Top Banner
Digital to Analog Converter Digital-to-Analog Converter
35

Digital-to-Analog ConverterAnalog Converter

May 08, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Digital-to-Analog ConverterAnalog Converter

Digital to Analog ConverterDigital-to-Analog Converter

Page 2: Digital-to-Analog ConverterAnalog Converter

General ConsiderationsD-to-A

111...111111...110

REF'm' digitsD to A

conversionEx) for 3bit DAC,

000->0 001 >(1/8)REF

000...000000...001

steps001->(1/8)REF

110->(6/8)REF

m2

000 0000 111->(7/8)REF

m

DREFA2

=

Formats of Digital InputDecimal 0 1 2 3

Thermometer

Binary 00 01 10 11

0 0 0 10 0 1 10 1 1 1

1-of-n

0 1 1 10 0 0 1 0 0 1 00 1 0 0o 0 1 0 01 0 0 0

Page 3: Digital-to-Analog ConverterAnalog Converter

Metrics-1

Analog output

INL

DNL + 1LSB

θ gain error = ideal slope -tan θ

Digital input

Offset

Integral nonlinearity (INL) : maximum deviation of transfer characteristic from straight line

Differential nonlinearity (DNL) : maximum deviation of step size from 1 LSBDifferential nonlinearity (DNL) : maximum deviation of step size from 1 LSB

Gain error : deviation of the slope of line from its ideal value (usually unity)

Off i l i f h i h li h di i l i i 0Offset : vertical intercept of the straight line when digital input is 0

Page 4: Digital-to-Analog ConverterAnalog Converter

Metrics-2Cl k

Digital Input

Clock

glitch impulse areaerror less than 1 LSB

p

Analog

settling time

gOutput

S f f ( S )

latency

Settling time : time required for output to settle within a specified error (< 1LSB)

Glitch impulse area : maximum glitch area after input changes

Latency : delay from the time digital input changes to the time analog output has settled

Signal-to-’noise+distortion’ ratio (SNDR) : ratio of signal power to noise and harmonic power t V t h i t i di it l i idat Vout when input is a digital sinusoid

Page 5: Digital-to-Analog ConverterAnalog Converter

Voltage DivisionN resistors for 'm' bit resolution

VREF

R

VREF

R/2

N resistors for m bit resolution

R

R1−NV

V

R1−NV

2−NV

R

2−NV

2V R2V

1V

mN 2= to switchesfor analog output

R0V

1V R0V

1

R/2

balanced conversion

Page 6: Digital-to-Analog ConverterAnalog Converter

Resistor Mismatch (Example Analysis : Linear Gradient)VREF VREF

1−NVR+(N 2)∆R

R+(N-1)∆R1−NV2−NV

∆R<0

2−NV

2V

R+(N-2)∆R

V

∆R>0

∆R=0

R+∆R

RV

2

1V0V

2V1V

Index0 1 N 2 N 1

j

RjjjRRkR ∆−

+∆+∑−

2)1()(

1

0V

- Max INL : center point- Max DNL : at point 1 and N-1

(max. deviation in slope at 1, and N-1)

0 1 N-2 N-1

REFREFN

k

kj V

RNNNRV

RkRV

∆−

+=

∆+=

∑−

=

=

2)1(

2

)(1

0

0(max. deviation in slope at 1, and N 1)

)( ∆N

VRRNj

NVVVDNL REFREF

jjj∆−

−≈−−= + )2

1(1

REFjREFj VNR

RNR

jNjVVNjINL

22

1)( ∆

∆−

+

−=−= 1−= NDNLDNL

REFREF V

RR

NV

RRN

2)

21( ∆

≈∆−

Assuming R >> (N-1)∆R/2

)8/(2/ RRNVINLINL REFN ∆==RNR 22

Assuming R >> (N-1)∆R/2, large N

Page 7: Digital-to-Analog ConverterAnalog Converter

Random Resistor Mismatchrandom variation

Assuming Gaussian PDF for resistance

random variationVREF VREF

REFVRR

NINL ∆

=41

g

increase N

if ∆R/R is constant, INL decreases as N increases.

linear gradientVREF VREF

Recall from linear gradient case)8/( RRNVINL REF ∆=

increase N

if ∆R/R is constant, INL increases proportionally as N increases.

Why ?

Page 8: Digital-to-Analog ConverterAnalog Converter

Current-Steering ArraySegmented Current-Steering Array Binary Current-Steering Array

D1 D2 DN

Iout

D1 D2 Dm

IoutSegmented Current Steering Array Binary Current Steering Array

D1 D2 DN D1 D2 Dm

Im 12 −I2II I I

D : thermometer code D : binary codemonotonocity guaranteed

R R

Circuit Implementation

D1D1

RVout+

R

D2D2 D3D3

Vout-

D1D1 D2D2 D3D3

VB1 VB1 VB1

VB2 VB2 VB2

Page 9: Digital-to-Analog ConverterAnalog Converter

Current Switching

Iout

D : full swingM2 : fully off/on switchLarge swing on X => slow response

D

VB IREFM1

M2

X

21 RonroRout +=

Iout Iout D : small swing

DD M3M2

gM2, M3 : differential switching Small swing on X => fast response

122 rorogmRout ⋅⋅=X

VB IREFM1

21 RonroRout +=If M2,M3 operate in linear region,

Page 10: Digital-to-Analog ConverterAnalog Converter

Current Manipulation

I I I4I I2I

Uniform Division Binary Weighted Division

I I I

VBVB

IREFIREF

Replication

IREF IREF IREF IREF

Replication

Page 11: Digital-to-Analog ConverterAnalog Converter

Current-to-Voltage ConversionTransimpedance

R

RResistor amplifier

Current Steering

IoutVout

Current Steering

Iout Vout-

+

Current-Steering Array

Current-Steering Array

Iout varies by finite output resistance Iout flows from virtual groundIout varies by finite output resistance of current source

Output voltage swing limitedPoor linearityF li d

Iout flows from virtual groundGood linearitySlow operationHigh resolution

Fast settling speed

ID

1/(out resistance)( )

VDS

Page 12: Digital-to-Analog ConverterAnalog Converter

Current Source Mismatch2)(1

THGSOXD VVWCI −= µ )(2 THGSOXD VV

LCI µ

22 )(21)()(

21

THGSOXTHGSOXD VVLWCVV

LWCI −

∆+−∆=∆ µµ

TR Sizing

THTHGSOXTHGSOX VVVLWCVV

LLWC ∆−−−

∆− ))(2(

21)(

21 2

2 µµ

VLWCI ∆∆∆∆∆ 2)( : Larger W & L helps matchingTHGS

TH

OX

OX

D

D

VVV

LL

WW

CC

II

−∆

−∆

−∆

+∆

=∆ 2)(

µµ

I1 I2I2 I1

I3slope=1/Rs

I4I4I

VDD

I

Source Degeneration

I3

VBdesired current Rs Rscurrent level for I1

Matching improved by source degeneration

THV∆VB

Rs shoud be comparable with 1/gm.Better to use with BJT

Page 13: Digital-to-Analog ConverterAnalog Converter

Current-Steering DAC (OP amp Implementation)Switch at VREF

VREF Switch at VREF

I1=VREF/R

RoR 2R R12 −n

1/2(I1) (I1) 12/1 −n VREFDIDIo == )2(1

X MSB LSB

I1 VREF/R

VoutA0-

+

/ ( ) ( )2/1

Io RoIoVoutR

IIo nn

⋅−=

− )(2

12 1

large swing on X

VREF Switch at Ground

I1=VREF/R

RoR 2R R12 −n

1/2(I1) (I1) 12/1 −n

VoutA0-

+Io

+

Faster solution

Page 14: Digital-to-Analog ConverterAnalog Converter

Current-Steering DAC (R-2R Ladder)

No big Rs !VREF

I1

No big Rs !

2RR R R R2I1

2n1n

I1 22 −nI1 12 −n

Ro2R 2R 2R2R

2I1 I1 I1 22 −nI1 12 −n

VoutA0-

+Io

Page 15: Digital-to-Analog ConverterAnalog Converter

Charge Division

CNDN

CN CN

Cj+1Dj+1

Cj+1 Cj+1

Cj VoutDj

Cj Vout Cj VoutVREF

C1D1

C1 C1

VREF

VREF

Discharge EvaluationDischarge Evaluation

If C1=C2=..=CN=CVout = (j/N)VREFVout (j/N)VREFsame as resistor divider

Page 16: Digital-to-Analog ConverterAnalog Converter

Capacitor ArraysDm

D

CDN

D

Cm 12 −

Dm-1C

DN-1Cm 22 −

CD1

Vout

CD1

-+ Vout

-+

VREF VREF

Binary weighted capacitor array Segmented capacitor arrayPoor matching between

small cap. and big cap.Thermometer decoder needed

Page 17: Digital-to-Analog ConverterAnalog Converter

Capacitor Mismatch

In case of random variations, INL improves as the number of capacitors increases.

OX

OX

tWLC ε

=OX

OX

tt

LL

WW

CC ∆

−∆

+∆

=∆

In case of random variations, INL improves as the number of capacitors increases.- Integration averages out random errors. => similar to resistor divider

Common Centroid Layout

1 22

34 45

56

6

1 24

3

5

44

35

4

5 5 5 5

5

5dummy cap.

1

1

1

2 2

3

3

3

44 5

5 6

6

4

3

4 3

4

5

5

55 5

5 4

2 5

5

binary array segmented array

Less sensitive to linear gradient of process variation

Page 18: Digital-to-Analog ConverterAnalog Converter

Switch Junction Capacitor (Cj)

Capacitor Non-idealities

mj VCoC

)/1( Φ=

CojV

Cozero-bias capacitancereverse bias voltage across junction

Switch Junction Capacitor (Cj)

mj

j V )/1( Φ+j

Φm

jV

g jbuilt-in potentialempirical parameter 0.3~0.5

Top Plate Parasitic Cap. (CP)

DN

jCCN

CN 1DN-1

REFP

VCNC

jCVout+

=

VjC=CN-1

C VoutD1

REFP

V

NCCNC )1( +

=

P VCj )1( −≈ CNCif >>

VREF

C1 VoutCP

REFVNCN

)1( −≈ PCNCif >>

VREF

While junction cap. of the switch introduces nonlinearity, top plate parasitic causes gain error.

Page 19: Digital-to-Analog ConverterAnalog Converter

VREF VREF VREF3

D3D2D1

Resistor Ladder DACs

R

R/2

D1D2

D13

R

RD2

D1D3

D1

ode

er

R

R

D1

D1 VoutD2

Vout

mom

eter

co

Vout

-8 d

ecod

e

R

RD3

D1

D1

D2

ther

m

3-to

R

R/2

D1

D2D1

R/2

1-of-n code 1-of-n code

Binary input Thermometer code input Using a decoder

Three switches in series => slow settling due to RC

Single Switch to VoutLarge cap. on Vout

Single Switch to VoutLarge cap. on VoutDecoder needed

Page 20: Digital-to-Analog ConverterAnalog Converter

Resistor Ladder DAC with Switched Subdivider

Architecture Implementation

Number of resistors reduced : 2/222 mm ⋅>−

Long initial settling time when subdivider moves to a new sector.Current bypass to the second stage should be negligible.

u be o es s o s educed

Page 21: Digital-to-Analog ConverterAnalog Converter

Nonlinearity by Switch Resistance

increment by 1 LSB

21 uu RRAssume <<

DNL error )(on VVR≈

Monotonocity still guaranteed

DNL error )(22 1

2nn

uk

on

VVRR

−+

≈ +

Page 22: Digital-to-Analog ConverterAnalog Converter

Switched Subdivider with Analog Buffers

-+

-+

Effect of Ron of first stage is eliminated.Two amps should be well matched. (equal offset voltage)

Page 23: Digital-to-Analog ConverterAnalog Converter

Intermeshed Resistor Ladder DACOne-Level Intermesh Two-Level IntermeshOne Level Intermesh(one switch to Vout)

Two Level Intermesh(two switches to Vout, Cj reduced to 1/ )k2

switches turn onk2

t it hdecoder 1

to switchesdecoder 2

k bitj bit

decoder

bit

m bits

k bitsj bitsm bits

Page 24: Digital-to-Analog ConverterAnalog Converter

Current-Steering DAC with R-2R Ladder

Using BJT current source with emitter degeneration

aII =0

equivalent circuit

g

aa IIII 201 =+=

Area for resistors reduced

aa IIII 201 +

equivalent circuit

aa IIIII 4012 =++=

Page 25: Digital-to-Analog ConverterAnalog Converter

R-2R Ladder with Current Sources

Norton equivalent circuit

Norton equivalent circuit

Area for both transistors and resistors are reduced.

RIIIVout )42

( 123 ++=

Page 26: Digital-to-Analog ConverterAnalog Converter

Glitch Impulse in R-2R Ladder DAC

Deglitching (sample and hold) needed

Page 27: Digital-to-Analog ConverterAnalog Converter

Segmented Current-Steering DAC

- No glitch problem when code changes by 1M t- Monotonous

- Large number of devices- Decoder needed

Page 28: Digital-to-Analog ConverterAnalog Converter

Matrix Implementation of SegmentationD3 D2 D1

Column Decoder

D3 D2 D11 0 1

thermometer code

D40

0 0 1 1 1 1 1

0 0 0 0 0 0 0 0r

D41

0

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Efficient routing

Serious coupling of control signal to Vout

w D

ecod

er

D51 0

0

0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0

control signal to Vout

Large cap. on Vout

Row

D6 1

1

1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1

01

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Vout

local decoder

Page 29: Digital-to-Analog ConverterAnalog Converter

Partially Segmented Current-Steering DAC(1)Implementation of higher resolutionp g

4 LSBs6 MSB

M t it t t d

4 LSBs6 MSBs

Assumption : Since current sources in 4-bit binary Monotonocity not guaranteedA

p yarray are usually implemented by replication of unit current source, binary array itself is monotonous.

If one of I1 to I63 happens to be less than (15/16)Io

D

Page 30: Digital-to-Analog ConverterAnalog Converter

Partially Segmented Current-Steering DAC(2)

- Monotonous- Weak in low voltage operation : stacking of circuits

Page 31: Digital-to-Analog ConverterAnalog Converter

Higher Resolution with Reduced C Ratio (1)DAC with R and C Arrays

VREFD12

VREF

DAC with R and C Arrays

R1

D12

D11

128Creset switch

R2

R3

D11

V t-

64C Cf

R15C

D5

Vout+

R16 C

4 LSB bits 8 MSB bits

Both R and C used for reduction of maximum capacitor ratio.Area reduced

Page 32: Digital-to-Analog ConverterAnalog Converter

Higher Resolution with Reduced C Ratio (2)DAC with R and C Arrays

VREFD8

DAC with R and C Arrays

R1

R2

D8

D7

128Creset switch

R2

R3

D7

V t-

64C Cf

R15 CD1

Vout+

R16 C

4 MSB bits 8 LSB bits

Page 33: Digital-to-Analog ConverterAnalog Converter

Higher Resolution with Reduced C Ratio (3)DAC with C Scaling

D12128C reset

switch

VREF

DAC with C Scaling

-

64C CfD11

8 MSB bits

CVout

+

D51 0C equivalent

8CD4

Cx=1.067C1.0C equivalent

16C equivalent

4CD3

4 LSB bits Series of 1.067C and 16C = 1.0C

CD1

C

Page 34: Digital-to-Analog ConverterAnalog Converter

Higher Resolution with Reduced C Ratio (4)DAC with C Scaling

D12128C reset

switch

VREF

DAC with C Scaling

-

64C CfD11

8 MSB bits

CVout

+

D5(15/16)C equivalent

8CD4

1C(15/16)C equivalent: one LSB step

4CD3

4 LSB bitsREF REF

CD1

stepsm2 -1 stepsm2

0 0

Page 35: Digital-to-Analog ConverterAnalog Converter

Serial DAC with Two Capacitors

VREF

D*Sample

LSB first inN cycles for N-bit conversionD Sample

Vout

Eval

y

C CD*Sample ResetVout(k) = 0.5[Vout(k-1) + VREF*D(k)]

VREFVout(1101)Vout(1101)

TimeS E S E S E S EReset

cycle 1 cycle 2 cycle 3 cycle 4D=1 D=0 D=1 D=1

LSB MSB