Top Banner
Prof. Carlos Eduardo Nigro Mazzilli Universidade de São Paulo Dinamica Non Lineare di Strutture e Sistemi Meccanici
30

Dinamica Non Lineare di Strutture e Sistemi Meccanici

May 11, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Prof. Carlos Eduardo Nigro Mazzilli

Universidade de São Paulo

Dinamica Non Lineare di Strutture e Sistemi

Meccanici

Page 2: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Lezione 1

Page 3: Dinamica Non Lineare di Strutture e Sistemi Meccanici

• Dynamics based on classic mechanics, whose fundamental laws are

credited to Newton (1646-1727), ‘standing on giant’s shoulders”...

• Greeks: axiomatic reasoning disconnected from experimentation

Forces were necessarily caused by contact; what about field forces?

Aristotle (384BC-322BC): a force causes constant velocity?

Terrestrial mechanics vs celestial mechanics?

• Ptolemy (90-168): geocentric system vs Aristarco (310BC-230BC)

heliocentric system (three centuries before)

• ...Galileo (1564-1642): ‘e pur si muove’

• Romans?

Historical overview on dynamics

Page 4: Dinamica Non Lineare di Strutture e Sistemi Meccanici

• Moslems: from VIII to XIV centuries (Alexandria, Iberic Peninsula)

Barakat (1080-1165) denied Aristotle: force causes velocity to change...

Newton’s second law?

Alhazen (965-1040): body moves perpetually unless force obliges it to

stop or change direction... Newton’s first law?

Avempace (1095-1138): to an action corresponds a reaction... Newton’s

third law?

• Kepler, Copernicus and Galileo: celestial mechanics

• Galileo: terrestrial mechanics (displacement of a falling body

proportional to the square of time)

• Newton: law of universal gravitation and much more...

Historical overview on dynamics

Page 5: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Newton’s laws

First law (inertia): there are priviledged observers, called inertial observers, with

respect to whom isolated material points – that is, those subjected to null resultant

force – are at rest or in uniform rectilinear motion.

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in

directum, nisi quatenus a viribus impressis cogitur statum illum mutare

Historical overview on dynamics

Page 6: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Second law (fundamental): the resultant force of a mass point is proportional to its

acceleration defined with respect to an inertial observer. The proportionality constant is

termed mass, which is positive and it is a property of the material point.

Lex II: Mutationem motus proportionalem esse vi motrici impressae, et eri secundum

lineam rectam qua vis illa imprimitur

2

2

d RF m

dt

Newton’s laws

Historical overview on dynamics

Page 7: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Third law (action and reaction): to every action of a material point upon another one

corresponds a reaction of same intensity and direction, yet in oposite sense.

Lex III: Actioni contrariam semper et aequalem esse reactionem: sive corporum

duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi

Newton’s laws

Historical overview on dynamics

Page 8: Dinamica Non Lineare di Strutture e Sistemi Meccanici

• Newton: differential and integral calculus

• Leibniz (1646-1716): independent development of differential

calculus & fundamentals of analytical dynamics

• D’Alembert (1717-1783): principle...

• Lagrange (1736-1813): Mécanique Analytique and variational

principles

• Hamilton (1805-1865): principle...

• ...

Historical overview on dynamics

Page 9: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Physical space: affine Euclidian space of dimension 3

Configuration space: affine Euclidian space of dimension 3N (provided the 3N co-

ordinates of the N material points are independent)

• N material points mi

• position of mi given by cartesian co-

ordinates: xi1, xi

2, xi3

• a “point” in this space caracterizes completely

the configuration of the system of material

points in a given time t (co-ordinates of material

points obtained by “projections”)

Page 10: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Example: a material point moving along a parabolic curve

Original configuration space of dim 3N = 3

• If there are c constraint equations relating these co-ordinates, it is possible to

define another configuration space with dimension n = 3N-c , termed “number

of degrees of freedom” of the system

x3 = 0

x2 = (x1)2

c = 2 constraint

equations

Configuration space of dim n = 3N-c=1

Page 11: Dinamica Non Lineare di Strutture e Sistemi Meccanici

• Generalised coordinates Q1(t), Q2(t), ... , Qn(t), n = number of degrees of freedom,

are scalars conveniently chosen, so that they uniquely define the original 3N

physical coordinates of the system

tQQQxx

tQQQxx

tQQQxx

nNN

n

n

,,...,,

,,...,,

,,...,,

21

33

21

2

1

2

1

21

1

1

1

1

3N holonomic constraint equations

• the functions are are finite of class C1 tQQQx n

i ,, . . . ,, 21

• Jacobian of the transformation is non-null

Page 12: Dinamica Non Lineare di Strutture e Sistemi Meccanici

• Particular case of holonomic constraint: scleronomic constraint

03

2212

1

x

Qxx

Qx

a transformation “matrix” (of order n = 1)

with det T 0

Let it be

n

ii QQQxx , . . . ,, 21

Example: a material point moving along a parabolic curve

11

Q

x

Q

xT

1

J= det T = 1

Page 13: Dinamica Non Lineare di Strutture e Sistemi Meccanici

constraint equation in t2

0,,, 1

321

1 txxxf

0,,, 2

321

2 txxxf

constraint equation in t1

real infinitesimal displacement

R

virtual displacementix jQ

Virtual displacements in holonomic constraints

t

mt+dt

Rd

Page 14: Dinamica Non Lineare di Strutture e Sistemi Meccanici

• Virtual displacements are kinematically admissible at a fixed time t, that is, they

satisfy the constraint equations at that time t

0. RFW v i

• The class of real displacements doesn’t necessarily coincide with the class of real

displacements for holonomic constraints

• For scleronomic constraints, however, since the constraint equations are independent

of t, the class of real displacements coincides with the class of virtual displacements,

that is, the real displacements are a particular case of virtual displacements

• Ideal (constraint) reactions are orthogonal to the virtual displacements at the points

they are applied. Hence, the virtual work of ideal reactions is null.

Page 15: Dinamica Non Lineare di Strutture e Sistemi Meccanici

D’Alembert’s principle

the sum of the resultant force

and the inertial force is the null

vector

2

2

d RF m

dtNewton’s 2nd law = 1 a N

2

20

d R

F md t

= 1 a N

r e s u l t a n t f o r c e a v i v nF F F F

active

ideal constraint

non-ideal constraint

2

2in e rt ia fo rc e

I d RF m

d t

“closing” of the force

polygon, as in statics

1 1

. 0 . 0

N N

a v i v n IF F F F R R

1

. 0

N

a vn IF F F RGeneralised D’Alembert’s

principle

Page 16: Dinamica Non Lineare di Strutture e Sistemi Meccanici

v nae FFF

• Remark 1 Effective force

(it is not necessary to know a priori the reactions to write down the

equations of equilibrium/motion)

equilibrium

• Remark 2 System with ideal constraints:

0.1

RFFN

Ia

• Remark 3 Principle of virtual displacements in statics is a particular case

0.1

RFN

a

Page 17: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Newton’s 2nd law

Hamilton’s principle

2

1

0 t

nc

t

T V W dt

1

1kinetic energy .

2

N dR dR

T mdt d t

D’Alembert’s principle Hamilton’s principle

v i r t u a l v a r i a t i o n o f k i n e t i c e n e r g y T

1

.

N

T m R R n o ta tio n d

x xd t

1

. v i r tu a l w o rk o f c o n s e rv a t iv e fo rc e s

N

cV F R

1

. v i r tu a l w o rk o f n o n -c o n s e rv a t iv e fo rc e s

N

n c n cW F R

v i r t u a l v a r i a t i o n o f p o t e n t i a l e n e r g y V

v i r t u a l w o r k o f n o n - c o n s e r v a t i v e f o r c e s n cW

Page 18: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Lagrange’s equation

i

i ii

d T T VN

dt Q QQ

1 2 1 2, , . . . , , , , . . . , , k i n e t i c e n e r g yn nT T Q Q Q Q Q Q t

1 2, , . . . , , p o t e n t i a l e n e r g ynV V Q Q Q t

1

g en e ra lized n o n -co n se rv a tiv e fo rce .N

n c

i

i

RN F

Q

• Remark

1 1

.n N

n c n c

i i

i

N Q F R W

virtual work of the non-

conservative forces

Hamilton’s principle Lagrange’s equation

Page 19: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Example 1: One-degree-of-freedom linear oscillator

Formulation of equations of motion

Page 20: Dinamica Non Lineare di Strutture e Sistemi Meccanici

QmQck Qtp

Newton’s 2nd law:

0 QmQck Qtp

D’Alembert’s principle:

QQQmQck Qtp 0

Generalised D’Alembert’s principle:

tpk QQcQm

Page 21: Dinamica Non Lineare di Strutture e Sistemi Meccanici

2

1

0

t

nc

t

T V W dt Hamilton’s principle:

n cW N Q p t c Q Q

Substituting...

m Q c Q k Q p t

2 2

1 1

0

t t

t t

m Q Q d t kQ p t cQ Q d t

integrating by parts

2

2

11

0

tt

tt

m Q Q m Q cQ kQ p t Q d t 1 2 0Q t Q t

2

1

0

t

t

m Q cQ kQ p t Q d t Q

21

2T mQ

21

2V kQ

T m Q Q

V k Q Q

Page 22: Dinamica Non Lineare di Strutture e Sistemi Meccanici

d T T VN

dt Q QQ

Lagrange’s equation:

n cW N Q p t c Q Q N p t c Q

m Q c Q k Q p t m Q k Q p t c Q Substituting...

21

2T mQ

21

2V kQ

; 0T T

m QQQ

VkQ

Q

d Tm Q

dt Q

Page 23: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Example 2: sistem of rigid rods

AB and BC rigid rods

BC massless rod

Linear dynamics: horizontal displacements of B and C are negligible for small Q

AB

C

x

m

m2

c1 c2 k2k1

a a a a a2a

A'

B'

C'

Q

)(),( ta

xptxp

Page 24: Dinamica Non Lineare di Strutture e Sistemi Meccanici

2 24

* 2

2

0

1 2 1 1

2 3 2 4 2

ax

T m Q m Q d x m Qa

*

2

4 4w ith

9 3m m m a

2 2 4

1 2 2

0

1 3 1 1 2

2 4 2 3 4 3

ax

V k Q k Q m g Q d x m g Qa

* 2 *

0

1

2V k Q p Q

*

1 2

9 1w ith

1 6 9k k k *

0 2

2an d 2

3p m a m g

Page 25: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Lagrange’s equation:

4

1 2

04 4 4

a

n c Q Q x xW c c Q Q p t Q d x N Q

a a

* *N c Q p t

* 12w ith

1 6

cc c * 1 6

an d 3

p t p a t

d T T VN

dt Q QQ

* * * * *

0m Q c Q k Q p p t

Page 26: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Example 3: Simple pendulum

d T T VN

dt Q QQ

Lagrange’s equation:

21

2T m L Q

1 c o sV m g L Q m

Q

mg

L - Q(1 cos )

L

2 s e nm L Q m g L Q

o r s e n 0 ( n o n -lin e a r a n a ly s is )g

Q QL

0 ( lin e a r a n a lys is )g

Q QL

Page 27: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Example 4: Simple pendulum subjected to support excitation

2 2 2 2 2 2 21c o s s e n 2 s e n

2T m L Q Q L Q Q L f Q Q f

1 c o sV m g f L Q

s e n ( c o s )R L Q i f L Q j

c o s ( s e n )R L Q Q i f L Q Q j

2 2 21 1s e n

2 2T m L Q m f m L f Q Q

m

Q

mg

L

f(t)

j

i

R

Page 28: Dinamica Non Lineare di Strutture e Sistemi Meccanici

d T T VN

dt Q QQ

Lagrange’s equation:

2 ( ) s i n 0m L Q m L g f Q

1o u ( ) s in 0 ( n o n -lin e a r a n a ly s is )Q g f Q

L

2 s in co sd T

m L Q m L f Q m L f Q Qd t Q

co sT

m L f Q QQ

sinV

m gL QQ

2 s i n c o s c o s s i nm L Q m L f Q m L f Q Q m L f Q Q m g L Q

1 ( ) 0 ( lin e a r a n a ly s is )Q g f Q

L

Page 29: Dinamica Non Lineare di Strutture e Sistemi Meccanici

Example 5: Rigid rod with non-linear spring and geometric imperfection, subjected to

static and dynamic loading

Non-linear “constitutive” lawg e o m e t r i c i m p e r f e c t i o n 1

2

1M Q K Q Q

2 21

2T m L Q

2 4

2

0

1 cos cos cos cos2 4

Q Q QV K d m gL Q K m gL Q

Page 30: Dinamica Non Lineare di Strutture e Sistemi Meccanici

d T T VN

dt Q QQ

Lagrange’s equation:

s e nn cW N Q P t L Q Q s e nN P t L Q

22 ( ) 1 s i nm L Q K Q Q m g P t L Q