Top Banner
UNIVERSIDAD DE EL SALVADOR FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA DE INGENIERIA CIVIL DEPARTAMENTO DE ESTRUCTURAS FUNDAMENTOS DE DINÁMICA ESTRUCTURAL TAREA EXAULACATEDRÁTICO: ING. FREDY ORELLANA PRESENTADO POR: GUZMAN MANCIA, LUIS ALEXANDER GM04079
26

Dinamica Estructural Homework

Jul 03, 2015

Download

Documents

Alex Guzman
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dinamica Estructural Homework

ciudad universitaria 07 de diciembre de 2009

UNIVERSIDAD DE EL SALVADOR

FACULTAD DE INGENIERIA Y ARQUITECTURA

ESCUELA DE INGENIERIA CIVIL

DEPARTAMENTO DE ESTRUCTURAS

FUNDAMENTOS DE DINÁMICA ESTRUCTURAL

“TAREA EXAULA”

CATEDRÁTICO:

ING. FREDY ORELLANA

PRESENTADO POR:

GUZMAN MANCIA, LUIS ALEXANDER GM04079

Page 2: Dinamica Estructural Homework

Un rotulo de 10 m de altura, es soportado por una columna con rigidez

igual a 20000 kg y se concentra un peso de 98000 kg. Si se considera

un amortiguamiento del 3 % respecto al crítico. Resolver para las

siguientes condiciones de carga.

A) Para una carga producida por una ráfaga de viento dada por el siguiente

diagrama.

0 0.5 1 1.5 2 2.5 302468

1012 Comportamiento de la Ráfaga de viento

Series2

tiempo (s)

Carga (ton)

Solución… ε = 3 %; w= 98,000 kg; K= 20,000 kg

Frecuencia Natural:ω=√(k¿¿m)=(20000 /98000/981)1/2=14 .15 rad /s¿

Periodo Natural :2 πω

= 2 π14.15

=0. 444 seg

La respuesta del sistema viene dada por: El Método de los

trapecios a través de la integral de Duhamel

Ci=Ci−1∗¿ e−εω ∆t +f O ¿ Si=S i−1∗¿e−εω∆ t+ gO¿

e−εω ∆t=e−0.03∗14.15∗0.1=0.958440 4

∆ t2m∗ωD

= 0.12∗100∗14.1430

=3.53 532 X 10−5

Page 3: Dinamica Estructural Homework

C (t)= 1mWa∫P (τ ) cos(Wt)dτ S(t )= 1

mWa∫

0

t

P ( τ ) sen(Wt )dτ

Ci=Co+ ∇ τ2mWa

.[ Fo+Fi] Si=So+ ∇ τ2mWa

.[Go+Gi ]

U ( t )=Ci . sen (W . t )−Si . cos (W . t)

m = 100

ω = 14.143 e−ξω ∆ τ 0.958459 ξ = 0.03

∆τ = 0.1

t P(t) ωt f i gi C i Si U 1 U 2 U

0 0 0 0 0 0 0 0 0 0

0.1 200 1.4143 31.1716628 197.555884 0.00110202 0.00698423 0.00108855 0.00108855 0

0.2 400 2.8286-

380.566549

123.162908 -0.01134176 0.01774239 -0.00349221 -0.0168804 0.013388186

0.3 600 4.2429-

271.45837

-535.079763 -0.03336285 0.00226189 0.02975298 -0.00102335 0.030776327

0.4 800 5.6572 648.30898 -468.716829 -0.01825537 -0.03253364 0.01069575 -0.02636481 0.03706056

4

0.5 750 7.0715 528.781109 531.874551 0.02316474 -0.02826095 0.01642765 -0.01992514 0.03635278

7

0.6 700 8.4858-

413.429151

564.868425 0.02550392 0.01090528 0.02058051 -0.0064408 0.027021311

0.7 650 9.9001-

577.944506

-297.456127 -0.00999659 0.01907655 0.00457469 -0.01696183 0.021536517

0.8 600 11.3144 188.071001 -569.762493 -0.0225158 -0.011938 0.0213811 -0.00374199 0.02512308

5

0.9 550 12.7287 542.76942 88.8895729 0.00398086 -0.0276057 0.00064338 -0.02724278 0.02788615

4

1 500 14.143-

2.91651288

499.991494 0.02210388 -0.00577064 0.02210351 3.366E-05 0.022069848

1.1 450 15.5573-

444.902284

67.5422639 0.00535812 0.0137989 0.00080422 -0.01364258 0.014446806

1.2 400 16.9716-

120.940958

-381.278487 -0.01421543 0.00203491 0.01355009 -0.00061526 0.014165349

1.3 350 18.3859 313.048216 -156.527361 -0.00665568 -0.01650282 0.00297656 -0.01476051 0.01773706

5

1.4 300 19.8002 174.34772 244.136996 0.01039206 -0.01249011 0.00845695 -0.00725874 0.01571568

9

1.5 250 21.2145-

178.316632

175.223225 0.00956399 0.00249592 0.00670333 -0.00178026 0.00848359

1.6 200 22.6288-

160.699221

-119.062003 -0.00255672 0.00412038 0.00152204 -0.00331071 0.00483275

Page 4: Dinamica Estructural Homework

1.7 150 24.0431 69.420515 -132.96914 -0.0054415 -0.00478603 0.00482367 -0.00221499 0.00703866

7

1.8 100 25.4574 94.7759629 31.8985402 0.00048747 -0.0079651 0.00015549 -0.007549 0.00770449

4

1.9 50 26.8717-

8.36854989

49.2946992 0.0033828 -0.00481062 0.00333508 0.00080516 0.002529925

2 0 28.286 0 0 0.00295871 -0.00294046 -3.4516E-05 0.00294026 -0.00297477

2.1 0 29.7003 0 0 0.0028358 -0.0028183 -0.00280611 0.00040675 -0.00321286

2.2 0 31.1146 0 0 0.002718 -0.00270123 -0.00080667 -0.00257952 0.001772853

2.3 0 32.5289 0 0 0.00260509 -0.00258901 0.00233681 -0.00114433 0.003481143

2.4 0 33.9432 0 0 0.00249687 -0.00248146 0.0014392 0.00202777 -0.00058857

2.5 0 35.3575 0 0 0.00239315 -0.00237838 -0.00171671 0.00165707 -0.00337377

2.6 0 36.7718 0 0 0.00229373 -0.00227958 -0.00183501 -0.00136772 -0.00046729

2.7 0 38.1861 0 0 0.00219845 -0.00218488 0.0010288 -0.00193088 0.002959679

2.8 0 39.6004 0 0 0.00210712 -0.00209412 0.00199309 0.00067956 0.001313529

2.9 0 41.0147 0 0 0.00201959 -0.00200713 -0.00034963 0.00197682 -0.00232645

3 0 42.429 0 0 0.00193569 -0.00192375 -0.00193539 -3.3662E-05 -0.00190173

3.1 0 43.8433 0 0 0.00185528 -0.00184383 -0.00025705 -0.00182605 0.001568999

3.2 0 45.2576 0 0 0.00177821 -0.00176724 0.00170114 -0.00051464 0.002215777

3.3 0 46.6719 0 0 0.00170434 -0.00169382 0.00074438 0.00152373 -0.00077935

3.4 0 48.0862 0 0 0.00163354 -0.00162346 -0.00134034 0.00092801 -0.00226835

3.5 0 49.5005 0 0 0.00156568 -0.00155602 -0.00108427 -0.0011225 3.82323E-05

3.6 0 50.9148 0 0 0.00150064 -0.00149138 0.00090735 -0.00118788 0.002095227

3.7 0 52.3291 0 0 0.0014383 -0.00142942 0.00126714 0.00067628 0.000590864

3.8 0 53.7434 0 0 0.00137855 -0.00137004 -0.00045495 0.00129329 -0.00174823

3.9 0 55.1577 0 0 0.00132128 -0.00131313 -0.00129998 -0.00023487 -0.00106511

4 0 56.572 0 0 0.00126639 -0.00125858 2.9545E-05 -0.00125824 0.001287783

4.1 0 57.9863 0 0 0.00121379 -0.0012063 0.00120304 -0.00016016 0.001363202

4.2 0 59.4006 0 0 0.00116336 -0.00115619 0.00033229 0.00110802 -0.00077573

4.3 0 60.8149 0 0 0.00111504 -0.00110816 -0.00100589 0.00047817 -0.00148406

4.4 0 62.2292 0 0 0.00106872 -0.00106212 -0.00060578 -0.00087501 0.000269232

4.5 0 63.6435 0 0 0.00102432 -0.001018 0.00074306 -0.00070069 0.001443758

4.6 0 65.0578 0 0 0.00098177 -0.00097571 0.0007785 0.00059448 0.00018402

4.7 0 66.4721 0 0 0.00094098 -0.00093518 -0.00045002 0.0008213 -0.00127132

4.8 0 67.8864 0 0 0.00090189 -0.00089633 -0.00084961 -0.00030074 -0.00054888

4.9 0 69.3007 0 0 0.00086443 -0.00085909 0.00015957 -0.00084433 0.001003901

5 0 70.715 0 0 0.00082852 -0.00082341 0.00082817 2.4011E-05 0.000804155

Page 5: Dinamica Estructural Homework

5.1 0 72.1293 0 0 0.0007941 -0.0007892 0.00010084 0.00078281 -0.00068197

5.2 0 73.5436 0 0 0.00076111 -0.00075642 -0.00073066 0.00021182 -0.00094248

5.3 0 74.9579 0 0 0.00072949 -0.00072499 -0.00031093 -0.00065584 0.000344905

5.4 0 76.3722 0 0 0.00069919 -0.00069488 0.00057832 -0.00039053 0.00096885

5.5 0 77.7865 0 0 0.00067014 -0.00066601 0.00045842 0.0004858 -2.7384E-05

5.6 0 79.2008 0 0 0.00064231 -0.00063834 -0.00039431 0.0005039 -0.00089821

5.7 0 80.6151 0 0 0.00061562 -0.00061183 -0.00053893 -0.00029573 -0.0002432

5.8 0 82.0294 0 0 0.00059005 -0.00058641 0.00020121 -0.00055126 0.000752472

5.9 0 83.4437 0 0 0.00056554 -0.00056205 0.0005552 0.00010697 0.000448228

6 0 84.858 0 0 0.00054204 -0.0005387 -1.8967E-05 0.00053837 -0.00055734

6.1 0 86.2723 0 0 0.00051953 -0.00051632 -0.0005157 6.2578E-05 -0.00057828

6.2 0 87.6866 0 0 0.00049795 -0.00049487 -0.00013665 -0.00047587 0.000339224

6.3 0 89.1009 0 0 0.00047726 -0.00047432 0.00043292 -0.00019966 0.000632578

6.4 0 90.5152 0 0 0.00045743 -0.00045461 0.00025487 0.00037751 -0.00012263

6.5 0 91.9295 0 0 0.00043843 -0.00043573 -0.00032155 0.0002962 -0.00061775

Page 6: Dinamica Estructural Homework

0 1 2 3 4 5 6 7

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

DIAGRAMA DE RESPUESTA T-U

PERIODO T (Seg)

DESPLAZAMIENTO

Page 7: Dinamica Estructural Homework

Utilizando Matlab 7.0 para generar el diagrama de

desplazamiento (método de los Trapecios)

Definimos los tipos de carga para cada intervalo:

p 1=2000∗t (1 :200 ) ;0 ≤t ≤0.4 p 2=1000−500∗t ;0.4 ≤ t ≤ 2.0

p 3=zeros (1002 :2500) ;2≤t ≤5

SINTAXIS PARA DETERMINAR ACELERACION LINEAL EN MATLAB

Paso a generar: 0.002

t=linspace(0,6,3001)'; p1=2000*t(1:200); p2=1000-500*t(201:1001); p3=zeros*t(1002:2501); p=[p1;p2;p3]; [t,d]=dtrapez(p,100,14.1493,0.03,0.002);

Page 8: Dinamica Estructural Homework

SINTAXIS PARA DETERMINAR ACELERACION LINEAL EN MATLAB

t=linspace(0,6,3001)'; p1=2000*t(1:200); p2=1000-500*t(201:1001); p3=zeros*t(1002:2501); p=[p1;p2;p3]; [t,d,v,a]=dmaclin(p,100,14.1493,0.03,0.002);

Page 9: Dinamica Estructural Homework
Page 10: Dinamica Estructural Homework

B) Aceleración de la base del terreno correspondiente al acelerograma

de “El Centro “de 1940 en los Ángeles, Estados unidos

V= aceleración de la base del terreno (a/g)= sismo Sismo es un vector que contendrá las aceleraciones con espaciamientos

de 0.002s

Sintaxis Para MatLab 7.0

p=-sismo*100*981;[t,d]=dtrapez(p,100,14.1493,0.03,0.002);

Diagrama Desplazamiento:

Page 11: Dinamica Estructural Homework

Diagrama Velocidad

p=-sismo*100*981; [t,d,v,a]=dmaclin (p,100,14.1493,0.03,0.002);

Page 12: Dinamica Estructural Homework

Encontrar los valores finales de desplazamientos, derivas de entrepiso, fueras por nivel y cortante basal para la siguiente estructura, suponiendo un 5% de amortiguamiento para un espectro de respuesta basado en EL Sismo el Centro,. Modele y muestre todos los modos de Vibración. f’’c=280kg/cm2

DATOS :

Viga:

b=30 cm h= 50 cm L= 600cm

Columna:

b= 50 cm h= 50 cm L= 400 cm

Inercias de sección:

Page 13: Dinamica Estructural Homework

Inercias de las secciones:

I v=1

12bh3= 1

1230 (50 )3=260416 .67⇒ I v/ L=K=312,500

600=520 .833cm3

Ic=12

bh3=1/12∗50 (50 )3=520,833 . 33⇒ I c/ L=K=520,833 . 33400

=1302. 0833 cm3

∑ Kv=434 . 0278cm3×2=1 041 .6667 cm 3̂

∑ kc1=∑ kc2=∑ kc3=∑ kc4=1302 . 0833×3=3,906 .25cm 3̂

Rigideces de Entrepiso:

Aplicando formulas de wilbur.

Primer entrepiso.

R 1=48 Ec

h 1[( 4 h 1

∑ kc1)+

(h 1+h 2)

∑ Kv1+∑ kc1/12 ]

=48∗15100√280

400 [ 4∗4003,906 . 25

+(400+400)

1041 . 667+3 , 906 . 25 /12 ]1000

=30 . 48 ton/cm

Segundo entrepiso.

R 2=48 Ec

h 2 [(4 h 2

∑ kc2)+

(h 1+h 2)

∑ Kv1+∑ kc1/12

+(h 1+h 2)

∑ K v2

]¿48∗15100√280

400 [4∗4003906. 25

+(400+400 )1041. 667+3906 . .25 /12

+(400+400 )1041. 667 ]1000

=17 . 20 ton/cm

Tercer entrepiso.

R 3=48 Ec

h2 [(4 h3

∑ kc3)+

(h2+h3 )

∑ K v2

+(h2+h3)

∑ K v3

]¿48∗15100√210

400 [4∗4003906. 25

+(400+400 )1041.667

+( 400+400 )1041.667 ]1000

=15. 58 ton/cm

Page 14: Dinamica Estructural Homework

Entrepiso Superior.

R 4=48 Ec

h 3 [(4 h3

∑ kc3)+

(2 h 3+h 2 )

∑ K v2

+(h 1+h 2 )

∑ Kv3

]¿48∗15100√210

306 [4∗4003906 . 25

+(2∗400+400 )1041 .667

+( 400)1041 .667 ]1000

=15 . 58ton/cm

Cuadro resumen:

Eje                

 A-Ab(cm

) h(cm) Inercia(cm4)Longitud(cm

) Cantidad K(cm^3) ΣK(cm^3)  v1 30 50 312500.00 600 2 520.83 1041.67 ΣKv1v2 30 50 312500.00 600 2 520.83 1041.67 ΣKv2v3 30 50 312500.00 600 2 520.83 1041.67 ΣKv3v4 30 50 312500.00 600 2 520.83 1041.67 ΣKv4                 c1 50 50 520833.33 400 3 1302.08 3906.25 ΣKc1c2 50 50 520833.33 400 3 1302.08 3906.25 ΣKc2c3 50 50 520833.33 400 3 1302.08 3906.25 ΣKc3c4 50 50 520833.33 400 3 1302.08 3906.25 ΣKc4

     

R1 30.48 ton/cmR2 17.20 ton/cm

R3 15.58 ton/cmR4 15.58 ton/cm

Peso Propio de Elementos: (masa de cada Elemento)

M v iga=0.3∗0.5∗2.4∗6∗2 /981=2.16981

tonse2

m=4.403669725∗10−3 ton∗s2

cm

M columna=0.5∗0.5∗2.4∗4∗3 /981= 7.2981

tonse2

m=7.339449541 x10−3 ton∗s2

cm

Se considerara la carga distribuida dada en enunciado como el peso por ml de

la losa

Masa de losa nivel 1 :

Page 15: Dinamica Estructural Homework

WL1=2.5∗12/981= 30981

tonse2

m=0.030581039

ton∗s2

cm

Masa de losa nivel 2:

WL2=2.0∗12/981= 24981

tonse2

m=0.024464831

ton∗s2

cm

Masa de losa nivel 3:

w L 3=2.0∗12/981= 24981

tonse2

m=0.024464831

ton∗s2

cm

Masa de losa nivel 4:

w L 3=1.5∗12/981= 18981

tonse2

m=0.018348623

ton∗s2

cm

Totales: (para masa de losa):

Nivel 1: M 1=Mv+Mc+ML1=0.042321ton∗s2

cm

Nivel 2: M 2=Mv+ Mc+ ML2=0.036208ton∗s2

cm

Nivel 3 : M 3=Mv+Mc+ML3=0.036208ton∗s2

cm

Nivel 4 : M 4=Mv+Mc+ ML3=0.030092ton∗s2

cm

Matriz de rigidez

⟦ K ⟧=[30.48+17.20 −17.10 0 0−17.20 17.20+15.58 −15.58 0

00

−15.580

15.58+15.58−15.58

−15.5815.58

]⟦ K ⟧=[ 47.68 −17.10 0 0

−17.20 32.78 −15.58 000

−15.580

31.16−15.58

−15.5815.58

]Matriz diagonal de masas

Page 16: Dinamica Estructural Homework

⟦ m⟧=[0.042321 0 0 00 0.036208 0 000

00

0.0362080

00.030092

]La ecuacion de Eigen Valores es:

([ K ]−ω2 . [ M ]¿ . [Φ n ]=0

[[ 47.68 −17.20 0 0−17.20 32.78 −15.58 0

00

−15.580

31.16−15.58

−15.5815.58

]−ω2 .[0.042321 0 0 00 0.036208 0 000

00

0.0362080

00.030092

]] . [Φn1Φn2Φn3Φ n4

]=0

El determinante a resolver es:

[47.68−ω2∗0.042321 −17.20 0 0−17.20 32.78−ω2∗0.036208 −15.58 0

00

−15.580

31.16−ω2∗0.036208−15.58

−15.5815.58−ω2 0.030092

]=0

Resolucion de la determinante:

0.000002(ω8−3410.28 ω6+3.66523 x106∗ω4−1.28797∗109∗ω2+7.62188∗1010)=0

Vector polinomial P

>> p=[1,0,-3410.28,0,3.66523*10^6,0,-1.28767*10^9,0,7.62188*10^10];

>> roots(p);

Solucion según matlab.

ω1=8.5769radseg

ω2=23.3943radseg

El periodo es:T={T 1T 2T 3T 4

}={0.73260.26860.18400.1560

}ω3=34.1540

radseg

ω 4=40.2856radseg

A={A 1A 2A 3A 4

}={420 cm /s2

780 cm / s2

680 cm / s2

7 00 cm / s2} Matriz aceleración A=[420 0 0 00 780 0 000

00

6800

0700

]

Page 17: Dinamica Estructural Homework

[47.68−ω2∗0.042321 −17.20 0 0−17.20 32.78−ω2∗0.036208 −15.58 0

00

−15.580

31.16−ω2∗0.036208−15.58

−15.5815.58−ω2 0.030092

]∗[Φn1Φn2Φn3Φn4

]

[44.5667 −17.20 0 0−17.20 30.1164 −15.58 0

00

−15.580

28.49 64−15.58

−15.5813.3663

]∗[Φn1Φn2Φn3Φn 4

]=[0000]

Para la frecuencia. ω1=8.5769 [44.5667 −17.20 0 0−17.20 30.1164 −15.58 0

00

−15.580

28.4964−15.58

−15.5813.3663

]∗[Φn1Φn2Φn3Φn 4

]=[0000]

Φ11=1 entonces

44.5667 Φ 11−17.20 Φ21=0 Φ21=2.59110

−17.20 Φ11+30.1164 Φ21−15.58Φ 31=0Φ31=3.90464

0 Φ11−15.58 Φ21−28.4964 Φ 31−15.5841=0Φ 41=4.54814

Para la frecuencia. ω2=23.3943 [24.5180 −17.20 0 0−17.20 12.9636 −15.58 0

00

−15.580

11.3336−15.58

−15.58−0.88915

]∗[Φn1Φn2Φn3Φn4

]=[0000]

Φ12=1 entonces

24.5180 Φ12−17.20 Φ22=0 Φ22=1.42546

−17.20 Φ12+12.9636 Φ22−15.58 Φ32=0 Φ32=0.08210

0 Φ12−15.58 Φ 22−11.3336Φ23−15.5824=0Φ 42=−1.36574

Page 18: Dinamica Estructural Homework

Para la frecuencia ω3=34.1540 [−1.6873 −17.20 0 0−17.20 −9.4565 −15.58 0

00

−15.580

−11.0765−15.58

−15.58−19.5222

]∗[Φn1Φn2Φn3Φn 4

]=[0000]

Φ13=1 entonces

−1.6873 Φ13−17.20Φ 23=0 Φ23=−0.09810

−17.20 Φ13−9.4565 Φ23−15.58 Φ33=0 Φ33=−1.04444

0 Φ13−15.58 Φ33−0.88915 Φ34=0Φ 43=0.84130

Para la frecuencia ω 4=40. 285

[−21.0004 −17.20 0 0−17.20 −25.98300 −15.58 0

00

−15.580

−27.61303−15.58

−15.58−33.25720

]∗[Φn1Φn2Φn3Φn4

]=[0000]

Φ13=1 entonces

−1.6873 Φ14−17.20 Φ24=0Φ24=−1.22116

−17.20 Φ14−9.4565 Φ24−15.58 Φ34=0 Φ34=0.93257

0 Φ13+0Φ14−15.58 Φ34−0.88915Φ 44=0 Φ 44=−0.43168

Φ jn=[ 1 1 1 12.59110 1.42546 −0.09810 −1.221163.904644.54814

0.08210−1.36574

−1.044440.84130

0.93257−0.43168

]

Los componentes de la Matriz Modal estan dados por :

Φ jn= Ujn

∑❑

( mjj . U 2 jn )0.5

Page 19: Dinamica Estructural Homework

Modo 1 ∑ ( mjj . U 2 jn )0.5=[0.042321∗(1+2.59112+3.904642+4.548142 )

12 ]=1.3591

Modo 2 ∑ ( mjj . U 2 jn )0.5=[0.036208∗( 1+1.425462+0.082102+1.365742 )

12 ]=0.42138

Modo 3 ∑ ( mjj . U 2 jn )0.5=[0.036208∗( 1+0.098102+1.04442+0.84132)

12]=0.31888

Modo 4 ∑ ( mjj . U 2 jn )0.5=[0.030092∗(1+1.221162+0.932572+0.431682 )

12]=0.32672

Entonces la matriz modal normalizada es:

Φ=[0.73578 2.73155 3.13598 3.060721.90649 3.38284 −0.30763 −3.737672.872983.34646

0.19484−3.241105

−3.275382.63834

2.85437−1.32125

]El vector de coeficiente de participación está definido por:

[ P ]= [ Φ ]T . [ M ] . {1 }

[Φ ]T . [ M ] .{Φ }

Si [ Φ ]T . [ M ] . {Φ }={I } para la matriz modal normalizada, entonces [P] se reduce a:

[ P ]¿ [ Φ ]T . [ M ] . {1 }

[P ]=[0.73578 2.73155 3.13598 3.060721.90649 3.38284 −0.30763 −3.737672.872983.34646

0.19484−3.241105

−3.275382.63834

2.85437−1.32125

]T

.[0.042321 0 0 00 0.036208 0 000

00

0.0362080

00.030092

] o= [0.73578,2.73155,3.13598,3.06072;1.90649,3.38284,-0.30763,-3.73767;2.87298,0.19484,-3.27538,2.85437;3.34646,-3.241105,2.63834,-1.32125];

v1=[0.042321,0.036208,0.036208,0.030092]; m=zeros(4,4) + diag(v1,0); x1=[1,1,1,1]'; p=o'*m*x1

Page 20: Dinamica Estructural Homework

p =(0.30490.14760.08240.0578

) ASUMIENDO QUE LA ESTRUCTURA SE COMPORTA ELÁSTICAMENTE, LA MATRIZ DE DESPLAZAMIENTO ESTA DADA POR:

[ U ]=[ Φ ] . [ P ] . [ D ]=[ Φ ] . [ P ] . [ A ]/ [Ω2]

Matriz frecuencias naturales.

Ω=[8.5769 0 0 00 23.3943 0 000

00

34.15400

040.2856

]Matriz fuerza

P=[0.3049000

00.34276

00

00

0.08240

000

0.578]

[ U ]=[0.73578 2.73155 3.13598 3.060721.90649 3.38284 −0.30763 −3.737672.872983.34646

0.19484−3.241105

−3.275382.63834

2.85437−1.32125

]∗[0.3049000

00.14

00

00

0.08240

000

0.578]∗[420 0 0 0

0 780 0 000

00

6800

0700

] /[8.57692 0 0 00 23.39432 0 000

00

34.15402

00

40.28562]o=[0.73578,2.73155,3.13598,3.06072;1.90649,3.38284,-0.30763,-3.73767;2.87298,0.19484,-3.27538,2.85437;3.34646,3.241105,2.63834,-1.32125];o=[0.73578,2.73155,3.13598,3.06072;1.90649,3.38284,-0.30763,-3.73767;2.87298,0.19484,-3.27538,2.85437;3.34646,-3.241105,2.63834,-1.32125];

v1=[0.042321,0.036208,0.036208,0.030092]; m=zeros(4,4) + diag(v1,0); x1=[1,1,1,1]'; p=o'*m*x1

Page 21: Dinamica Estructural Homework

p =(0.30490.14760.08240.0578

) P=zeros(4,4) +diag(p,0); a=[420,780,680,700];% A=zeros(4,4)+diag(a,0) w1=[8.5769,23.3946,34.1540,40.2856] W2=zeros(4,4)+diag(w1,0) W=W2^2 U=o*P*A/W

U= 1.2808 0.5746 0.1506 0.0763 3.3187 0.7116 -0.0148 -0.0932 5.0012 0.0410 -0.1573 0.0711 5.8254 -0.6818 0.1267 -0.0329

LOS DESPLAZAMIENTOS MÁXIMOS.

U1=U.^2; U2=[1,1,1,1]'; U3=U1*U2; Umax=U3.^0.5

Umax=

1.4139 3.3955 5.0043 5.8666

LAS DERIVAS DE ENTREPISO.

U4=U';

fil1=U4(5:8)-U4(1:4);

fil2=U4(9:12)-U4(5:8);

fil3=U4(13:16)-U4(9:12);

fil4=U4(13:16);

der=[fil1;fil2;fil3;fil4]

der =

2.0379 0.1370 -0.1654 -0.1695

Page 22: Dinamica Estructural Homework

1.6824 -0.6707 -0.1425 0.1643

0.8242 -0.7228 0.2840 -0.1041

5.8254 -0.6818 0.1267 -0.0329

MATRIZ DE FUERZAS LATERALES EN CADA NUDO.

[ F ]=[ K ] ⌊U ⌋

[ F ]=[[ 47.68 −17.20 0 0−17.20 32.78 −15.58 0

00

−15.580

31.16−15.58

−15.5815.58

] ]⌊ 1.3723 0.6225 0.1993 0.08173.5558 0.7710−0.0196−0.09985.3584 0.0444−0.20820.0762

6.2415−0.7386 0.1677−0.0353

k1=[47.68,32.78,31.16,15.58];

k2=[-17.20,-15.58,-15.58];

K=zeros(4,4)+diag(k1,0)+diag(k2,-1)+diag(k2,1);

F=U*K

F =

51.1857 -5.5398 -5.4490 -1.1576

145.9976 -33.5246 -10.0962 -1.2214

237.7512 -82.2262 -6.6482 3.5590

289.4824 -124.5211 15.0839 -2.4870

UTILIZANDO L ARAIZ DE LA SUMA DE LOS CUADRADOS LA FUERZA LATERAL EN CADA NUDO ES:

F1=F.^2; F2=[1,1,1,1]'; F3=F1*F2; Fc=F3.^0.5

Fc =

51.7851 150.1420

Page 23: Dinamica Estructural Homework

251.6817 315.4984

VECTOR DE CORTANTE BASAL

[ V ]=[ [ F ]T {1 } ]T

R=[1,1,1,1]'

V=[F'*R]'

V = [724.4170 -245.8116 -7.1095 -1.3070]

CORTANTE BASAL actuante en la estructura es:

V1=V.^2;

V2=[1,1,1,1]’;

Vb=(V2*V1’).^0.5;

CORTANTE BASAL = 765.02 ton