Top Banner
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher , Bryce Bjork, Kevin C. Cossel, Jun Ye JILA|NIST and University of Colorado - Boulder Lora Nugent-Glandorf, Florian Adler, Tyler Neely, Scott A. Diddams National Institute of Standards and Technology Tim Dinneen Precision Photonics FA 11 The 67 th OSU International Symposium on Molecular Spectroscopy – June 22, 2012
23

Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Dec 14, 2015

Download

Documents

Guy Spry
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in

the Infrared Fingerprint Region

Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel, Jun YeJILA|NIST and University of Colorado - Boulder

Lora Nugent-Glandorf, Florian Adler, Tyler Neely, Scott A. DiddamsNational Institute of Standards and Technology

Tim DinneenPrecision Photonics

FA 11The 67th OSU International Symposium on Molecular Spectroscopy – June 22, 2012

Page 2: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Cavity-Enhanced Direct FCS

1. Mode-locked laser (fs fiber laser)

2. Sample interrogation (high-finesse enhancement cavity)

3. Dispersive detection system (VIPA)

M.J. Thorpe et al. Science 311, 1595 (2006).

CE-DFCS

Page 3: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

1. Mode-locked laser

T.R. Schibli et al. Nat. Photonics 2, 355 (2008).F. Adler et al. Opt. Lett. 34, 1330 (2009).

>10 W110 fs

137 MHz1070 nm

Yb:Fiber Comb Laser

Page 4: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

1. Mode-locked laser

F. Adler et al. Opt. Lett. 34, 1330 (2009).

Optical parametric oscillatorTunable from 2.8 – 4.8 μm

(2000 – 3500 cm-1)

150 nm bandwidth at 3.75 μm(100 cm-1 fwhm)

> 1 W power from 3.0 – 4.0 μm

Page 5: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

2. Sample Interrogation

M.J. Thorpe et al. Opt. Express 16, 2387 (2008).A. Foltynowicz et al. Appl. Phys. B. doi:10.1007/s00340-012-5024-7(2012).

Mode-locked laser VIPA spectrometer

High finesse optical cavitywith intra-cavity gas sample

99.7% < R < 99.95% 1000 < < 6000

ROC = 6 md = 0.8″

ZnSe substrate

Page 6: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

3. Dispersive detector

InSb Camera

M.J. Thorpe et al. Opt. Express 16, 2387 (2008).M.J. Thorpe and J. Ye, Appl. Phys. B 91, 397 (2008).

M.J. Thorpe et al. Science 311, 5767 (2006).S.A. Diddams et al. Nature 445, 627 (2007).

MIR VIPARin = 99.95%Rout = 98.0%

InSb photodiode array320 x 256 pixels

LN2 cooled

Collectively, these components create a power tool for the sensitive

measurement of absorption spectra over a broadband on the μs timescale

Page 7: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

VIPA Characterization and Spectroscopy

• Measure the VIPA spectrometer resolution and free spectral range– Fabry-Perot Comb Filter Cavity with FSR = 2.0 GHz– Spectroscopy Cavity with FSR = 546 MHz and

Finesse = 1200

• Record broadband molecular spectra on the millisecond (ms) timescale– 100 ppm CH4 in N2 at a total pressure of 30 Torr

Page 8: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Comb-Cavity Coupling

F. Adler et al. Annu. Rev. Anal. Chem. 3, 175 (2010)

Page 9: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Construction of Filter Cavity

S.A. Diddams et al. Nature 445, 627 (2007).

n FSR (GHz) L (cm)

14 1.91 7.8

15 2.05 7.3

16 2.19 6.9

Exact n value must be know to precisely determine the filtered comb mode spacing required for VIPA calibration.

Page 10: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

2.05 GHz Filter Cavity

S.A. Diddams et al. Nature 445, 627 (2007).

Change in cavity length (L) vs. Change in cavity free spectral range (FSR)

Center point is14, 15, or 16 x frep

L = c / (2FSR)

At 15 x frep, the comb line spacing is filtered

to 2.05 GHz

Page 11: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Comb Mode Resolution

L. Nugent-Glandorf et al. Opt. Lett., in press (2012). arXiv: 1206.1316

pixe

ls

pixels

Detector Image Plane

Grating Dispersion

VIPADispersion

InSb Camera

Observed FWHM = 600 MHz

15°

Page 12: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

VIPA Performance

S. Xiao et al. IEEE J. Quant. Elec. 40, 420 (2004).L. Nugent-Glandorf et al. Opt. Lett., in press (2012). arXiv: 1206.1316

Measured FSR at 25° = 55 GHz, therefore = 92 and R = 0.966

Calculate FSR at 25°

= = 60.3 GHz

Finesse = = 105, assuming R = 0.97, and lossless front face

Resolution = = 60.3 GHz/105 ~ 574 MHz, measured = 600 MHz

d

Page 13: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Direct FCS Cavity Characterization

Page 14: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Direct FCS Cavity

N2 reference0.2% N2O in N2

at 40 torrCavity finesse ~1000

Page 15: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Direct FCS Cavity

K.C. Cossel et al, Appl. Phys. B, 100, 917 (2010).L.S. Rothman et al. J. Quant. Spectrosc. Radiat. Transfer 96 139 (2005).

Wavelength (nm)

2,300 comb modes in the above spectral bandwidth.

Wavelength (nm)

Experimental Frequency Axis Calibrated to HITRAN

ax2 + bx +c

VIPA = 25°

2

20

1 1 1ln 1

2 1

R

L R I I

Page 16: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Molecular Gas Dynamics

L. Nugent-Glandorf et al. Opt. Lett., in press (2012). arXiv: 1206.1316

Noise5 x 10-4 noise floor (ms)

1 x 10-8 cm-1 (5 avr., 42 ms, 200 m path length)

640 x 512 pixel camera120 Hz repetition rate

CH4 gas cell filling dynamics - NIST

Page 17: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Future: MIR Reaction Dynamics

A. Foltynowicz et al. Appl. Phys. B. doi:10.1007/s00340-012-5024-7(2012).L. Nugent-Glandorf et al. Opt. Lett., in press (2012). arXiv: 1206.1316

• Enhancement factor of ≥ 300 leads to mW/mode of intracavity power• 5,000 lasers available for cavity-enhanced spectroscopy• 100 cm-1 simultaneous bandwidth• Integration time as low as 10 μs (camera limit)• Experimental repetition rate of up to 400 Hz (camera limit)

MIR Comb VIPA and Camera

Inlet

Enhancement Cavity

PZT

Outlet

Page 18: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

AcknowledgementsBryce Bjork, Kevin C. Cossel, Jun Ye

JILA|NIST and CULora Nugent-Glandorf, Florian Adler, Tyler Neely, Scott A. Diddams

National Institute of Standards and TechnologyTim Dinneen

Precision Photonics

L. Nugent-Glandorf et al. Optics Letters (2012).

arXiv: 1206.1316

Page 19: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Virtually Imaged Phased Array

M. Shirasaki Fujitsu Sci. Tech J. 35, 113 (1999).

Page 20: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Noise Analysis

Insert Citation Here

Page 21: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Signal Averaging

Insert Citation Here

1 FSR

Single 2ms shot 20 averaged shots

Page 22: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Frequency Comb

Insert Citation Here

Frequency Domain

Frequency comb

Cavity modes

ddcL

cFSR

2

Cavity mode structure:Frequency comb structure:

orn fnf

Time Domain ADD SINGLE PULSE VS. PULSE TRAIN IMAGE HERE

Page 23: Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

1. Mode-locked laser

T.R. Schibli et al. Nat. Photonics 2, 355 (2008).F. Adler et al. Opt. Lett. 34, 1330 (2009).

Yb:fiber mode-locked laser

>10 W110 fs

137 MHz1070 nm

OPO