hen

P (

T ,

S (

T )

) >

0. O

ther

wis

e, i

f P

( T

, S

( T

)

) 0

th

e ri

ght

wil

l n

ot b

e ex

erci

sed.

Th

e op

tion

pri

cin

g pr

oble

m i

s to

det

erm

ine

the

call

( p

ut

)

opti

on p

rice

at

any

mom

ent

of t

ime

t be

fore

th

e ex

pira

tion

date

T.

To i

llu

stra

te p

rici

ng

met

hod

olog

y w

e be

gin

wit

h a

sim

ple

exam

ple.

Nex

t w

e u

se t

he

term

s as

set,

sto

ck, o

r se

cu-

rity

as

syn

onym

s.

Exa

mp

le 1

. Let

a s

tock

pri

ce a

t t

= 0

be

S (

0 )

= 2

an

d at

T

=

1 st

ock

take

th

e va

lues

S (

1 )

=

{

5 , 1

}. I

ntr

odu

ce t

he

prob

abil

ity

spac

e of

sce

nar

ios

of t

he

prob

lem

. Den

ote ω =

{

u ,

d },

wh

ere

u d

enot

es t

he

scen

ario

{ S

( 0

) =

2, S

( 1

) =

5 }

, an

d d

= {

S (

0 )

= 2

, S (

1 )

= 1

}. P

utt

ing

stri

ke p

rice

K =

2 w

e en

able

to

defi

ne

the

call

opt

ion

pri

ce

for

each

sce

nar

io.

Den

ote

C (

t ,

x ;

T ,

K ,

)

th

e va

lue

of

the

call

opt

ion

for

fixe

d s

cen

ario

a

t th

e m

omen

t t

, giv

en

S (

t )

= x

. Her

e t

, x a

re v

aria

bles

of t

he

fun

ctio

n C

( )

, wh

ile

T, K

, a

re i

nte

rpre

ted

as p

aram

eter

s. T

he

valu

e of

par

am-

eter

s T

an

d K

are

ass

um

ed t

o be

fix

ed a

nd

for

the

wri

tin

g

sim

plic

ity

we

wil

l om

it t

hem

nex

t. L

et u

s sp

ecif

y th

e va

lue

of t

he

opti

on a

lon

g th

e sc

enar

io

u .

App

lyin

g IE

pri

nci

ple

we

arri

ve a

t th

e eq

uat

ion

wit

h r

espe

ct t

o u

nkn

own

C (

t =

0

, S (

0 )

= 2

; u

)

Th

e so

luti

on o

f th

e eq

uat

ion

is C

( 0

, 2

; u

) =

1.2

. Th

en

as f

ar a

s th

e op

tion

pay

off

for

the

scen

ario

u

is

max

{ 1

-

2 , 0

} =

0 w

e pu

t by

def

init

ion

C (

0 ,

2 ;

d )

= 0

. Th

ere

is n

o se

nse

to

pay

for

the

opti

on a

su

m if

opt

ion

val

ue

in t

he

futu

re m

omen

t is

0. T

her

efor

e, b

y de

fin

itio

n w

e pu

t C

( 0

,

2 ;

d )

=

0.

Th

e se

curi

ty d

istr

ibu

tion

is

the

prob

abil

itie

s

of t

he

two

scen

ario

s: P

u

=

P (

u

), P

d =

P

(

d )

. Th

is

dist

ribu

tion

is

assi

gned

th

en t

o th

e op

tion

pre

miu

m. T

hu

s

Let

us

con

side

r tw

o st

ocks

th

at h

ave

prob

abil

itie

s P

1 (

u )

= P

2 (

d )

= 0

.99

an

d

P 1

( d

) =

P

2 (

u )

=

0.

01 c

orre

spon

din

gly.

Th

e ca

ll

opti

on p

rice

is

the

ran

dom

var

iabl

e ta

kin

g va

lues

: C

i ( 0

,

2 ;

u )

= 1

, C

i ( 0

, 2

; d

) =

0 ,

i =

1, 2

. Th

en

*)

Th

e av

erag

e ra

te o

f re

turn

on

1st s

tock

is

equ

al t

o 1.

48

and

– 0

.43

on 2

nd

sto

ck.

**)

Th

e av

erag

e ra

te o

f re

turn

on

cal

l op

tion

wri

tten

on

1st

stoc

k

wh

ile

the

aver

age

rate

of

retu

rn o

n c

all

opti

on w

ritt

en o

n

the

2nd

stoc

k is

equ

al t

o 1.

5 %

. Ass

um

e th

at m

arke

t pr

ice

at

t =

0

is e

qual

to

the

mea

n o

f th

e op

tion

at

this

mom

ent.

Th

e ex

pect

atio

ns

of t

he

opti

ons

pric

e on

th

e 1st

an

d th

e 2n

d

stoc

ks a

t t

= 0

are

c 1

( 0

, 2 )

= E

C 1

( 0

, 2 ;

) =

1.2

× 0

.99

= 1

.188

c 2

( 0

, 2 )

= E

C 2

( 0

, 2 ;

) =

1.2

× 0

.01

= 0

.012

Oth

er p

ossi

ble

esti

mat

e of

th

e sp

ot o

ptio

n p

rice

s ca

n b

e

base

d on

th

e P

V c

once

pt. A

ssu

min

g th

at t

he

risk

fre

e in

ter-

est

is e

qual

to

0 w

e se

e th

at

»

As

far

as P

V s

ugg

ests

equ

al p

rice

for

two in

vest

men

ts

on

e c

an

se

ll a

lo

we

r ra

te i

nst

rum

en

t o

ver

the

co

rres

ponden

t su

bin

terv

al

an

d b

uy t

he

in

stru

me

nt

wit

h h

igh

er

rate

of

retu

rn i

nst

rum

en

t.

We

say t

hat

two i

nve

stm

ents

are

e

qu

al

at

a m

om

en

t o

f ti

me

if

the

ir

inst

anta

neo

us

rate

s o

f re

turn

at

this

m

om

en

t a

re e

qu

al.

The

dif

fere

nce

be

twe

en

po

ssib

le

spo

t p

rice

s is

the

valu

e of

risk

ta

ke

n b

y i

nve

sto

rs.

Page 2: Discrete space time option pricing forum fsr

fsrforum

• ja

arga

ng 1

2 • ed

itie

#5

20

• D

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ngD

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ng •

21

Her

e, t

he

last

row

C (

0 ,

S (

0 )

) =

C (

0 ,

2 )

repr

esen

ts t

he

opti

on p

rice

at

tim

e 0.

Eac

h e

ntr

y in

th

e th

ird

row

has

pro

b-

abil

ity

of 1

/ 6

. Th

e si

tuat

ion

rep

rese

nte

d by

th

e Ta

ble

is t

he

sim

ples

t in

sen

se t

hat

th

e op

tion

’s r

etu

rn p

erfe

ctly

rep

lica

tes

the

stoc

k re

turn

. To

illu

stra

te m

ore

a ge

ner

al c

ase

in w

hic

h

the

poss

ibil

ity

perf

ectl

y re

plic

ates

the

stoc

k re

turn

by

the

call

opti

on is

impo

ssib

le w

e as

sum

e, fo

r in

stan

ce, t

hat

K =

$ 2

.5.

Th

e co

rres

pon

den

t op

tion

pay

off a

t m

atu

rity

is t

he

row

C (

1,

S (

1 )

) an

d th

e pr

ice

of t

he

opti

on is

def

ined

by

the

thir

d ro

w.

Its

valu

es c

an b

e ca

lcu

late

d ap

plyi

ng

IE c

once

pt. T

hu

s

S (

1 )

12

34

56

C

( 1, S

( 1 )

)0

00.5

1.5

2.5

3.5

C

( 0, S

( 0 )

)0

01

/3

3/

41

7/

6

Ris

k m

anag

emen

t. M

ean

of

the

opti

on p

rice

at

t =

0

is

0.54

17. H

ence

, if t

he

mar

ket

pric

e of

th

e op

tion

is A

= 0

.541

7

then

if

outc

ome

is 1

or

2 in

vest

or’s

los

ses

are

its

prem

ium

,

i.e. 0

.541

7. T

her

efor

e th

e lo

ss o

f 0.5

417

occu

rs w

ith

pro

babi

l-

ity

1/3.

Th

en t

he

prob

abil

ity

1/6

is a

ssig

n t

o ea

ch o

f th

e n

ext

prof

it-l

oss

outc

omes

: [ 0

.5

– 1

/3 ]

=

0.

17, [

1.5

3/4

]

=

0.75

, [ 2

.5 –

1 ]

= 1

.5,

[ 3.

5 –

7/6

] =

2.3

th

at c

orre

spon

d

to s

tock

val

ues

3, 4

, 5, 6

. We

intr

odu

ce s

ome

use

ful r

isk

char

-

acte

rist

ics.

Th

ese

are

aver

age

prof

it o

f th

e op

tion

def

ined

by

the

form

ula

< P

rofit

( 0

, T ;

K )

> =

E

C (

0, S

( 0

)) χ

{ C

( 1,

S (

1 ))

> K

}

and

aver

age

loss

es

< L

oss

( 0 ,

T ; K

) >

=

E

C (

0, S

( 0

)) χ

{ C

( 1,

S (

1 ))

K

}

The

prof

it-l

oss

rati

o is

< P

rofit

( 0

, T ;

K )

> /

< L

oss

( 0 ,

T ; K

)

>. T

hese

are

pri

mar

y ri

sk c

hara

cter

isti

cs o

f the

opt

ion.

Let u

s hi

ghlig

ht th

e di

ffere

nce

betw

een

Eur

opea

n an

d Am

eric

an

opti

on p

rice

s. C

onsi

der

Amer

ican

opt

ion

wri

tten

on

stoc

k. T

he

IE r

ule

appl

ying

for

the

Eur

opea

n ca

ll or

put

opt

ions

at t

, t <

T

in e

ithe

r di

scre

te o

r co

ntin

uous

tim

e is

a s

olut

ion

of th

e eq

uati

on

0 t

T

. Her

e

c 1

( 0

, 2 )

= E

C 1

( t

= 1

; )

= 3

× 0

.99

=

2.97

c 2

( 0

, 2 )

= E

C 2

( t

= 1

; )

= 3

× 0

.01

=

0.03

We

can

see

th

at t

her

e n

o u

niq

ue

rule

to

defi

ne

a ‘fa

ir’ p

rice

to t

he

opti

on a

s fa

r as

an

y n

um

ber

use

d as

a s

pot

pric

e

impl

ies

the

risk

. Th

e di

ffer

ence

bet

wee

n p

ossi

ble

spot

pri

ces

is t

he

valu

e of

ris

k ta

ken

by

inve

stor

s. T

his

ris

k is

th

e

mar

ket

risk

wh

ich

spe

cifi

ed b

y th

e fu

ture

beh

avio

r of

th

e

un

derl

yin

g as

set.

Th

e ri

sk m

anag

emen

t pr

oble

m is

a c

alcu

-

lati

on o

f th

e m

arke

t ri

sk.

Ris

k m

an

ag

em

en

t.*)

Con

side

r fo

r ex

ampl

e ca

ll o

ptio

n w

ritt

en o

n s

tock

1.

An

inve

stor

pay

s pr

emiu

m A

for

th

e op

tion

at

t =

0 t

akes

ris

k

asso

ciat

ed w

ith

th

e sc

enar

ios

Th

is i

s th

e se

t of

sce

nar

ios

for

wh

ich

rat

e of

ret

urn

on

cal

l

opti

on w

ill

be l

ower

th

an t

he

rate

of

retu

rn o

n u

nde

rlyi

ng

stoc

k. I

nde

ed, b

uyi

ng

call

opt

ion

for

A a

nd

rece

ivin

g S

( T

) -

K a

t T

impl

ies

rate

of r

etu

rn e

qual

to

the

left

han

d si

de o

f th

e

latt

er i

neq

ual

ity

wh

ile

the

righ

t h

and

side

is

the

rate

of

retu

rn o

n s

tock

ove

r th

e sa

me

peri

od.

In o

ther

wor

ds t

his

risk

set

of

scen

ario

s fo

rms

buye

r ri

sk w

hen

in

vest

ors

pay

hig

her

pri

ce f

or s

tock

th

at i

mpl

ies

by t

he

mar

ket.

Th

us

the

prob

abil

ity

P { ω r

isk-

buye

r (

A )

} i

s a

mea

sure

of

the

buye

r

risk

. L

et u

s co

nsi

der

are

mor

e co

mpl

ex c

ase

wh

en r

ando

m

stoc

k ad

mit

s m

ult

iple

val

ues

.

Exa

mple

2. L

et u

s st

udy

th

e ro

llin

g di

ce e

xam

ple

to il

lust

rate

the

mu

ltip

le v

alu

es s

toch

asti

c se

curi

ty i

n t

he

opti

on p

rici

ng

prob

lem

. Let

aga

in a

ssu

me

that

tim

e ta

kes

two

valu

e t

= 0

, 1

wh

ich

are

th

e in

itia

l an

d ex

pira

tion

dat

es o

f th

e op

tion

. Th

e

set

1, 2

..., 6

rep

rese

nts

pos

sibl

e va

lues

of t

he

stoc

k an

d pr

ob-

abil

itie

s of

th

e ev

ents

{ S

( 1

) =

j }

, j =

1, 2

, ...

6 a

re e

qual

to 1

/ 6.

Th

e pa

yoff

at

the

mat

uri

ty is

def

ined

C (

1 ,

S (

1 )

) =

max

{ S

( 1

) –

K ,

0 }

an

d le

t K

= $

0.8

. Th

e va

lue

S (

0 )

=

$2 c

an b

e in

terp

rete

d as

a p

rice

to

roll

th

e di

ce .

App

lyin

g th

e

IE c

once

pt w

e ar

rive

at

the

defi

nit

ion

of t

he

call

opt

ion

pri

ce.

Th

e op

tion

pri

ce is

a r

ando

m v

aria

ble

taki

ng

diff

eren

t va

lues

j -

0. 8

, j =

1, 2

, ...

6. W

e ex

pres

s th

e th

eore

tica

l pri

ce o

f th

e

gam

e w

ith

th

e h

elp

of t

he

tabl

e

S (

1 )

12

34

56

C

( 1, S

( 1 )

)0.2

1.2

2.2

3.2

4.2

5.2

C

( 0, S

( 0 )

) 0

.41

.21

.47

1.6

1.6

81

.73

»

are

payo

ffs

on c

all a

nd

put

opti

ons

at m

atu

rity

T. T

he

Am

eri-

can

opt

ion

can

be

exer

cise

d at

an

y ti

me

up

to m

atu

rity

T.

Th

eref

ore,

its

pay

off

depe

nds

on

tim

e in

terv

al d

uri

ng

wh

ich

the

opti

on c

an b

e ex

erci

sed.

Ass

um

ing

for

sim

plic

ity

that

ris

k

free

rat

e eq

ual

to

0 it

loo

ks r

easo

nab

le t

o ex

erci

se o

ptio

n a

t

the

date

wh

en p

ayof

f rea

ches

its

max

imu

m. H

ence

, th

e ex

er-

cise

pri

ce o

f th

e A

mer

ican

opt

ion

is

{ S

( t

)

- K

, 0

}.

App

lyin

g IE

for

th

e A

mer

ican

cal

l pr

icin

g le

ads

to t

he

equ

a-

tion

for

Am

eric

an c

all o

ptio

n v

alu

e at

t =

0

wh

ere τ ( ω )

= {

t

T :

= m

ax }

. Giv

en d

istr

ibu

tion

S (

t )

an in

vest

or c

an e

stab

lish

th

e le

vel L

su

ch t

hat

th

e A

mer

i-

can

opt

ion

wou

ld b

e ex

erci

sed

befo

re T

if

= L

for

t T

.

Oth

erw

ise

the

opti

on w

ould

be

exer

cise

d at

T if

S (

T )

> K

.

Den

ote

C A

( t

, S

( t

) ;

T )

Am

eric

an o

ptio

n p

rice

at

t. T

hen

C A

( 0

, S (

0 )

; T

= 2

) =

C

E (

0 ,

S (

0 )

; T =

1 )

) χ {

S (

1 )

3

S (

2 )

} +

+ C

E (

0 ,

S (

0 )

; T =

2 ) χ {

S (

2 )

> S

( 1

) }

Not

e, f

or e

xam

ple,

th

at w

hen

th

e ev

ent

{ S

( 1

) 3

S (

2 )

} i

s

tru

e w

hen

an

nu

aliz

ed r

ate

of r

etu

rn o

n s

tock

ove

r th

e pe

riod

[0, 1

] is

hig

her

th

an o

ver

the

peri

od [

0, 2

]. T

he

latt

er fo

rmu

la

expr

esse

s A

mer

ican

opt

ion

pri

ce t

hro

ugh

Eu

rope

an o

ptio

n

pric

e an

d th

e co

ncl

usi

on t

hat

foll

ows

from

th

is fo

rmu

la d

oes

not

coi

nci

de w

ith

a w

ell-

know

n s

tate

men

t th

at t

he

curr

ent

pric

es o

f A

mer

ican

an

d E

uro

pean

opt

ion

s on

no

divi

den

d

asse

t are

iden

tica

l. T

he

last

form

ula

can

be

easi

ly e

xten

ded

on

mu

ltip

le s

teps

eco

nom

y.

In o

ne-

step

eco

nom

y, l

et u

s br

iefl

y ou

tlin

e th

e co

nst

ruct

ion

of t

he

call

opt

ion

pri

ce.

Let

t a

nd

T d

enot

e in

itia

l m

omen

t

and

opti

on m

atu

rity

an

d le

t u

nde

rlyi

ng

valu

es a

t T

an

d st

rike

pric

e sa

tisf

y in

equ

alit

ies:

S 1

< S

2 <

…. <

S p

K

S

p

+ 1

<

… <

S

n

. T

hen

cal

l op

tion

pre

miu

m i

s de

fin

ed a

s a

ran

dom

var

iabl

e

j =

p

+ 1

, …

, n

. If

c 0

is a

mar

ket

pric

e of

th

e op

tion

th

en

the

risk

con

nec

ted

to t

he

pric

e is

a c

han

ce t

hat

rea

lize

d sc

e-

nar

io b

elon

gs t

o th

e se

t

wh

ere

is a

sol

uti

on o

f th

e eq

uat

ion

. Th

is e

quat

ion

spe

cifi

es o

ne-

to-

on

e

corr

espo

nde

nce

bet

wee

n S

to

the

opti

on p

rice

c. I

f th

e va

lue

of th

e u

nde

rlyi

ng

at m

atu

rity

T w

ill b

e be

low

than

S th

en th

is

scen

ario

is

an e

lem

ent

of t

he

risk

y se

t ri

sk (

c

) as

soci

ated

wit

h t

he

inve

stor

’s m

arke

t ri

sk.

We

con

side

r n

ow o

ptio

ns

wri

tten

on

exc

han

ge r

ate.

Th

is

prob

lem

is s

imil

ar t

o th

e pr

oble

ms

stu

died

abo

ve n

ever

the-

less

som

e pe

culi

arit

ies

are

nee

ded

to b

e sp

ecif

ied.

We

wil

l

use

cro

ss c

urr

ency

exc

han

ge a

s u

nde

rlyi

ng

of t

he

opti

on

con

trac

ts. L

et K

den

ote

stri

ke p

rice

mea

sure

d in

$ /

£ an

d q

( t

) de

not

es $

/ £

- ex

chan

ge r

ate

at t

ime

t. T

hat

is £

1 (

t )

=

$ q

( t

) an

d th

eref

ore

a £1

can

be

inte

rpre

ted

as a

por

tion

of

asse

t th

at c

an b

e so

ld o

r bo

ugh

t on

$-m

arke

t. A

ll c

ontr

acts

are

sett

led

by d

eliv

ery

of t

he

un

derl

yin

g cu

rren

cy. B

y de

fin

i-

tion

, th

e co

ntr

act

payo

ff a

t m

atu

rity

T is

N m

ax {

Q (

T )

– K

, 0 }

, wh

ere

N d

enot

es a

con

trac

t si

ze. F

or in

stan

ce, t

he

size

of a

Bri

tish

pou

nd

call

opt

ion

con

trac

t tr

aded

on

PL

HX

is N

= £

31,

250.

Th

e ca

ll o

ptio

n e

quat

ion

(1.

2) c

an b

e re

wri

tten

in t

he

form

Th

en t

he

$-va

lue

of t

he

call

opt

ion

con

trac

t at

dat

e t

is

Th

is f

orm

ula

hol

ds r

egar

dles

s w

het

her

th

e ex

chan

ge r

ate

q

( t

) i

s su

ppos

ed t

o be

sto

chas

tic

or d

eter

min

isti

c. F

or

inst

ance

, let

N =

£ 3

1,25

0, K

= $

/ £ 1

.50,

q (

T )

= $

/ £1

.55.

Th

en p

ayof

f at

mat

uri

ty T

is e

qual

to

N m

ax {

q (

T )

-

K ,

0 }

=

£ 31

,250

× $

/ £

( 1.

55 –

1.5

) =

$ 1,

562.

5

Now

we

appl

y fo

r m

ore

com

plex

opt

ion

pro

blem

that

invo

lves

inte

rmed

iate

mom

ent

of t

ime

wit

h m

ore

than

2 s

tate

s at

expi

rati

on. A

ssu

me

that

th

e va

lue

of 1

00 B

riti

sh p

oun

ds o

ver

thre

e da

tes

0, 1

, 2 a

re g

iven

as

foll

ow

t = 0

t = 1

t = 2

q(2

) = 1

86 p

(185, 186 )

= 1

/4

q(1

) = 1

85, p

(180, 185)

= 2

/3

q(2

) = 1

82 p

(178, 182 )

= 1

/8

q(0

) = 1

80

q(2

) = 1

81 p

(178, 181 )

= 1

/4

q(1

) = 1

78, p

(180, 178)

= 1

/3

q(2

) = 1

79 p(1

85, 179 )

= 3

/4

q(2

) = 1

76 p

(178, 176 )

= 5

/8

wh

ere

p (

a, b

) d

enot

es t

ran

siti

on p

roba

bili

ty f

rom

th

e st

ate

‘a’ t

o st

ate

‘b’.

Ass

um

e th

at a

ll t

ran

siti

ons

are

mu

tual

ly in

de-

pen

den

t. C

onsi

der

Eu

rope

an c

all o

ptio

n w

ith

th

e st

rike

pri

ce

K =

180

. W

e be

gin

wit

h c

alcu

lati

ons

of t

he

opti

on p

rice

by

mov

ing

back

war

d in

tim

e. A

pply

ing

the

met

hod

th

at w

e u

sed

abov

e ov

er p

erio

d it

is e

asy

to s

ee t

hat

and

Th

en

Her

e, p

(a,

b, c

) =

P

{ q

(0)

= a

, q (

1) =

b, q

(2)

= c

}an

d {a

}

{b} i

s th

e u

nio

n o

f tw

o st

ates

‘a’ a

nd

‘b’.

We

sum

mar

ize

cal-

cula

tion

s in

th

e ta

ble

C( 0

, 180 )

C (

1, ω )

C (

2, ω )

p (ω

)

5.8

07

5.9

68

61/

6

1.9

78

1.9

56

21/

24

0.9

94

0.9

83

11/

12

00

017/

24

Th

e pr

obab

ilit

ies

in t

he

fou

rth

col

um

n r

elat

ed t

o th

e ev

ents

in e

ach

cel

l in

th

e ro

w.

Now

let

us

inve

stig

ate

a po

ssib

le

inve

stor

’s s

trat

egy.

Th

e av

erag

e re

turn

on

th

e ex

chan

ge r

ate

over

An

inve

stor

wh

o m

igh

t in

tere

sted

in c

alcu

lati

on o

f th

e va

lue

of th

e op

tion

pri

ce w

hic

h e

xpec

ted

retu

rn w

ould

be

not

wor

se

then

1.0

148.

Th

is p

rice

is a

sol

uti

on o

f th

e eq

uat

ion

E C

( 1

, ω )

/ x =

1.0

148.

Sol

vin

g th

is e

quat

ion

for

x yi

elds

Hen

ce,

the

prem

ium

of

1.14

on

cal

l op

tion

wit

h s

trik

e K

=

180

appr

oxim

atel

y in

ave

rage

pro

mis

es t

he

retu

rn o

f 1.4

8% .

Th

e ri

sk o

f bu

yin

g op

tion

for

$1.1

4 is

th

e pr

obab

ilit

y

The A

meri

can

op

tion

can

be e

xerc

ised

at

any

tim

e u

p

to m

atu

rity

T. T

here

fore

, it

s p

ayoff

dep

ends

on t

ime

inte

rval

du

rin

g w

hic

h t

he o

pti

on

can

be e

xerc

ised

.A

ssu

min

g f

or

sim

plici

ty t

hat ri

sk f

ree

rate

equ

al t

o 0

it l

oo

ks

rea

son

ab

le t

o e

xerc

ise

op

tio

n a

t th

e d

ate

w

he

n p

ayo

ff r

ea

che

s it

s m

axim

um

.

(1.2

)

(1.3

)

Page 3: Discrete space time option pricing forum fsr

fsrforum

• ja

arga

ng 1

2 • ed

itie

#5

22

• D

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ngD

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ng •

23

(2.1

)

(2.2

)

(2.3

)

(2.4

)

C cn (

0, 180 )

C cn (

1, ω )

C cn (

2, ω )

p (ω

)

0.9

677

0.9

946

11/

6

0.9

89

0.9

78

11/

24

0.9

945

0.9

834

11/

12

00

017/

24

Eac

h r

aw in

th

is t

able

rep

rese

nts

a p

ath

of t

he

call

opt

ion

for

a fi

xed

scen

ario

ω 0

=

{ q

( 0, ω 0 )

, q (

1, ω 0 )

, q (

2, ω 0 )

} a

nd

ther

efor

e fo

r th

e fi

xed

scen

ario ω 0 t

he

opti

on’s

rat

es o

f ret

urn

coin

cide

wit

h t

he

corr

espo

nde

nt

rate

s of

ret

urn

of t

he

un

der-

lyin

g ex

chan

ge r

ate.

Sim

ilar

cla

ss o

f exo

tics

is a

sset

s-or

-not

h-

ing

call

an

d pu

t op

tion

s pa

yoff

at

mat

uri

ty a

re d

efin

ed a

s

Can

( T

, q

( T

))

= q

( T

) χ {

q (

T )

> K

}

Pan

( T

, q

( T

))

= q

( T

) χ {

q (

T )

< K

}

Th

e pr

icin

g fo

rmu

las

can

be

deri

ved

from

the

gen

eral

pri

cin

g

form

ula

s

Can

( t

, q

( t

))

= N

q (

t ) χ {

q (

T )

> K

}

Pan

( t

, q

( t

))

=

N q

( t

) χ {

q (

T )

< K

}

Gap

opt

ion

s ar

e co

nta

cts

for

wh

ich

Eu

rope

an c

all p

ayof

f is

be

wri

tten

in t

he

form

Cg (

T ,

q (

T )

) =

( q

( T

) –

R

) χ {

q (

T )

> K

}

wh

ere

K, R

are

kn

own

con

stan

ts a

nd

K >

R. T

he

valu

e of

th

e

con

trac

ts c

an b

e re

pres

ente

d by

th

e ca

sh-o

r-n

oth

ing

opti

on

solu

tion

wh

ere

X =

q (

T )

– R

. Th

e ga

p-pu

t pa

yoff

is

Pg (

T ,

q (

T )

) =

( R

- q

( T

)) χ {

q (

T )

< K

}

wh

ere

K <

R. T

hen

th

e ga

p-pu

t pr

icin

g fo

rmu

la c

an b

e pe

r-

form

by

the

seco

nd

form

ula

(2.

1) w

her

e X

= R

– q

( T

).

Pay

late

r op

tion

s ca

ll a

nd

put

payo

ffs

are

defi

ned

by

form

ula

s

Cpl (

T ,

q (

T ))

= [

q (

T )

- K

- C

pl (

t ,

q (

t ))

] χ {

q (

T )

> K

}

P pl (

T ,

q (

T ))

= [

K -

q (

T )

- P

pl (

t ,

q (

t ))

] χ {

q (

T )

< K

}

wh

ere

Cpl (

t ,

q (

t )

) ,

Ppl (

t ,

q (

t )

) a

re t

he

valu

es o

f th

e

opti

ons

at th

eir

date

of o

rigi

nat

ion

dat

e t a

nd

paid

on

ly o

n th

e

exer

cise

of

the

opti

ons.

Th

ese

are

up-

fron

t pa

ymen

ts p

aid

at

date

t.

We

show

th

at t

he

payl

ater

pay

off

can

be

neg

ativ

e. T

o

prod

uce

th

e va

luat

ion

of

the

prob

lem

on

e n

eeds

to

use

th

e

ben

chm

ark

form

ula

(1.

3).

Th

e so

luti

on o

f th

is e

quat

ion

wh

en N

= 1

can

be

pres

ente

d in

th

e fo

rm

Cpl (

t ,

q (

t ))

=

C

pl (

T ,

q (

T )

)

Bea

rin

g in

min

d fo

rmu

la (1

.3) t

he

abov

e eq

uat

ion

can

be

rep-

rese

nte

d in

th

e fo

rm

Cpl (

t , q

( t )

) =

[ q

( T

) -

K -

Cpl (

t , q

( t )

) ] χ {

q ( T

) >

K }

Sol

vin

g th

e eq

uat

ion

for

Cpl (

t ,

q (

T )

) w

e ar

rive

at

the

call

payl

ater

opt

ion

pri

ce

Cpl (

t , q

( t )

) =

(

q ( T

) -

K )

χ {

q (

T )

> K

} =

=

(

q (

T )

-

K )

χ {

q (

T )

> K

}

Th

is m

igh

t be

a h

igh

ris

k fo

r an

in

vest

or. N

ote

that

on

e ca

n

reac

h a

n a

rbit

rary

hig

h a

vera

ge r

etu

rn b

y ch

osen

th

e op

tion

pric

e su

ffic

ien

tly

smal

l bu

t th

e ri

sk o

f an

y pr

ice

wil

l be

not

less

th

an 1

7/24

. We

can

use

dat

a pr

ovid

ed b

y th

e la

tter

Tab

le

to p

rese

nt c

alcu

lati

on fo

r th

e p

ut o

ptio

n. C

onsi

der

Eu

rope

an

put

opti

on w

ith

th

e st

rike

K =

182

. Th

en

and

Th

en

Th

e m

ean

an

d st

anda

rd d

evia

tion

of

the

put

prem

ium

are

2.86

97,

2.05

98 c

orre

spon

din

gly.

Let

for

exa

mpl

e, i

nve

stor

pays

$1

prem

ium

for

th

e pu

t op

tion

th

en t

he

risk

to

rece

ive

at e

xpir

atio

n l

ess

retu

rn t

han

in

vest

ed i

s 7/

24.

Th

is l

oss

is

asso

ciat

ed w

ith

th

e sc

enar

io

{ q

(2)

= 1

86, 1

82, o

r 18

1 }

If t

he

put

prem

ium

is $

4 th

en t

he

risk

is

P [

q (

2 )

= {

186

, 182

, 181

, 179

}]

= 1

9/24

.

2. Ex

oti

cs o

pti

on

s.

In t

his

sec

tion

, w

e in

trod

uce

opt

ion

pri

cin

g fo

rmu

las

for

som

e po

pula

r ex

otic

cla

sses

. T

he

exot

ics

or n

on-s

tan

dard

opti

ons

are

thos

e w

hic

h p

ayof

f ca

nn

ot b

e re

duce

d to

Am

eric

an o

r E

uro

pean

opt

ion

s. T

hey

are

div

ided

on

to t

wo

prim

ary

clas

ses

refe

rred

to

as

to

pa

th-d

epen

den

t an

d

path

-in

depe

nde

nt.

Exo

tic

opti

ons

are

gen

eric

nam

e of

thes

e de

riva

tive

s. E

xoti

c op

tion

s ar

e re

ferr

ed t

o as

pat

h-

inde

pen

den

t if

th

eir

payo

ff d

oes

not

dep

end

on t

he

path

duri

ng

the

life

tim

e of

th

e op

tion

.

Cas

h-o

r-n

oth

ing o

ptio

ns

also

kn

own

as

digi

tal

or b

inar

y

opti

ons.

Th

e ca

ll a

nd

put

digi

tal

opti

ons

are

defi

ned

by

thei

r pa

yoff

at

mat

uri

ty a

s

Ccn

( T

, q

( T

))

= X

χ {

q (

T )

> K

}

Pcn

( T

, q

( T

))

= X

χ {

q (

T )

< K

}

wh

ere

X is

a p

rede

term

ined

con

stan

t an

d q

( t

) ca

n b

e in

ter-

pret

ed a

s a

spot

exc

han

ge r

ate

in d

olla

rs p

er u

nit

of

fore

ign

curr

ency

at

tim

e t,

t

T.

Not

e, t

hat

in

con

tras

t to

th

e co

n-

tin

uou

s pa

yoff

of t

he

Eu

rope

an o

r A

mer

ican

opt

ion

s th

e di

g-

ital

opt

ion

s h

ave

disc

onti

nu

ous

payo

ff.

Th

e co

nst

ant

X i

s

usu

ally

ass

um

ed e

qual

to 1

. Th

e va

luat

ion

of t

he

opti

ons

con

-

trac

ts c

an b

e re

pres

ente

d by

th

e fo

rmu

la

Ccn

( T

, q

( T

))

=

N

X χ {

q (

T )

> K

}

P cn

( T

, q

( T

))

=

N

X χ {

q (

T )

< K

}

Her

e N

is

the

con

trac

t si

ze e

xpre

ssed

in

for

eign

cu

rren

cy, K

is t

he

stri

ke p

rice

, q

( T

)

is t

he

curr

ency

exc

han

ge r

ate

at

date

T. L

et u

s th

e n

um

eric

exa

mpl

e. A

ssu

me

that

th

e u

nde

r-

lyin

g se

curi

ty d

ata

is g

iven

by

the

Tabl

e on

pag

e 7

and

N =

X

= 1

. Th

en u

sin

g th

e sa

me

alge

bra

one

arri

ves

at t

he

tabl

e

χ {

q (

T )

K

1 } =

1 - χ {

q (

T )

> K

1 }

χ {

q (

T )

( K

1 , K

2 ]

} =

χ {

q (

T )

> K

1 } - χ {

q (

T )

> K

2 }

one

can

see

that

pay

off o

f the

col

lar

can

be p

rese

nted

as

follo

win

g

I (

T )

= K

1 -

K1 χ {

q (

T )

> K

1 } +

q (

T ) χ {

q (

T )

> K

1 } -

- q

( T

) χ {

q (

T )

> K

2 } +

K

2 χ

{ q

( T

) >

K2 }

= K

1 +

+ [

q (

T )

- K

1 ] χ {

q ( T

) >

K1 }

- [

q ( T

) -

K2 ] χ {

q ( T

) >

K2

}

Th

e ri

ght

han

d si

de o

f th

is e

qual

ity

is e

qual

to

a po

rtfo

lio

hol

din

g $K

1 ca

sh,

lon

g E

uro

pean

cal

l w

ith

th

e st

rike

pri

ce

K1

, an

d sh

ort

Eu

rope

an c

all

wit

h t

he

stri

ke p

rice

K2.

T

his

deco

mpo

siti

on o

f th

e co

llar

pay

off i

s n

ot u

niq

ue.

In

deed

, on

e

can

be

easi

ly v

erif

y ot

her

pay

off’s

rep

rese

nta

tion

I (

T )

= K

1 +

K2

- q

( T

) +

[ q

( T

) -

K

1 ] χ {

q (

T )

> K

1 } -

- [

K2 -

q (

T )

] χ {

q (

T )

< K

2 }

Thus

col

lar

payo

ff is

equ

ival

ent

now

to

the

valu

e of

the

por

tfol

io

that

con

tain

s $(

K1

+ K

2 ) c

ash

, sho

rt s

tock

, lo

ng E

urop

ean

call,

and

shor

t E

urop

ean

put.

The

pric

e of

a c

olla

r co

ntra

ct a

t an

y

tim

e pr

ior

expi

rati

on c

oinc

ides

wit

h th

e va

lue

of th

e po

rtfo

lio.

We

intr

oduc

e di

rect

eva

luat

ion

of t

he c

olla

r co

ntra

ct a

pply

ing

form

ula

(2.4

). It

follo

ws

that

the

col

lar

payo

ff (2

.4)

is t

he b

aske

t

of th

e th

ree

hypo

thet

ical

fina

ncia

l ins

trum

ents

wit

h pa

yoffs

at

I 1 ( T

) =

K 1 χ

{ q

( T

)

K1

}

I 2 ( T

) =

q (

T ) χ {

q (

T )

(

K 1 ,

K 2

] }

I 3 ( T

) =

K 2 χ

{ q

( T

) >

K 2

}

wit

h th

e sa

me

mat

urit

y T.

The

n th

e co

llar

cont

ract

pri

ce a

t t is

I (

t )

= I

1 ( t

) +

I 2 (

t )

+ I

3 ( t

) ,

wh

ere

Sim

ilar

ly,

P pl (

t ,

q (

t ))

=

(

K -

q (

T )

) χ {

q (

T )

> K

}

In t

he

nex

t Ta

ble

we

encl

ose

the

valu

atio

n o

f th

e pa

ylat

er c

all

opti

on w

hen

un

derl

yin

g is

th

e va

lue

of fo

reig

n c

urr

ency

un

it

wh

ich

val

ue

give

n b

y th

e Ta

ble

on p

age

7.

C pl (

0, 180 )

C pl (

1, ω )

C pl (

2, ω )

p (ω

)

0.2

.911

2.9

919

3.0

89

1/

6

0.9

944

0.9

889

1.0

056

1/

24

0.4

978

0.4

958

0.5

022

1/

12

00

017/

24

Inde

ed, a

pply

ing

form

ula

(2.

3) w

e se

e th

at

Not

e th

at w

e om

itte

d fo

r w

riti

ng

sim

plic

ity

inde

x ‘p

l’ th

at

spec

ifie

s pa

ylat

er o

ptio

n. O

ne

mig

ht

not

e th

at t

he

risk

ch

ar-

acte

rist

ics

of t

he

payl

ater

cal

l op

tion

as

wel

l as

oth

er e

xoti

cs

call

opt

ion

wit

h t

he

sam

e st

rike

pri

ce h

ave

been

in

trod

uce

d

abov

e co

inci

de w

ith

th

e co

rres

pon

den

t ri

sk c

har

acte

rist

ics

of

the

stan

dard

Eu

rope

an o

ptio

n w

ith

th

e sa

me

stri

ke p

rice

. All

thes

e op

tion

s of

fere

d th

e sa

me

retu

rn t

hou

gh t

hei

r pr

emi-

um

s an

d pa

yoff

s ar

e di

ffer

ent.

A c

oll

ar c

on

trac

t pa

yoff

at

mat

uri

ty T

is d

efin

ed b

y a

form

ula

I (

T )

= m

in {

max

{ q

( T

) ,

K1

} ,

K 2

}}.

Not

e th

at t

his

pay

off c

an b

e re

wri

tten

in a

mor

e co

mpr

ehen

-

sive

form

I ( T

) =

K1 χ

{ q (

T )

K1 }

+ q

( T

) χ {

q ( T

) (

K1 ,

K2

] } +

+

K2 χ {

q (

T )

> K

2 }

Bel

ow w

e w

ill

intr

odu

ce s

tan

dard

arg

um

ents

th

at p

erfo

rm

the

valu

atio

n o

f th

e co

llar

con

trac

t. U

sin

g id

enti

ties

The

exo

tics

or

non-s

tandard

opti

ons

are

th

ose

w

hic

h p

ayo

ff c

an

no

t b

e r

educe

d t

o A

mer

ican o

r E

uro

pea

n o

pti

ons .

Th

ey a

re d

ivid

ed

in

to t

wo

p

rim

ary

cla

sse

s re

ferr

ed

to

as

path

-de

pe

nd

en

t

an

d p

ath

-in

de

pe

nd

en

t.

»

Page 4: Discrete space time option pricing forum fsr

fsrforum

• ja

arga

ng 1

2 • ed

itie

#5

24

• D

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ngD

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ng •

25

Th

eref

ore,

th

e re

turn

to

the

choo

ser

opti

on c

an b

e re

pre-

sen

ted

in t

he

form

Rec

all t

hat

exc

han

ge r

ate

q (

* )

is t

he

un

derl

yin

g pr

oces

s fo

r

adm

issi

ble

scen

ario

s. T

her

efor

e th

e eq

uat

ion

for

co

( t

, q

)

cou

ld b

e pr

esen

ted

in t

he

form

Sol

vin

g th

is e

quat

ion

, w

e fi

gure

ou

t th

at t

he

valu

e of

th

e

choo

ser

opti

on is

A c

liqu

et o

r ra

tch

et o

ptio

n is

a s

erie

s of

at

the

mon

ey o

ptio

ns,

wit

h p

erio

dic

sett

lem

ent,

res

etti

ng

of t

he

stri

ke p

rice

at

the

rese

t da

te s

pot

pric

e le

vel,

at w

hic

h t

he

opti

on l

ocks

in

th

e

diff

eren

ce b

etw

een

th

e ol

d an

d n

ew s

trik

e pr

ices

an

d pa

ys

that

dif

fere

nce

ou

t as

th

e pr

ofit

. Th

is p

rofi

t m

igh

t be

pai

d ou

t

at e

ach

res

et d

ate

or c

ould

be

accu

mu

late

d u

nti

l m

atu

rity

.

Th

us,

a c

liqu

et o

ptio

n c

an b

e th

ough

t, a

s a

seri

es o

f op

tion

s

that

set

tles

per

iodi

call

y at

th

e re

set

date

s is

an

exa

mpl

e of

th

e

path

-dep

ende

nt

clas

s of

opt

ion

s.

Let

us

intr

odu

ce a

n-y

ears

cli

quet

opt

ion

wit

h k

-res

ets

ann

u-

ally

. Let

t j i

be

rese

t m

omen

ts o

f tim

e j =

0, 1

, … ,

n ;

i = 0

, 1,

…k

– 1

and

T d

enot

es m

atu

rity

. Th

e pa

yoff

ove

r th

e pe

riod

[ t j

i , t

j i +

1 ]

th

at is

du

e to

pai

d at

th

e t

j i +

1 is

max

{ q

( t

j i +

1 )

- q

( t

j i )

, 0

}

Th

is f

orm

ula

cor

resp

onds

to

the

case

wh

en o

ptio

n w

rite

r

pays

ou

t pe

riod

ical

ly a

t th

e re

set

date

s. D

enot

e th

e u

nde

rly-

ing

of t

he

cliq

uet

opt

ion

q (

s )

= q

( s

; t

, x )

, s

t a

nd

C (

t ,

x ; T

, Q

) t

he

valu

e of

th

e E

uro

pean

cli

quet

cal

l opt

ion

at d

ate

t wit

h s

trik

e pr

ice

Q a

nd

expi

rati

on d

ate

T. A

pply

ing

IE

valu

atio

n w

e ar

rive

at

the

pric

ing

equ

atio

n

A ch

oo

ser

or a

s-yo

u-l

ike

op

tio

n i

s ot

her

exo

tic

opti

on

type

. A

hol

der

of t

his

opt

ion

can

ch

oose

wh

eth

er t

he

opti

on i

s a

call

or

put

afte

r sp

ecif

ied

peri

od o

f ti

me.

An

inte

rest

ing

poin

t is

th

at t

he

choo

ser

opti

on p

ayof

f do

es

not

spe

cify

it

as c

all

or p

ut

opti

ons.

Mor

e ac

cura

tely

, th

is

type

of

deri

vati

ves

cou

ld b

e n

amed

as

a fo

rwar

d-ch

oice

opti

ons

con

trac

t. C

onsi

der

a ch

oose

r op

tion

th

at m

atu

res

at m

omen

t T ch

, t

he

mat

uri

ty o

f th

e u

nde

rlyi

ng

call

an

d

put

den

ote

T c ,

Tp

res

pect

ivel

y m

in (

T c ,

Tp

) >

Tch

. T

hu

s,

the

valu

es o

f u

nde

rlyi

ng

call

an

d pu

t at

th

e da

te T

ch

are

C (

Tch

, q (

T ch )

; T c ,

Kc

) a

nd

P (

Tch

, q

(Tch

) ;

Tp,

Kp

)

corr

espo

ndi

ngl

y, q

( t

) i

s th

e u

nde

rlyi

ng

secu

rity

of

the

call

and

put

opti

ons,

an

d K

c ,

Kp

are

the

corr

espo

nde

nt

stri

ke

pric

es. T

he

payo

ff t

o th

e ch

oose

r op

tion

at

mat

uri

ty T

ch is

co (

T ch ,

q (T

ch )

) =

m

ax {

C (

Tch

, q

(Tch

) ;

T c , K

c )

, P

( T

ch ,

q (T

ch )

; T

p, K

p )

}

Not

e th

at t

he

payo

ff c

an b

e ex

pres

sed

in t

he

form

co (

T ch ,

q (T

ch )

) =

C (

Tch

, q

(Tch

) ;

T c , K

c )

×

× χ

{ C

( T

ch ,

q (

T ch )

; T c ,

Kc

)

P (

Tch

, q

(Tch

) ;

T p , K

p )

} +

+ P

( T

ch ,

q (

T ch )

; T

p , K

p ) χ

{C

( T

ch ,

q (

T ch )

; T c ,

Kc )

< P

(

T ch ,

q (T

ch )

; T

p , K

p )}

Usi

ng

expl

icit

rep

rese

nta

tion

of t

he

call

an

d pu

t pr

ices

giv

en

by (

1.2.

1) it

is e

asy

to v

erif

y eq

ual

itie

s

exch

ange

rat

es q

( s

) ,

s

t. A

n i

nve

stor

bu

ys t

he

ladd

er

opti

on w

ith

a s

trik

e pr

ice

Q =

Q 0.

Th

us

a la

dder

sta

rt w

ith

the

hei

ght

Q a

nd

goin

g u

pwar

ds in

th

e st

ep in

terv

al o

f ε >

0 u

nti

l

the

max

imu

m r

un

g of

Q N

, Q

j =

Q +

j ε

, j =

0, 1

, … ,

N. A

t

mat

uri

ty,

T b

uye

r of

th

e la

dder

cal

l op

tion

wou

ld r

ecei

ve

payo

ff

Fro

m t

his

for

mu

la,

foll

ows

that

th

e la

dder

pay

off

take

s in

to

acco

un

t th

e m

axim

um

val

ue

of t

he

un

derl

yin

g pr

ice

over

life

tim

e of

th

e op

tion

. To

con

stru

ct l

adde

r ca

ll o

ptio

n p

rice

assu

me

that ω

{ ω :

Q j

< Q

j +

1 }

for

som

e j .

Th

en l

adde

r ca

ll o

ptio

n p

ayof

f re

aliz

ed f

or t

his

sce

nar

io w

ill

be e

qual

to

C la

d (

T ,

q (

T )

) =

max

{ q

( T

) -

Q ,

Q j

- Q

}

Th

eref

ore

the

IE r

ule

bri

ngs

us

to t

he

valu

atio

n e

quat

ion

Th

us

Rem

ark.

Oth

er m

odif

icat

ion

of

the

ladd

er c

all

opti

on c

an b

e

intr

odu

ced

by a

ssu

min

g th

at c

all

opti

on p

ayof

f is

def

ined

as

foll

owin

g

In t

his

cas

e in

wh

ich

th

e pa

yoff

is s

imil

ar t

o th

e la

dder

wh

ich

adm

its

a fi

nit

e n

um

ber

of v

alu

es 0

, Q 1 -

Q, …

, Q

N –

Q w

ith

prob

abil

itie

s P

j =

P{

Q j

Q j +

1 }

,

j =

0,

1,

… ,

N -

1,

and

P N

=

P

{ >

Q N

}.

Th

e

valu

atio

n f

orm

ula

in

th

is c

ase

can

be

obta

ined

fro

m t

he

abov

e fo

rmu

la b

y re

plac

ing

payo

ff i

n t

he

brac

kets

by

its

mod

ific

atio

n.

Th

e pu

rch

aser

of

the

ladd

er p

ut

wil

l re

ceiv

e at

mat

uri

ty

payo

ff o

f

Hen

ce,

C (

t j

i , q

( t

j i )

; t

j i +

1 ,

q (

t j i )

)

=

Usi

ng

this

form

ula

, we

can

cal

cula

te c

liqu

et c

all v

alu

e re

cur-

sive

ly.

On

th

e ot

her

han

d, t

he

pres

ent

valu

e at

t o

f th

e st

o-

chas

tic

cash

flo

ws

gen

erat

ed b

y th

e se

ries

of

1) t

he

init

ial

valu

es o

f th

e fo

rwar

d st

art

opti

ons

and

2) p

ayof

f of

th

ese

opti

ons

are

equ

al t

o

corr

espo

ndi

ngl

y.

If c

is

spot

pri

ce o

f th

e op

tion

at

t th

en

buye

r an

d se

ller

ris

k ca

n b

e es

tim

ated

by

prob

abil

itie

s P

{ C

(

t , x

, ω )

< c

} ,

P {

PC

( t

, x

, ω )

< c

} w

hic

h a

re t

he

mea

s-

ure

of

scen

ario

s w

hen

th

ese

cou

nte

rpar

ties

pay

s m

ore

than

the

scen

ario

s pr

ovid

e fo

r.

A C

ou

ple

opt

ion

is a

sim

ilar

typ

e of

th

e cl

iqu

et o

ptio

ns.

As

for

cliq

uet

opt

ion

, pa

yoff

to

a h

olde

r co

uld

tak

e pl

ace

eith

er a

t

spec

ifie

d re

set

date

s or

at

mat

uri

ty.

Th

e on

ly d

isti

nct

ion

betw

een

cou

ple

and

cliq

uet

is th

at t

he

cou

ple

opti

ons

at r

eset

date

s sw

itch

its

valu

e to

th

e sm

alle

r of

th

e cu

rren

t sp

ot le

vel

and

the

init

ial

stri

ke p

rice

. T

he

cash

flo

w g

ener

ated

by

the

cou

ple

call

opt

ion

is

wh

ere

t =

t 0

< t

1 < …

< t

N =

T a

re r

eset

dat

es, a

nd

min

[ q

(

t j )

, K

] i

s re

set

stri

ke p

rice

. T

he

pric

e of

th

e ca

ll a

nd

put

cou

ple

opti

ons

are

C cp

( t

j , q

( t

j ) ;

t j +

1 ,

min

[ q

( t

j ) ,

K ]

)

=

P cp

( t

j , q

( t

j ) ;

t j +

1 ,

min

[ q

( t

j ) ,

K ]

)

=

A la

dder

opt

ion

pay

off

is a

lso

sim

ilar

to

a cl

iqu

et p

ayof

f w

ith

exce

ptio

n t

hat

th

e ga

ins

are

lock

ed i

n w

hen

th

e as

set

pric

e

brea

ks t

hro

ugh

cer

tain

pre

dete

rmin

e ru

ng.

Th

e st

rike

pri

ce

is t

hen

in

term

itte

ntl

y re

set.

Con

side

r a

ladd

er o

ptio

n o

n

A c

liquet

or

ratc

het

opti

on

is

a s

eri

es

of

at

the

mo

ne

y o

pti

on

s,

wit

h p

eri

od

ic s

ett

lem

en

t, r

ese

ttin

g o

f th

e s

trik

e p

rice

at

th

e r

ese

t d

ate

sp

ot

pri

ce l

eve

l, a

t w

hic

h t

he

op

tio

n l

ock

s in

th

e d

iffe

rence

bet

wee

n t

he

old

and n

ew s

trik

e p

rice

s a

nd

p

ays

that

dif

fere

nce

ou

t a

s th

e p

rofi

t.

»

Page 5: Discrete space time option pricing forum fsr

fsrforum

• ja

arga

ng 1

2 • ed

itie

#5

26

• D

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ngD

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ng •

27

exte

ndi

ble

expi

rati

on d

ate.

Th

e ad

diti

onal

pre

miu

m o

f $d

is

paid

by

the

hol

der

in c

ase

wh

en e

xten

sion

fea

ture

is

chos

en

to e

xerc

ise

at T

e . T

her

e ar

e n

ew fa

ctor

s in

volv

ed t

o th

e pr

ob-

lem

. Va

luat

ion

equ

atio

n o

f th

e ca

ll e

xten

dibl

e ca

n b

e re

pre-

sen

ted

in t

he

form

Th

e in

dica

tor

on t

he

righ

t h

and

side

of t

he

equ

alit

y co

nta

ins

un

ion

of

two

even

ts,

wh

ich

sig

nif

y th

at a

t le

ast

one

of t

he

poss

ibil

itie

s at

Te

shou

ld b

e st

rict

ly p

osit

ive.

Oth

erw

ise,

th

e

valu

e of

C eh

( T

e , q

( T

e ))

and

C eh

( t

, q

( t

)) fo

r th

is p

arti

cu-

lar

scen

ario

is 0

.

Taki

ng

this

in

to a

ccou

nt

and

solv

ing

call

opt

ion

pri

ce e

qua-

tion

we

arri

ve a

t th

e pr

emiu

m fo

rmu

la

Th

e fo

rmu

la fo

r th

e h

olde

r ex

ten

dibl

e pu

t op

tion

can

be

per-

form

in t

he

sim

ilar

way

A r

ecip

roca

l pro

blem

giv

en o

ptio

n p

rice

to e

stim

ate

the

valu

e

of t

he

prem

ium

d is

impo

rtan

t to

o.

A w

rite

r ex

ten

dibl

e op

tion

all

ows

a se

ller

of

the

opti

on,

opti

on w

rite

r to

ext

end

the

opti

on e

ith

er c

all o

r pu

t wit

h z

ero

cost

at

the

mat

uri

ty T

e if

th

e op

tion

is

out-

of-m

oney

. R

ecal

l

that

opt

ion

cal

l ( p

ut

) is

ou

t-of

-mon

ey a

t da

te t

if it

s va

lue

at

this

mom

ent

is l

ess

( la

rger

) or

equ

al t

o th

e st

rike

pri

ce.

Th

us,

if o

ptio

n h

ave

a n

egat

ive

valu

e it

s ca

n b

e ex

erci

se la

ter

at a

dat

e T.

Th

eref

ore,

wri

ter

exte

ndi

ble

payo

ff o

f th

e ca

ll a

nd

put

are

equ

al t

o

C ew

( T

e , q

( T

e ))

= [

q (

Te )

- Q

] χ {

q (

T e )

Q }

+ [

q (

T )

- Q

] χ {

q (

T e ) <

Q }

Her

e, Q

– M

<

Q –

M +

1

< …

<

Q –

1 <

Q

is

a ru

ng

sequ

ence

.

Th

e pr

icin

g eq

uat

ion

for

the

ladd

er p

ut

is

if ω

{ ω :

< Q

– M }

. Th

e va

lue

of th

e pu

t lad

der

opti

on

is t

hen

Ext

endib

le o

ptio

ns

hav

e be

com

e po

pula

r ov

er r

ecen

t ti

me

for

vola

tile

un

derl

yin

g. T

her

e ar

e tw

o ty

pes

of t

he

exte

ndi

ble

opti

ons:

hol

der

and

wri

ter

exte

ndi

ble.

A h

olde

r ex

ten

dibl

e

opti

on i

s an

opt

ion

th

at c

an b

e ex

ten

ded

by t

he

hol

der

at

opti

on m

atu

rity

Te.

Th

is p

ossi

bili

ty i

s re

quir

ed a

n a

ddit

ion

al

prem

ium

. Th

e h

olde

r of

th

e ex

ten

dibl

e op

tion

on

cal

l or

pu

t

has

a c

hoi

ce t

o ge

t an

ord

inar

y ca

ll o

ptio

n p

ayof

f or

by p

ayin

g

a pr

edet

erm

ine

prem

ium

$d

to t

he

wri

ter

at t

ime

T e to

get

call

opt

ion

wit

h e

xten

ded

mat

uri

ty.

Ass

um

e th

at t

he

hol

der’

s ch

oice

is

base

d on

th

e m

axim

um

valu

e of

th

e op

tion

pay

offs

at

T e . T

hat

is

C eh

( T e ,

q (

T e ))

=

max

{{ q

( T e )

- Q

, 0

} , C

( T e ,

q (

T e ) ;

T ,

K )

- d

} =

=

max

{ q

( T

e ) -

Q ,

C (

Te ,

q (

Te )

; T

, K

) -

d ,

0 }

,

P eh

( T

e , q

( T

e ))

=

max

{ Q

- q

( T

e ) ,

P (

Te ,

q (

Te )

; T

, K

) -

d ,

0 }

Th

ough

for

exam

ple

opti

on b

uye

r at

Te m

ay e

xpec

t ov

er [

Te ,

T ]

to

get

hig

her

ove

rall

ret

urn

by

exer

cise

ext

endi

bili

ty t

han

to g

et c

all o

ptio

n p

ayof

f at

T e an

d in

vest

ing

it a

t ri

sk fr

ee r

ate.

We

do n

ot a

nal

yse

such

pos

sibi

lity

.

In a

bove

form

ula

s C

( T

e , x

; K

, T

) ,

P (

Te ,

x ;

K ,

T )

den

ote

the

pric

e of

th

e E

uro

pean

cal

l or

pu

t op

tion

s at

dat

e Te

wit

h

a st

rike

pri

ce K

th

at m

igh

t be

equ

al t

o Q

, an

d T

, T

> T

e is

the

Th

ese

deri

vati

ve c

ontr

acts

can

be

inte

rpre

ted

as d

eriv

ativ

es

hav

ing

vari

able

str

ikes

in

con

tras

t to

a c

onst

ant

stri

ke u

sed

in t

he

prev

iou

s ex

ampl

es.

Th

e pr

icin

g fo

rmu

las

to t

he

con

-

trac

ts c

an b

e ob

tain

ed u

sin

g st

anda

rd I

E p

rici

ng

rule

. In

deed

,

only

tw

o po

ssib

ilit

ies

are

avai

labl

e u

nde

rlyi

ng

exch

ange

an

d

deri

vati

ves.

If a

sce

nar

io ω is

su

ch th

at C

e ( T

; Δ

,T 0 )

= 0

then

ther

e is

no

sen

se t

o in

vest

in

ext

rem

e ca

ll. I

f C

e ( T

; Δ

,T 0

)

> 0

th

en t

her

e is

th

e u

niq

ue

pric

e to

avo

id a

rbit

rage

. T

his

pric

e is

def

ined

as

a so

luti

on o

f th

e eq

uat

ion

Hen

ce,

Sim

ilar

ly,

Oth

er p

ath

-dep

ende

nt

opti

on c

lass

is

Lookbac

k o

ptio

ns.

Th

e

extr

eme

exot

ic o

ptio

ns

intr

odu

ced

abov

e so

met

imes

are

con

-

side

red

as s

ubc

lass

of l

ookb

ack

opti

ons

and

call

ed it

ext

rem

a

look

back

opt

ion

s. T

wo

prim

ary

form

s of

the

look

back

opt

ion

s

exis

t ba

sed

on s

trik

e pr

ice

defi

nit

ion

. Fir

st fo

rm is

def

ined

as

look

back

opt

ion

s w

ith

fix

ed s

trik

e pr

ice.

Th

e pa

yoff

s of

th

e

call

an

d pu

t op

tion

s ar

e

resp

ecti

vely

. A

pply

ing

the

sam

e ar

gum

ents

as

for

extr

eme

opti

ons

pric

ing

we

arri

ve a

t th

e fo

rmu

las

Th

e lo

okba

ck o

ptio

ns

wit

h fl

oati

ng

stri

ke p

rice

can

be

sett

led

in c

ash

or

asse

ts i

n c

ontr

ast

wit

h t

he

fixe

d st

rike

opt

ion

s in

wh

ich

cas

h s

ettl

emen

t is

on

ly a

dmit

ted.

Th

e pa

yoff

of

the

look

back

cal

l an

d pu

t op

tion

s w

ith

flo

atin

g st

rike

pri

ce a

re

defi

ned

as

foll

owin

g

P ew

( T

e , q

( T

e ))

= [

Q -

q (

Te )

] χ {

Q

q (

Te )

} +

[ Q

- q

(

T )

] χ {

Q

q (

Te )

}

corr

espo

ndi

ngl

y. T

hes

e pa

yoff

typ

es g

ive

addi

tion

al b

enef

it t

o

buye

rs o

f th

e ca

ll o

r pu

t op

tion

s. T

he

firs

t te

rm o

n t

he

righ

t

han

d si

de o

f th

e ca

ll a

nd

put

opti

on p

ayof

fs,

corr

espo

nd

to

“in

-th

e-m

oney

” sc

enar

ios

at T

e wh

ile

the

seco

nd

term

impl

ies

“ou

t-of

-th

e-m

oney

” sc

enar

ios.

B

y u

sin

g ex

ten

ded

feat

ure

does

not

cos

t or

im

ply

mor

e lo

sses

for

cou

nte

rpar

ties

. T

he

valu

atio

n e

quat

ion

of

wri

ter

exte

ndi

ble

call

an

d pu

t op

tion

s

can

be

pres

ente

d in

th

e fo

rm

= Th

ese

pric

ing

equ

atio

ns

brin

g u

s to

th

e va

luat

ion

form

ula

s

Not

e th

at E

uro

pean

typ

e of

th

e u

nde

rlyi

ng

opti

ons

can

als

o

be r

epla

ced

by A

mer

ican

opt

ion

s.

Th

e E

xtre

me

or

Rev

erse

Ext

rem

e ex

oti

c opti

on

s w

as i

ntr

o-

duce

d in

199

6. C

all

extr

eme

opti

ons

payo

ff a

t m

atu

rity

T i

s

dete

rmin

ed b

y th

e di

ffer

ence

bet

wee

n m

axim

um

val

ues

on

com

plim

ent

subi

nte

rval

s co

nst

itu

ted

the

life

tim

e of

an

un

derl

yin

g as

set.

Let

t <

T 0

< T

an

d de

not

e Δ

= [

t ,

T ]

. Th

en

payo

ffs

to t

he

call

opt

ion

at

mat

uri

ty f

or t

he

extr

eme

and

inve

rse

extr

eme

opti

ons

are

C e (

T ; Δ

,T 0

) =

m

ax {

q

( v

) -

q

( u

) ,

0 }

C i e (

T ; Δ

, T

0 )

=

max

{

q (

u )

-

q (

v )

, 0

}

Th

e pa

yoff

s to

pu

t ex

trem

e an

d pu

t in

vers

e ex

trem

e op

tion

s

at m

atu

rity

get

th

e sp

read

val

ue

betw

een

min

imu

m o

ver

adja

cen

t pe

riod

s, i.

e.

P e (

T ; Δ

, T

0 ) =

m

ax {

q

( v

) -

q

( u

) ,

0 }

P i e (

T ; Δ

, T

0 ) =

m

ax {

q

( u

)

- q

( v

) ,

0 }

»

Page 6: Discrete space time option pricing forum fsr

fsrforum

• ja

arga

ng 1

2 • ed

itie

#5

28

• D

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ngD

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ng •

29

In t

he

firs

t li

ne,

th

e ar

ith

met

ic a

vera

ge is

use

d, a

s th

e u

nde

r-

lyin

g w

hil

e in

th

e se

con

d li

ne

form

ula

s th

e ar

ith

met

ic m

ean

is u

sed

as a

str

ike

pric

e. S

omet

imes

, in

cu

rren

cy m

arke

t on

e

appl

ies

the

inve

rse

mea

n a

s u

nde

rlyi

ng.

In th

is c

ase,

cal

l - p

ut

opti

ons

payo

ffs

are

defi

ned

by

form

ula

s

max

{ a

– 1 (

T )

- K

, 0

}

,

m

ax {

K

- a

– 1 (

T )

, 0

}

whe

re a

– 1 (

T )

is

expr

esse

d in

the

sam

e cu

rren

cy a

s th

e a

( T

)

itse

lf. T

he

pric

ing

form

ula

s ar

e

Th

e C

om

po

un

d o

pti

on

s is

a c

lass

of

deri

vati

ves

in w

hic

h

un

derl

yin

g se

curi

ties

are

opt

ion

s or

oth

er t

ype

of c

onti

n-

gen

t cl

aim

s. C

onsi

der

exam

ples

wh

en u

nde

rlyi

ng

inst

ru-

men

ts a

re o

ptio

ns.

Th

is c

lass

is

call

ed c

ompo

un

d or

spl

it

free

opt

ion

s. P

ossi

ble

spec

ific

atio

ns

are

call

opt

ion

s on

a

call

or

put

opti

ons,

an

d pu

t on

cal

l or

pu

t. L

et C

( t

, q

( t

)) =

C (

t ,

q (

t );

T, K

) d

enot

e a

valu

e of

an

Eu

rope

an c

all

opti

on a

t da

te t

wit

h t

he

mat

uri

ty T

an

d t

he

stri

ke p

rice

K w

ritt

en o

n r

ate

q ( *

). C

onsi

der

an o

ptio

n o

n c

all o

ptio

n.

Den

ote

C c

( t

, q

( t

))

=

C c

( t

, C

( t

, q

( t

) ;

T c

, K

c )

;

T, K

) t

he

com

pou

nd

call

opt

ion

pri

ce a

t t

wri

tten

on

th

e

Eu

rope

an c

all

opti

on a

t da

te t

wit

h m

atu

rity

T c ,

T c

T

wit

h s

trik

e pr

ice

K c

. T

hen

th

e pa

yoff

of

the

com

pou

nd

call

opt

ion

is

C c (

T c ,

C (

T c ,

q (

T c )

; T c ,

Kc )

; T,

K )

= m

ax {

C (

T c ,

q (

T c )

; T

, K

) –

K c ,

0 }

Th

e va

luat

ion

form

ula

of t

he

call

on

cal

l opt

ion

is

App

lyin

g tw

ice

the

IE r

ule

we

pres

ent

the

valu

atio

n o

f th

is

equ

atio

n

Not

e th

at t

he

pric

e of

th

e co

mpo

un

d op

tion

at

t de

pen

ds o

n

the

un

derl

yin

g ra

te q

( t

) a

t tw

o fu

ture

dat

es T

c <

T. L

et u

s

con

side

r ot

her

typ

es o

f com

pou

nd

opti

on. T

he

pric

ing

equ

a-

tion

of t

he

put

wri

tten

on

Eu

rope

an c

all o

ptio

n is

An

att

ract

ive

pecu

liar

ity

of t

he

look

back

opt

ion

s w

ith

flo

at-

ing

stri

ke p

rice

is t

hat

th

ey a

re n

ever

ou

t-of

-th

e-m

oney

. Th

e

form

ula

e re

pres

enti

ng

curr

ent

opti

ons

pric

e ar

e

Asi

an o

ptio

ns

is a

pop

ula

r cl

ass

of e

xoti

cs.

Un

derl

yin

g of

an

Asi

an o

ptio

n i

s th

e av

erag

e pr

ice

of a

sset

. In

man

y ca

ses,

un

derl

yin

g of

Asi

an o

ptio

n h

as lo

wer

vol

atil

ity

than

th

e as

set

itse

lf.

Th

ere

are

thre

e m

ain

su

bcla

sses

of

the

Asi

an o

ptio

ns

wh

ich

un

derl

yin

g ar

e fo

rmed

wit

h t

he

hel

p of

ari

thm

etic

,

geom

etri

c, o

r w

eigh

ted

aver

ages

of

asse

t. N

ext

spec

ific

atio

n

of t

he

opti

ons

is t

hat

th

e av

erag

e ca

n b

e u

sed

for

eith

er s

ecu

-

rity

or

as t

he

stri

ke p

rice

. T

hu

s, t

he

payo

ff f

or A

sian

cal

l

opti

ons

can

be

repr

esen

ted

as

Asi

an p

ut

payo

ff u

sin

g th

e ar

ith

met

ic m

ean

as

un

derl

yin

g or

stri

ke p

rice

can

be

pres

ente

d in

th

e fo

rm

corr

espo

ndi

ngl

y. T

he

Am

eric

an s

tyle

of

the

Asi

an o

ptio

ns

is

also

ava

ilab

le fo

r tr

ade.

Th

e pr

icin

g fo

rmu

las

are

wh

ere

q (

t j

) =

q (

t j

; t

, x )

, j

= 0

, 1, …

, n

. For

th

e A

sian

opti

ons

wit

h th

at in

volv

e th

e ge

omet

ric

or w

eigh

ted

aver

ages

to o

btai

n v

alu

atio

n f

orm

ula

e on

e n

eeds

rep

lace

ari

thm

etic

aver

age

in th

e ab

ove

form

ula

e by

thei

r ge

omet

ric

or w

eigh

ted

aver

age

cou

nte

rpar

ts.

Th

e A

sian

opt

ion

s of

th

e E

uro

pean

or

Am

eric

an t

ypes

are

path

dep

ende

nt

clas

s of

exo

tic

opti

ons.

Un

derl

yin

g of

an

Asi

an o

ptio

n i

s an

ave

rage

pri

ce o

f an

ass

et.

Th

e se

curi

ty

aver

age

pric

e ca

n b

e u

sed

as a

str

ike

pric

e to

o. B

y co

mpa

riso

n

wit

h o

ther

opt

ion

s it

s va

lues

are

les

s vo

lati

le d

uri

ng

its

life

and

this

is q

uit

e at

trac

tive

for

inve

stor

s. T

hre

e ty

pes

of m

ean

are

gen

eral

ly a

ppli

ed f

or A

sian

opt

ion

pay

off.

Th

ese

are

pay-

offs

for

m b

y ei

ther

ari

thm

etic

, w

eigh

ted

arit

hm

etic

, or

geo

-

met

ric

aver

ages

Not

e th

at t

hes

e ty

pes

of m

ean

can

be

use

d as

un

derl

yin

g

secu

riti

es a

s w

ell

as a

str

ike

pric

e. F

or e

xam

ple,

Asi

an c

all

and

put

opti

ons

payo

ffs

wit

h a

rith

met

ic m

ean

cou

ld b

e

defi

ned

as

foll

owin

g

max

{ a

( T

) -

K ,

0 }

, m

ax {

q (

T )

- a

( T

) ,

0 }

max

{ K

- a

( T

) ,

0 }

, m

ax {

a (

T )

- S

( T

) ,

0 }

con

tain

s N

× ₤

( t

) a

nd

oth

er q

( t

) N

× $

( t

). A

t a

mom

ent

T ,

T >

t t

he

valu

es o

f th

e po

rtfo

lios

wil

l be

chan

ged.

Th

e in

i-

tial

con

stan

t q

( t

) re

mai

ns

un

chan

ged

wh

ile

N $

( t

) w

ill b

e

tran

sfor

med

in

N $

( T

).

Th

e va

lue

of t

he

seco

nd

port

foli

o

wil

l be

equ

al t

o ₤

N (

T )

. A

s fa

r as

th

ese

port

foli

os a

re n

ot

equ

al a

t T

it

look

s re

ason

able

to

hed

ge t

he

exch

ange

rat

e

wit

h t

he

hel

p of

th

e de

riva

tive

s co

ntr

act

wh

ich

giv

es a

n

inve

stor

th

e op

tion

to

choo

se a

t m

atu

rity

T t

he

max

imu

m

betw

een

$ N

( T

) a

nd

₤ N

( T

) /

q (

t )

=

$ N

( T

). F

or t

his

con

trac

t on

e ca

n

spec

ify

payo

ff a

t T

max

{ 1

, ₤

1 (

T )

/ ₤

1 (

t )

} =

max

{ 1

, }

For

wri

tin

g si

mpl

icit

y pu

t N

= 1

. T

he

pric

e of

th

e ra

inbo

w

con

trac

t ca

n b

e de

rive

d as

foll

owin

g. F

or a

sce

nar

io ω

1

, wh

ere

1

= { ω :

1 }

th

e va

lue

of t

he

payo

ff is

$1

at T

. It

impl

ies

that

at

the

init

ial m

omen

t t

the

con

trac

t va

lue

is B

( t

, T

). O

n t

he

oth

er h

and,

if a

sce

nar

io ω b

elon

gs t

o th

e

com

plim

enta

ry s

et o

f sce

nar

ios

> 1 =

{ ω :

>

1 }

th

e va

lue

of t

he

con

trac

t at

t c

an b

e

deri

ved

from

th

e co

ndi

tion

off

ered

equ

al r

etu

rn o

n U

SA

T-bo

nd

and

the

choo

ser

opti

on, i

.e.

ch (

t )

den

otes

th

e m

ax-c

hoo

ser

opti

on v

alu

e at

t. T

he

solu

-

tion

of t

he

equ

atio

n is

Ch

( t

, ω )

=

. Th

eref

ore,

we

can

pre

sen

t th

e pr

e-

miu

m v

alu

e of

th

e op

tion

con

trac

t

A s

pot

mar

ket

pric

e ch

0 ( t

) im

plie

s ri

sk. B

uye

r ri

sk is

con

-

nec

ted

to s

cen

ario

s, w

hic

h i

mpl

y lo

wer

pri

ce t

han

pai

d by

the

buye

r, i

.e. { ω :

Ch

( t

, ω )

< c

h 0

( t

) },

wh

ile

sell

er r

isk

is t

he

com

plem

enta

ry s

et o

f sc

enar

ios.

Th

eore

tica

lly,

th

e

valu

e ch

0 (

t )

is c

onst

ruct

ed w

ith

“ca

sh-a

nd-

carr

y” s

trat

-

egy.

Th

is s

trat

egy

defi

nes

a s

pot

pric

e as

th

e pr

esen

t va

lue

of

the

face

val

ue

at m

atu

rity

an

d th

eref

ore

ch 0 (

t )

= B

( t

, T

). U

nfo

rtu

nat

ely,

we

shou

ld r

emar

k th

at i

n s

toch

asti

c se

t-

tin

g w

e co

uld

not

ign

ore

mar

ket

flu

ctu

atio

ns

oth

erw

ise

we

wil

l ig

nor

e th

e m

arke

t ri

sk. I

n o

ther

han

d if

mar

ket

has

an

expl

icit

tre

nd

wit

h r

espe

ct t

o ri

sk-f

ree

then

th

is e

stim

ate

of

the

pric

e co

uld

be

bias

ed t

oo.

Th

e ra

inbo

w o

ptio

n c

lass

is

som

ewh

at s

imil

ar t

o th

e ca

ll

opti

on. T

o h

igh

ligh

t th

is s

imil

arit

y on

e ca

n d

efin

e a

vari

atio

n

of t

he

con

trac

t w

hic

h p

ayof

f is

Th

e so

luti

on o

f th

is e

quat

ion

can

be

wri

tten

as

Th

e pr

icin

g of

the

com

pou

nd

call

or

put w

ritt

en o

n E

uro

pean

put

opti

on c

an b

e ob

tain

ed in

a s

imil

ar w

ay a

n c

an b

e re

pre-

sen

ted

in t

he

form

Let

us

con

side

r a

deri

vati

ve c

ontr

act

that

adm

its

a ch

oice

betw

een

tw

o or

mor

e fo

reig

n b

onds

at

a fu

ture

mom

ent

of

tim

e. T

his

type

of t

he

con

trac

t ca

lled

opt

ion

s on

max

imu

m o

r

min

imu

m o

f se

vera

l ri

sky

asse

ts .

Th

is c

lass

of

opti

ons

is

rela

ted

to t

he

rain

bow

or

choo

ser

opti

ons.

Rai

nbo

w o

ptio

ns

get

thei

r n

ame

from

th

e fa

ct t

hat

mor

e th

an o

ne

exch

ange

rate

. Ass

um

e th

at a

t m

atu

rity

T a

hol

der

of t

he

con

trac

t h

as

the

righ

t to

ch

oose

a b

ond

dom

esti

c or

fore

ign

. Ass

um

e th

at

at in

itia

l mom

ent

t, t

he

size

of t

wo

con

trac

ts is

th

e sa

me.

Let

q (

t )

den

ote

indi

rect

qu

otat

ion

of a

n e

xch

ange

rat

e be

twee

n

two

curr

enci

es a

t t

1 u

nit

of

fore

ign

cu

rren

cy (

at

date

t )

=

q

( t

) u

nit

s of

th

e

dom

esti

c cu

rren

cy (

at

date

t )

Th

e in

dire

ct q

uot

atio

n v

alu

e q

– 1 (

t ) s

how

s a

nu

mbe

r fo

reig

n

curr

ency

un

its

per

dom

esti

c cu

rren

cy. T

he

valu

e of

a g

over

n-

men

t a

0-de

fual

t an

d 0-

cou

pon

bon

d at

t w

ith

un

it fa

ce v

alu

e

is d

efin

ed b

y th

e re

lati

onsh

ip

1 u

nit

cu

rren

cy (

at

date

T )

= B

( t

, T

) 1

un

it c

urr

ency

(at

date

t )

Rec

all,

that

bon

d va

lue

can

als

o be

in

terp

rete

d as

a r

elat

ion

-

ship

bet

wee

n f

utu

re a

nd

curr

ent

valu

es o

f th

e cu

rren

cy. F

or

exam

ple,

let

us

dom

esti

c cu

rren

cy is

US

D a

nd

fore

ign

is G

BP.

Let

at

init

ial

mom

ent

t w

e h

ave

two

equ

al p

ortf

olio

s. O

ne

»

Page 7: Discrete space time option pricing forum fsr

fsrforum

• ja

arga

ng 1

2 • ed

itie

#5

30

• D

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ngD

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ng •

31

That

is

Q ×

[ S

( T

; t

, S (

t )

) ]

= Q

S (

T ;

t , Q

S (

t )

)

It d

oes

not

dep

end

on a

form

in w

hic

h t

his

low

is g

iven

. Th

e

low

in p

arti

cula

r ca

n b

e re

pres

ente

d by

a s

toch

asti

c or

det

er-

min

isti

c eq

uat

ion

. Th

e so

luti

on t

he

pric

ing

equ

atio

n c

an b

e

perf

orm

in t

he

form

Th

e ra

inbo

w w

ith

min

imu

m o

f n r

isky

ass

ets

payo

ff is

sim

ilar

to t

he

best

of

n a

sset

s st

udi

ed a

bove

. In

ord

er t

o pr

esen

t

form

al v

alu

atio

n o

f a

con

trac

t on

e sh

ould

rep

lace

th

e ‘m

ax’

on ‘m

in’ o

pera

tion

s in

th

e ab

ove

form

ula

s.

Oth

er t

ype

of t

he

exot

ic c

ontr

acts

is

spre

ad o

ptio

ns.

Th

e

payo

ff f

or E

uro

pean

cal

ls a

nd

puts

at

mat

uri

ty T

wit

h t

he

stri

ke p

rice

K c

an b

e w

ritt

en a

s

C sd

( T

, S 1 (

T )

, S 2 (

T )

) =

max

{ S

1 ( T

) -

S 2 (

T )

- K

, 0

}

P sd (

T , S

1 ( T

) , S

2 ( T

) )

= m

ax {

K -

S 1 (

T )

+ S

2 ( T

) ,

0 }

resp

ecti

vely

. Th

e ge

ner

aliz

atio

n o

n n

-ass

ets

in l

ong

posi

tion

and

m-a

sset

s in

sh

ort

is s

trai

ghtf

orw

ard.

For

exa

mpl

e

As

far

as t

he

un

derl

yin

g of

th

e sp

read

opt

ion

is a

lin

ear

com

-

bin

atio

n o

f th

e as

sets

th

e pr

ice

of t

he

call

on

spr

ead

can

be

expr

esse

d by

equ

atio

n

Fro

m w

hic

h it

foll

ows

that

Th

e pr

ice

of t

he

put

spre

ad o

ptio

n c

an b

e de

rive

d si

mil

arly

Now

, we

wil

l lo

ok a

t a

popu

lar

type

of

exot

ics

opti

ons

call

ed

bar

rier

opti

on

. T

his

is

a fa

mil

y of

th

e pa

th-d

epen

den

t. T

he

wh

ich

lead

s to

th

e co

ntr

act

pric

e

Gen

eral

izat

ion

of

the

rain

bow

opt

ion

s on

th

ree

or m

ore

un

derl

yin

g cu

rren

cies

is s

trai

ghtf

orw

ard.

Den

ote

q i

( t

) th

e

dire

ct q

uot

atio

n o

f i-

th c

urr

ency

, i =

1, 2

, … w

ith

res

pect

to

dom

esti

c U

S d

olla

r. I

f th

e pa

yoff

to

the

opti

on a

t m

atu

rity

is

chos

en a

s

Th

en t

he

pric

e in

US

D o

f th

e (

n +

1)-

max

-rai

nbo

w o

ptio

n a

t

date

t is

Let

us

con

side

r th

e ca

se w

hen

n a

sset

s an

d ca

sh a

re in

volv

ed

in p

ayof

f. W

e w

ill

see

that

th

e pr

icin

g fo

rmu

las

for

the

con

-

trac

t th

at d

eals

wit

h t

he

max

imu

m o

f se

vera

l st

ocks

dif

fer

from

th

e on

e pr

esen

ted

abov

e. I

t fo

llow

s fr

om t

he

fact

th

at

fore

ign

exc

han

ge m

arke

t in

stru

men

ts c

an b

e co

mpa

red

if

they

h

ave

the

sam

e cu

rren

cy

form

at

and

ther

efor

e th

e

exch

ange

rat

es p

lay

a si

gnif

ican

t ro

le in

val

uat

ion

s.

Let

( t

) ,

…,

S n

( t

) d

enot

e pr

ice

of n

– a

sset

s. A

ssu

me

that

th

e pa

yoff

is g

iven

at

mat

uri

ty T

wh

ere

K 3 0

is a

con

stan

t ca

sh. T

he

reas

onab

le c

hoi

ce a

t T

for

the

con

trac

t is

on

e th

at s

ugg

ests

th

e m

axim

um

ret

urn

.

Th

eref

ore,

the

pric

ing

equ

atio

n c

an b

e pr

esen

ted

as fo

llow

ing

wh

ere

rain

bow

( t

) d

enot

es t

he

con

trac

t pr

ice

at d

ate

t. T

he

righ

t h

and

side

of

the

equ

atio

n c

an b

e si

mpl

ifie

d. I

nde

ed,

putt

ing

S i

( T

) =

S i

( T

; t

, S i

( t

)) a

nd

taki

ng

into

acc

oun

t

the

lin

ear

depe

nde

nce

of

S i

( T

) o

n in

itia

l val

ue

S i

( t

) on

e

can

see

th

at t

he

righ

t h

and

side

of t

he

equ

atio

n a

bove

can

be

rew

ritt

en in

th

e fo

rm

max

{ S

1 ( T

; t

, 1 )

, …

, S

n (

T ;

t , 1

) ,

B –

1 ( t

, T

) }

The

linea

r de

pend

ence

of

an a

sset

on

the

init

ial

valu

e fo

llow

s

from

the

fact

tha

t an

y po

rtio

n Q

of a

sset

s pr

ice

Q S

( *

) o

ver

a

peri

od o

f tim

e is

gov

erne

d by

the

sam

e lo

w a

s th

e si

ngle

ass

et.

valu

e of

th

e ba

rrie

r op

tion

is

spec

ifie

d by

an

eve

nt

wh

eth

er

the

un

derl

yin

g ra

te c

ross

es a

giv

en b

arri

er. T

her

e ar

e tw

o di

f-

fere

nt

way

s of

in

ters

ecti

ons

rega

rded

as

‘in’ o

r ‘o

ut’

an

d tw

o

type

s of

th

e le

vel

‘up’

or

‘dow

n’

wit

h r

espe

ct t

o th

e in

itia

l

valu

e of

th

e sp

ot r

ate.

A d

oubl

e ba

rrie

r op

tion

is

a ba

rrie

r

opti

on w

ith

tw

o ‘u

p’ a

nd

‘dow

n’ b

arri

ers.

The

dow

n-a

nd-o

ut

( kn

ock

-ou

t) o

ptio

n sp

ecifi

es a

low

bar

rier

.

If t

he s

pot

exch

ange

rat

e br

each

es t

his

barr

ier

duri

ng t

he li

fe-

tim

e of

the

opti

on th

en th

e op

tion

pay

off i

s eq

ual t

o 0.

In s

ome

case

s a

reba

te c

an a

lso

be p

rovi

ded

if th

e ba

rrie

r is

cro

ssed

.

Den

ote

d a

barr

ier

leve

l, K

a s

trik

e pr

ice,

and

d <

K. T

he p

ayof

f

to t

he d

own-

and-

out

call

opti

on a

t m

atur

ity

T is

def

ined

as

Let τ d

den

ote

the

firs

t m

omen

t w

hen

pro

cess

q (

l )

, l

t

atta

ins

the

leve

l d. T

hen

wit

h p

roba

bili

ty 1

Th

eref

ore

Th

e do

wn

-an

d-ou

t op

tion

pri

ce c

an b

e co

nst

ruct

ed a

pply

ing

the

stan

dard

IE

equ

atio

n

wh

ich

lead

s to

th

e so

luti

on

Th

e pa

yoff

to

the

dow

n-a

nd-

out

put

opti

on i

s gi

ven

by

the

form

ula

wh

ich

def

ine

its

pric

e at

th

e da

te t

Th

e dow

n-a

nd-i

n (

kn

ock

-in

) c

all

and

put

opti

ons

exer

cise

pric

e at

mat

uri

ty T

are

def

ined

as

foll

owin

g

C di

( T

, q (

T )

) =

max

{ q

( T

) –

K ,

0 } χ ( τ

d T

)

P di

( T

, q (

T )

) =

max

{ K

– q

( T

) ,

0 } χ ( τ

d T

)

Th

ese

payo

uts

impl

y th

e op

tion

s pr

ice

Let

us

pres

ent

for

exam

ple

sim

ple

calc

ula

tion

s, w

hic

h i

llu

s-

trat

e th

e op

tion

s pr

icin

g. A

ssu

me

that

exc

han

ge r

ate

data

is

defi

ned

by

the

Tabl

e on

pag

e 7

and

let

K =

180

, d =

178

.

C do (

0, ω )

C do (

1, ω )

C do (

2, ω )

ω

p(ω

)

5.8

064

5.9

677

6{1

80, 185, 186}

1/

6

00

0{1

80, 185, 179}

1/

2

00

0{1

80, 178, 182}

1/

24

00

0{1

80, 178, 181}

1/

12

00

0{1

80, 178, 176}

5/

24

P d

o (

0, ω )

P d

o (

1, ω )

P d

o (

2, ω )

ω

p(ω

)

00

0{1

80, 185, 186}

1/

6

1.0

056

1.0

335

1{1

80, 185, 179}

1/

2

00

0{1

80, 178, 182}

1/

24

00

0{1

80, 178, 181}

1/

12

00

0{1

80, 178, 176}

5/

24

C di (

0, ω )

C di (

1, ω )

C di (

2, ω )

ω

p(ω

)

00

0{1

80, 185, 186}

1/

6

00

0{1

80, 185, 179}

1/

2

1.9

78

1.9

56

2{1

80

, 1

78

, 1

82

}1

/2

4

0.9

94

50

.98

34

1{1

80

, 1

78

, 1

81

}1

/1

2

00

0{1

80, 178, 176}

5/

24

P d

i (

0, ω )

P d

i (

1, ω )

P d

i (

2, ω )

ω

p(ω

)

00

0{1

80, 185, 186}

1/

6

00

0{1

80, 185, 179}

1/

2

00

0{1

80, 178, 182}

1/

24

00

0{1

80, 178, 181}

1/

12

4.0

909

4.0

455

4{1

80, 178, 176}

5/

24

Let u

s pr

esen

t a r

isk

anal

ysis

of t

he in

vest

men

t in

dow

n-an

d-in

call

opti

on. T

he a

vera

ge o

ptio

n pr

ice

at d

ate

0 is

1.9

78 ×

(1/2

4)+

0.99

45 ×

(1/

12)

= 0

.165

29 m

ulti

plie

d by

a s

ize

of t

he c

ontr

act.

If c

ontr

act s

ize

is 1

000

unit

s of

fore

ign

curr

ency

( £

) , th

en th

e

valu

e of

the

one

cont

ract

is $

165.

29. A

ssum

e th

at in

vest

or c

om-

pare

s tw

o sc

enar

ios

in w

hich

the

pric

es C

di (

0, ω )

are

a $1

00 o

r

$200

. Tha

t is

0.1

or

0.2

per

£-po

und.

If

the

opti

on p

rice

is

0.1

then

the

chan

ce to

exe

rcis

e th

e op

tion

at e

xpir

atio

n im

plie

s on

e

of t

wo

scen

ario

s is

rea

lized

: {18

0, 1

78, 1

82}

or {

180,

178

, 181

}.

The

prob

abili

ty o

f th

e un

ion

of t

hese

tw

o fa

vour

able

eve

nts

is

1/24

+ 1

/12

= 1

/8. T

he e

xpec

ted

rate

of r

etur

n is

equ

al t

o

[ ( 1

/ 24

) ×

1.9

78 +

( 1

/ 12

) ×

0.9

945

– 0

.1 ]

/ 0.

1 =

0.6

529

If th

e op

tion

pri

ce is

0.2

then

the

expe

cted

rat

e of

ret

urn

is a

bout

[ ( 1

/ 24

) ×

1.9

78 +

( 1

/ 12

) ×

0.9

945

– 0

.2 ]

/ 0.

2 =

- 0

.173

54

Th

e m

ean

-val

ue

anal

ysis

doe

s n

ot c

over

ris

k ex

posu

re. G

iven

spot

opt

ion

pri

ce a

t in

itia

l m

omen

t t

risk

is

a ra

ndo

m v

aria

-

ble

th

at r

epre

sen

ts lo

ss o

f th

e in

vest

men

t. T

he

valu

e of

th

e

risk

is m

easu

red

by t

he

cum

ula

tive

loss

-dis

trib

uti

on. I

n c

ase

wh

en t

he

dow

n-a

nd-

in c

all o

ptio

n p

rice

is 0

.1 p

er £

-con

trac

t

»

Page 8: Discrete space time option pricing forum fsr

fsrforum

• ja

arga

ng 1

2 • ed

itie

#5

32

• D

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ngD

iscr

ete

Spac

e-Ti

me

Opt

ions

Prici

ng •

33

(3.1

)

Th

e va

luat

ion

of t

he

up-a

nd-i

n b

arri

er o

ptio

n is

sim

ilar

to

the

repr

esen

ted

abov

e.

Let

us

con

side

r a

dou

ble

barr

ier

pric

ing

sch

eme

for

the

case

wh

en K

= 1

80, u

= 1

85,

d =

178

. T

he

payo

ff t

o th

e do

ubl

e-ou

t ba

rrie

r ca

ll a

nd

put

opti

ons

at m

atu

rity

are

def

ined

as

C db

o ( T

, q (

T ))

= m

ax {

q ( T

) –

K ,

0 } χ {

d <

q

( l )

,

q ( l

) <

u }

P db

o ( T

, q (

T ))

= m

ax {

K –

q (

T ) ,

0 } χ

{ d <

q

( l )

,

q

( l )

< u

}

Th

en p

ayof

f to

th

e do

ubl

e-in

bar

rier

cal

l an

d pu

t op

tion

s at

mat

uri

ty is

C db

i ( T

, q (

T ))

= m

ax {

q ( T

) –

K ,

0 } χ {

d

q (

l ) ,

q ( l

) u

}

P db

i ( T

, q (

T ))

= m

ax {

K –

q (

T ) ,

0 } χ

{ d

q

( l )

,

q ( l

) u

}

Pri

cin

g fo

rmu

las

for

thes

e ba

rrie

r op

tion

s ar

e

C db

o ( T

, q

( T ))

=

max

{ q

( T )

– K

, 0

} χ {

d <

q

( l )

,

q ( l

) <

u }

P db

o ( T

, q

( T ))

=

max

{ K

– q

( T

) , 0

} χ { d

<

q ( l

) ,

q ( l

) <

u }

C db

i ( T

, q

( T ))

=

max

{ q

( T )

– K

, 0

} χ {

d

q ( l

) ,

q ( l

)

u }

P db

i ( T

, q

( T ))

=

max

{ K

– q

( T

) , 0

} χ

{ d

q

( l )

,

q ( l

)

u }

Fin

al R

emar

k. H

ere

we

pres

ent

a sh

ort

com

men

t to

th

e bi

no-

mia

l op

tion

pr

icin

g.

Th

is

disc

rete

sp

ace-

tim

e ap

proa

ch

pres

ents

opt

ion

pri

ce u

sin

g a

stan

dard

alg

ebra

ic m

eth

ods.

Tech

nic

ally

, bi

nom

ial

sch

eme

in o

ne

peri

od c

ann

ot p

rese

nt

stra

igh

t fo

rwar

d so

luti

on o

f th

e pr

icin

g pr

oble

m w

ith

arb

i-

trar

y fi

nit

e se

t of s

tate

s. O

n th

e ot

her

han

d th

is fo

rmal

def

ini-

tion

has

obv

iou

s lo

gica

l dra

wba

ck.

Let

sto

ck p

rice

at

date

t =

1 b

e S

( 1

) =

$2

and

by t

he

end

of t

he

sin

gle

peri

od t

he

secu

rity

pri

ce i

s ei

ther

S u

( 2

) =

$4

or S

d ( 2

) =

$1

and

stri

ke p

rice

K =

$2

and

for

sim

plic

ity

let

the

risk

-fre

e in

tere

st r

ate

r =

0. L

et u

s re

call

con

stru

ctio

n o

f

the

bin

omia

l sc

hem

e. I

t de

term

ines

opt

ion

pri

ce w

ith

tw

o

step

s. C

onsi

der

a ca

ll o

ptio

n e

xam

ple.

On

th

e fi

rst

step

th

e

hed

ge r

atio

h o

f th

e h

ypot

het

ical

por

tfol

io in

th

e fo

rm П (

t )

= S

( t

) –

h C

( t

), t

= 1

,2 is

est

abli

shed

. Th

e co

ndi

tion

th

at

use

d fo

r th

e so

luti

on o

f th

e pr

oble

m is

П (

2 )

= S

u (

2 )

– h

C u

( 2

) =

S d (

2 )

– h

C d (

2 )

wh

ere

C u

an

d C

d a

re t

he

call

opt

ion

pay

offs

cor

resp

ondi

ng

two

outc

omes

S u

an

d S

d r

espe

ctiv

ely.

Th

us

C u

( 2

)

=

max

{ 4

– 2

, 0

} =

2

C d

( 2

) =

m

ax {

1 –

2 ,

0 }

= 0

Fro

m (

3.1)

it

foll

ows

that

h =

1.5

. T

he

seco

nd

step

lea

ds t

o

the

opti

on p

rice

. It

foll

ows

from

(3.

1) t

hat

th

e po

rtfo

lio

valu

e

at d

ate

2 is

det

erm

inis

tic

and

equ

al t

o

On

e ca

n t

ran

sfor

m t

his

pri

cin

g re

pres

enta

tion

of

the

risk

into

equ

ival

ent

pres

enta

tion

form

s by

th

e ra

te o

f ret

urn

.

Now

let

us lo

ok a

t th

e ne

xt t

ype

of b

arri

er o

ptio

n in

whi

ch t

he

‘up’

bar

rier

is

spec

ified

. If

the

spo

t ex

chan

ge r

ate

goes

abo

ve

the

‘up’

bar

rier

the

up-a

nd-o

ut

opti

on c

ease

s to

exi

st. A

reb

ate

that

sho

uld

be s

peci

fied

at i

niti

atio

n of

the

con

trac

t m

ay a

lso

be p

rovi

ded

as th

e ba

rrie

r is

cro

ssed

. The

pay

off t

o th

e up

-and

-

out c

all o

r pu

t opt

ions

at m

atur

ity

T is

def

ined

by

the

form

ulas

C u

o ( T

, q

( T

))

= m

ax {

q (

T )

– K

, 0

} χ ( θ

u >

T )

P u

o ( T

, q

( T

))

= m

ax {

K –

q (

T )

, 0

} χ ( θ

u >

T )

resp

ecti

vely

. Th

e ra

ndo

m t

ime θ

u is

def

ined

as

foll

owin

g

θ u

=

m

in {

l : q

( l

) u

, l

[ t

, T

] }

Th

e pr

ice

of t

he

up-

and-

out

call

or

put

opti

ons

at t

are

C u

o ( t

, q

( t

)) =

m

ax {

q (

T )

– K

, 0

} χ ( θ

u >

T )

P u

o ( t

, q

( t

)) =

m

ax {

K –

q (

T )

, 0

} χ ( θ

u >

T )

Th

e pa

yoff

to

the

up-

and-

in c

all,

put

opti

ons

at m

atu

rity

T

can

be

repr

esen

ted

in t

he

form

C u

i ( T

, q (

T )

) =

m

ax {

q (

T )

– K

, 0

} χ ( θ

u

T )

P u

i ( T

, q (

T )

) =

m

ax {

K –

q (

T )

, 0

} χ ( θ

u

T )

Th

eref

ore

C u

i ( t

, q

( t

)) =

m

ax {

q (

T )

– K

, 0

} χ ( θ

u

T )

P u

i ( t

, q

( t

)) =

m

ax {

K –

q (

T )

, 0

} χ ( θ

u

T )

Ass

um

ing

that

th

e u

nde

rlyi

ng

exch

ange

rat

e gi

ven

in T

able

7

and

K =

180

, u =

185

C uo (

0, ω )

C uo (

1, ω )

C uo (

2, ω )

ω

p(ω

)

00

0{1

80, 185, 186}

1/

6

00

0{1

80, 185, 179}

1/

2

1.9

78

1.9

56

2{1

80, 178, 182}

1/

24

0.9

945

0.9

834

1{1

80, 178, 181}

1/

12

00

0{1

80, 178, 176}

5/

24

Hen

ce,

If m

arke

t pri

ce o

f the

opt

ion

is e

qual

to E

C uo

( 0, ω )

= 0

.165

3

then

the

risk

is d

escr

ibed

by

the

set o

f sce

nari

os D

= {1

80, 1

85,

186}

{180

, 185

, 179

}{1

80, 1

78, 1

76}

whi

ch c

orre

spon

d to

0

payo

ff. T

he v

alue

of r

isk

is 2

1/24

, whi

ch is

the

prob

abili

ty o

f the

D. I

n ge

nera

l the

ave

rage

loss

and

ave

rage

pro

fit a

re

E C

uo (

0, ω ) χ

{ C

uo (

0, ω )

< o

ptio

n m

arke

t pr

ice

( 0

) }

E C

uo (

0, ω ) χ

{ C

uo (

0, ω )

> o

ptio

n m

arke

t pr

ice

( 0

) }

Thus

, the

com

plet

e op

tion

pri

ce d

ata

shou

ld b

e su

pplie

d by

the

risk

cha

ract

eris

tics

, whi

ch c

an b

e es

tabl

ishe

d as

sum

ing

a pa

rtic

-

ular

dis

trib

utio

n of

the

und

erly

ing.

The

hig

her

orde

r m

omen

ts

of th

e op

tion

pri

cing

giv

e us

mor

e de

tails

that

are

mor

e ac

cura

te

repr

esen

t ris

k ex

posu

re. A

nalo

gous

ly, o

ne c

an s

ee th

at

P u

o (

0, ω )

P u

o (

1, ω )

P u

o (

2, ω )

ω

p(ω

)

00

0{1

80, 185, 186}

1/

6

1.0

056

1.0

335

1{1

80, 185, 179}

1/

2

00

0{1

80, 178, 182}

1/

24

00

0{1

80, 178, 181}

1/

12

4.0

909

4.0

455

4{1

80, 178, 176}

5/

24

П (

2 )

= 4

– 1

.5 *

2 =

1 –

1.5

* 0

= 1

By

con

stru

ctio

n i

t do

es n

ot d

epen

d on

sce

nar

ios

“up”

or

“dow

n”

at m

atu

rity

. Th

eref

ore,

th

e

chan

ge in

val

ue

of t

he

port

foli

o sh

ould

foll

ow t

he

risk

-fre

e ra

te. T

hat

is a

pply

ing

sim

ple

inte

r-

est

rate

we

hav

e

П (

2 )

= (

1 +

r )

П (

1 )

As

far

as t

he

risk

-fre

e in

tere

st r

ate

r w

as a

ssu

med

to

be e

qual

to

0 th

en

П (

2 )

= П

( 1

) =

1 =

S (

1 )

– 1

.5 C

( 1

)

Hen

ce C

( 1

) =

2/3

. T

his

is

the

theo

reti

cal

opti

on p

rice

su

gges

ted

by t

he

bin

omia

l sc

hem

e.

Let

us

test

th

e th

eore

tica

l so

luti

on a

gain

st p

arti

cula

r sc

enar

ios.

Ass

um

e th

at t

wo

secu

riti

es

diff

er b

y th

e pr

obab

ilit

ies

of t

he

stat

es a

t m

atu

rity

. Let

th

e pr

obab

ilit

y of

th

e st

ate

‘4’ i

s fo

r th

e

firs

t se

curi

ty e

qual

to

0.99

an

d fo

r th

e se

con

d se

curi

ty t

he

stat

e ‘4

’ pr

obab

ilit

y is

equ

al t

o

0.01

. Th

e se

curi

ties

exp

ecte

d ra

te o

f re

turn

s ar

e

[ 4

* 0.

99 +

1*

0.01

– 2

] :

2 =

98.

5%

[ 4

* 0.

01 +

1*

0.99

– 2

] :

2 =

– 4

8.5%

corr

espo

ndi

ngl

y. A

ccor

din

g to

bin

omia

l sc

hem

e th

e u

niq

ue

opti

on p

rice

for

eit

her

of

thes

e

secu

riti

es is

th

e sa

me

2/3.

In

oth

er w

ords

bin

omia

l sch

eme

does

not

sen

siti

ve w

ith

res

pect

to

un

derl

yin

g se

curi

ty r

ates

ret

urn

. O

ne

can

not

e th

at s

elli

ng

opti

on o

n b

ad s

tock

an

d bu

yin

g

opti

on o

n g

ood

stoc

k an

inve

stor

sta

rts

wit

h z

ero

fin

anci

ng.

Th

en a

t th

e en

d of

th

e pe

riod

th

e

inve

stor

has

1 c

han

ce t

o lo

ss p

rem

ium

wh

ile

in 9

9% t

he

inve

stor

rec

eive

s a

prof

it. T

he

inve

st-

men

t of

th

is t

ype

one

can

cal

l st

atis

tica

l ar

bitr

age.

A c

uri

ous

fact

is

that

th

e sa

me

pric

e is

esta

blis

hed

on

tw

o op

tion

-in

vest

men

ts w

ith

dif

fere

nt

expe

cted

rat

es o

f ret

urn

. In

deed

, bu

yin

g

firs

t op

tion

for

2/3

an

d gi

ven

exp

ecte

d ra

te o

f re

turn

is

[ (

4 *

0.99

+ 1

* 0.

01 )

– 2

/3 ]

: 2/

3 =

4.9

25

On

th

e ot

her

han

d, t

he

seco

nd

opti

on s

ugg

ests

exp

ecte

d ra

te o

f re

turn

[ (

4 *

0.01

+ 1

* 0.

99 )

– 2

/3 ]

: 2/

3 =

0.5

37

Th

is o

bser

vati

on c

ontr

adic

ts t

he

com

mon

sen

se a

nd

theo

reti

cal

un

ders

tan

din

g of

th

e pr

ice

in F

inan

ce.

Th

e co

mm

on a

rgu

men

t u

sual

ly u

sed

to j

ust

ify

the

bin

omia

l op

tion

pri

ce i

s it

s

non

-arb

itra

ge p

rici

ng.

Th

is a

rgu

men

t is

a n

eces

sary

con

diti

on o

f th

e co

rrec

t pr

icin

g an

d it

can

als

o be

tru

e if

th

e op

tion

pri

ce i

s de

term

ined

in

corr

ectl

y. T

hat

is

ther

e is

no

arbi

trag

e

betw

een

bin

omia

l pr

icin

g of

th

e op

tion

s an

d ri

sk f

ree

fin

anci

ng.

Th

e n

o-ar

bitr

age

fact

doe

s

not

su

ffic

ien

t to

acc

ept

sugg

este

d co

nst

ruct

ion

as

a th

eore

tica

l def

init

ion

of t

he

pric

e. H

avin

g

theo

reti

call

y co

rrec

t th

e op

tion

pri

ce d

efin

itio

n o

ne

can

app

ly i

t fo

r th

e so

luti

on o

f th

e re

al

wor

ld p

rici

ng

prob

lem

s.