Top Banner
Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych Weiwei Y. Tong E. Kanso J. E. Marsden P. Schröder M. Desbrun
22

Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Jan 17, 2018

Download

Documents

Amelia McBride

Local vs. Global Accuracy Local accuracy (in scientific applications) In CG, we care more for qualitative behavior Global behavior > Local behavior for our purposes A geometric approach can guarantee both
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Discrete Geometric Mechanics for

Variational Time Integrators

Ari SternMathieu Desbrun

Geometric, Variational

Integrators for Computer Animation

L. KharevychWeiweiY. Tong

E. KansoJ. E. MarsdenP. SchröderM. Desbrun

Page 2: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Time Integration• Interested in Dynamic Systems

• Analytical solutions usually difficult or impossible

• Need numerical methods to compute time progression

Page 3: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Local vs. Global Accuracy• Local accuracy (in scientific applications)

• In CG, we care more for qualitative behavior

• Global behavior > Local behavior for our purposes

• A geometric approach can guarantee both

Page 4: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Simple Example: Swinging Pendulum

• Equation of motion:

• Rewrite as first-order equations:

𝑞 (𝑡)

𝑙

Page 5: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Discretizing the Problem• Break time into equal steps of length :

• Replace continuous functions and with discrete functions and

• Approximate the differential equation by finding values for

• Various methods to compute

Page 6: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Taylor Approximation• First order approximation using tangent to curve:

v

• As , approximations approach continuous values

(𝑞𝑘 ,𝑣𝑘)

(𝑞𝑘+1 ,𝑣𝑘+1)

Page 7: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Explicit Euler Method• Direct first order approximations:

• Pros:• Fast

• Cons:• Energy “blows up”• Numerically unstable• Bad global accuracy

Page 8: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Implicit Euler Method• Evaluate RHS using next time step:

• Pros:• Numerically stable

• Cons:• Energy dissipation• Needs non-linear solver• Bad global accuracy

Page 9: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Symplectic Euler Method• Evaluate explicitly, then :

• Energy is conserved!• Numerically stable• Fast• Good global accuracy

Page 10: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Symplecticity• Sympletic motions preserve the

two-form:

• For a trajectory of points inphase space:

• Area of 2D-phase-space region is preserved in time

• Liouville’s Theorem

Page 11: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Geometric View: Lagrangian Mechanics

• Lagrangian: • Action Functional:• Least Action Principle:

• Action Functional “Measure of Curvature”• Least Action “Curvature” is extremized

𝑡 0

𝑇

Page 12: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Euler-Lagrange Equation

=

= 0

Page 13: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Lagrangian Example: Falling Mass

Page 14: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

The Discrete Lagrangian• Derive discrete equations of motion from a Discrete

Lagrangian to recover symplecticity:

• RHS can be approximated using one-point quadrature:

Page 15: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

The Discrete Action Functional• Continuous version:

• Discrete version:

Page 16: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Discrete Euler-Lagrange Equation

Page 17: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Discrete Lagrangian Example: Falling Mass

Page 18: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

More General: Hamilton-Pontryagin Principle

• Equations of motion given by critical points of Hamilton-Pontryagin action

• 3 variations now:

• is a Lagrange Multiplier to equate and

• Analog to Euler-Lagrange equation:

Page 19: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Discrete Hamilton-Pontryagin Principle

Page 20: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Faster Update via Minimization• Minimization > Root-Finding

• Variational Integrability Assumption:

• Above satisfied by most current models in computer animation

Page 21: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Minimization: The Lilyan

Page 22: Discrete Geometric Mechanics for Variational Time Integrators Ari Stern Mathieu Desbrun Geometric, Variational Integrators for Computer Animation L. Kharevych.

Resultshttp://tinyurl.com/n5sn3xq