Top Banner
1 Digital Images World Camera Digitizer Digital Image (i) What determines where the image of a 3D point appears on the 2D image? (ii) What determines how bright that image point is? Reflectance, radiometry geometry
25

Digital Images

Jan 18, 2016

Download

Documents

Errol

Digital Images. World. Camera. Digitizer. Digital Image. geometry. (i) What determines where the image of a 3D point appears on the 2D image? (ii) What determines how bright that image point is?. Reflectance, radiometry. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Digital Images

1

Digital Images

World Camera Digitizer DigitalImage

(i) What determines where the image of a 3D point appears on the 2D image?

(ii) What determines how bright that image point is?

Reflectance, radiometry

geometry

Page 2: Digital Images

2

1100

110

201

11

2

1

2y

x

y

x

y

x

y

x

yy

xx

21),( eejixx yxyxyx T

• change of coordinate system: the same pt in two different systems oxy and ox’y’• point transfomation: a point (x,y) is transformed (translated) into (x’,y’) within the same coordinate frame

Two different interpretations:

Review of some basic geometry(compulsary for vision, graphics and robotics)

Page 3: Digital Images

3

y

x

tyxy

tyxx

cossin

sincos

y

x

t

t

y

x

y

x22R

110

1

1222 y

x

y

xtR

R is a rotation matrix=orthonormal = orthogonal and unit vectors, 2*2 matrix (only 1 d.o.f.) such that

222222 IRR T

2D general Euclidean transformation:

Page 4: Digital Images

4

1

10

1

1333

z

y

x

z

y

x

tR333333 IRR T

cossin0

sincos0

001

cos0sin

010

sin0cos

100

0cossin

0sincos

)()()(33 xyz RRRR

One example of R might be:

3D Euclidean transformation:

Different sign

Page 5: Digital Images

5

prod.dot with nn AE nA nR

Naturally everything starts from the known vector space

• add two vectors• multiply any vector by any scalar• zero vector – origin • finite basis

One step further …vector, affine, and Euclidean spaces

Page 6: Digital Images

6

21),( eexx yxyx T

Affine geometry and affine coordinates:

E1 and e2 are any noncolinear vectors, not necessarily orthogonal unit ones

No more rotation as no perpendicularity (as no dot prod.)

fydxcy

eybxax

f

e

y

x

dc

ba

y

x

110

1

1222 y

x

y

xtA

Page 7: Digital Images

7

• Distances -- eucl. Coord

• Angles, ortho

• Ratios – affine coord.• parallelism

Dot product Linear dependency

Page 8: Digital Images

8

Given 3 points (2 vectors) on the plane, we can define an affine coordinate frame (affine basis),Any 4th point can be expressed in terms of affine coordinates …

Page 9: Digital Images

9

Geometric modeling of a camera

u

v

X

u

O

X’

u’

P3

P2

How to relate a 3D point X (in oxyz) to a 2D point in pixels (u,v)?

Page 10: Digital Images

10

Pinhole cameras

• Abstract camera model - box with a small hole in it

• Pinhole cameras work in practice

Page 11: Digital Images

11

Distant objects are smaller:

Page 12: Digital Images

12

Parallel lines meet:

Page 13: Digital Images

13

• each set of parallel lines (=direction) meets at a different point– The vanishing point for

this direction

• Sets of parallel lines on the same plane lead to collinear vanishing points. – The line is called the

horizon for that plane

• Good ways to spot faked images– scale and perspective

don’t work

– vanishing points behave badly

– supermarket tabloids are a great source.

Vanishing points:

Page 14: Digital Images

14

Page 15: Digital Images

15

• Vector space to affine: isomorph, one-to-one (pt=vector)

• vector to Euclidean as an enrichment: scalar prod.

Pts, lines, parallelism

Angle, distances, circles

Page 16: Digital Images

16

Z

Y

f

y

Z

X

f

x ,

X

Y

Z

xy

u

v

X

x

O

f

Camera coordinate frame

Page 17: Digital Images

17

10100

0010

0001

Z

Y

X

f

y

x

Z

Y

X

f

y

x

In more familiar matrix form:

Page 18: Digital Images

18

xo

y

u

v

X

Y

Z

x y

u

v

X

xO

f

Image coordinate frame

Page 19: Digital Images

19

Image coordiante frame: intrinsic parameters

mm

pixels,

mm

pixels 00

y

vvk

x

uuk vu

0

0

vykv

uxku

v

u

1100

v0

u0

10v

0u

y

x

k

k

v

u

If u not perpendicular to v, but an angle alpha:

1100

v0

u)s(

10v

0u

y

x

k

k

v

u

Page 20: Digital Images

20

Camera calibration matrix

100

v0

u)s(

100

v0

u)s(

0v

0u

0v

0u

kf

kf

K

f

y

x

f

y

x

f

f

k

k

v

u

K

100

00

00

100

v0

u)s(

10v

0u

Page 21: Digital Images

21

• Focal length in horizontal/vertical pixels (2) (or focal length in pixels + aspect ratio)• the principal point (2)• the skew (1)

5 intrinsic parameters

one rough example: 135 film

In practice, for most of CCD cameras:

• alpha u = alpha v i.e. aspect ratio=1• alpha = 90 i.e. skew s=0• (u0,v0) the middle of the image• only focal length in pixels?

Page 22: Digital Images

22

Xw Yw

Zw

Xw

X

Y

Z

xy

u

v

X

x

O

f

World (object) coordinate frame

Page 23: Digital Images

23

World coordinate frame: extrinsic parameters

1

1

1w

w

w

c

c

c

Z

Y

X

Z

Y

X

0

tR

Relation between the abstract algebraic and geometric models is in the intrinsic/extrinsic parameters!

6 extrinsic parameters

Page 24: Digital Images

24

Finally, we should count properly ...

11

11

4333 Z

Y

X

Z

Y

X

v

u

pixel

C0

tR0IK

Finally, we have a map from a space pt (X,Y,Z) to a pixel (u,v) by

Page 25: Digital Images

25

Summary of camera modelling

• 3 coordinate frame• projection matrix• decomposition• intrinsic/extrinsic param