Top Banner

of 26

Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

Apr 02, 2018

Download

Documents

Omkar Chogale
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    1/26

    1

    Digital imageprocessing techniques for thedetectionand removalofcracks indigitized

    paintingsIoannisGiakoumis,NikosNikolaidis, IoannisPitas

    Departmentof InformaticsAristotleUniversityofThessaloniki

    54124Thessaloniki,Greecetel/fax:+302310996304

    e-mail:{nikolaid,pitas}@zeus.csd.auth.gr

    AbstractAnintegratedmethodologyforthedetectionandremovalofcracksondigitizedpaintingsispresentedinthis

    paper.Thecracksaredetectedbythresholdingtheoutputofthemorphologicaltop-hattransform.Afterwards,thethindarkbrushstrokeswhichhavebeenmisidentifiedascracksareremovedusingeitheraMedianRadialBasisFunction(MRBF) neuralnetworkonhueandsaturationdataorasemi-automaticprocedurebasedonregiongrowing.Finally,crackfillingusingorderstatisticsfiltersorcontrolledanisotropicdiffusionisperformed.Themethodologyhasbeenshown toperformverywellondigitizedpaintingssuffering fromcracks.

    I.INTRODUCTIONManypaintings,especiallyoldones,sufferfrombreaks inthesubstrate,thepaint,orthevarnish.Thesepatterns

    areusuallycalledcracksorcraquelureandcanbecausedbyaging,drying,andmechanicalfactors.Agecrackscanresultfromnon-uniformcontractioninthecanvasorwood-panelsupportofthepainting,whichstressesthelayersofthepainting.Dryingcracksareusuallycausedbytheevaporationofvolatilepaintcomponentsandtheconsequentshrinkageofthepaint.Finally,mechanicalcracksresultfrompaintingdeformationsduetoexternalcauses,e.g.vibrationsand impacts.Theappearanceofcracksonpaintingsdeterioratestheperceivedimagequality.However,onecanusedigital

    imageprocessing techniques todetectandeliminate thecracksondigitizedpaintings.Suchavirtual restorationcanprovidecluestoarthistorians,museumcuratorsandthegeneralpubliconhowthepaintingwould look like initsinitialstate,i.e.,withoutthecracks.Furthermore,itcanbeusedasanon-destructivetoolfortheplanningoftheactualrestoration.A systemthat iscapableoftrackingandinterpolatingcracks ispresentedin[1].Theusershouldmanuallyselectapointoneachcracktoberestored.Amethodforthedetectionofcracksusingmulti-orientedNovember30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    2/26

    2

    Gaborfiltersispresentedin[2].Crackdetectionandremovalbearscertainsimilaritieswithmethodsproposedforthedetectionandremovalofscratchesandotherartifactsfrommotionpicturefilms[3],[4],[5].However,suchmethodsrelyoninformationobtainedoverseveraladjacentframesforbothartifactdetectionandfillingandthusarenotdirectlyapplicableinthecaseofpaintingcracks.Otherresearchareasthatarecloselyrelatedtocrackremovalincludeimageinpaintingwhichdealswiththereconstructionofmissingordamagedimageareasbyfilling-in informationfromtheneighboringareas,anddisocclusion, i.e.,recoveryofobjectpartsthatarehiddenbehindotherobjectswithinanimage.Methodsdevelopedintheseareasassumethattheregionswhere informationhastobefilled-inareknown.Differentapproachesfor interpolating information instructured [6],[7],[8],[9],[10]and textured imageareas [11]havebeendeveloped.The formerareusuallybasedonpartialdifferentialequations(PDE)andonthecalculusofvariationswhereasthelatterrelyontexturesynthesisprinciples.Atechniquethatdecomposesthe imageto texturedandstructuredareasandusesappropriate interpolation techniquesdependingontheareawhere themissing information lieshasalsobeenproposed [12].Theresultsobtainedbythese techniquesare

    very

    good.

    Amethodology

    for

    the

    restoration

    of

    cracks

    on

    digitized

    paintings,

    which

    adapts

    and

    integrates

    a

    numberofimageprocessingandanalysistoolsisproposedinthispaper.Themethodologyisanextensionofthecrack removal frameworkpresented in [13].The techniqueconsistsof the followingstages:

    Crackdetection.Separationof the thindarkbrushstrokes,whichhavebeenmisidentifiedascracks.Crackfilling (interpolation).Acertaindegreeofuserinteraction,mostnotablyinthecrackdetectionstage,isrequiredforoptimalresults.

    User interaction isratherunavoidablesincethe largevariationsobserved inthetypologyofcrackswould leadanyfullyautomaticalgorithmtofailure.However,allprocessingstepscanbeexecutedinrealtimeandthustheusercaninstantlyobservetheeffectofparametertuningontheimageunderstudyandselectinanintuitivewaythevaluesthatachievetheoptimalvisualresult.Needlesstosaythatonlysubjectiveoptimalitycriteriacanbeusedin thiscasesincenogroundtruthdataareavailable.Theopinionofrestorationexpertsthat inspectedthevirtuallyrestored imageswasverypositive.Thispaperisorganizedasfollows.SectionIIdescribesthecrackdetectionprocedure.Twomethodsforthe

    separationofthebrushstrokeswhichhavebeenfalselyidentifiedascracksarepresentedinSectionIII.MethodsforfillingthecrackswithimagecontentfromneighboringpixelsareproposedinSectionIV.Conclusionsanddiscussion follow.

    I I.DETECTIONOFCRACKSCracksusuallyhavelowluminanceandthuscanbeconsideredaslocalintensityminimawithratherelongated

    structuralcharacteristics.Therefore,acrackdetectorcanbeappliedon the luminancecomponentofan imageandshouldbeableto identifysuchminima.Acrackdetectionprocedurebasedontheso-calledtop-hattransform [14]isproposed in thispaper.The top-hat transform isagrayscalemorphologicalfilterdefinedas follows:

    y(x) = f(x) fnB(x) (1)November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    3/26

    3

    wherefnB(x) istheopeningofthefunctionf(x) (inourcase,theluminancecomponentoftheimageunderstudy)with thestructuringsetnB ,definedas:

    nB = BBB (ntimes) (2)Inthepreviousequationdenotesthedilationoperation.AsquareoracirclecanbeusedasstructuringelementB[15].ThefinalstructuringsetnB isevaluatedonlyonceusing(2)andisusedsubsequentlyintheopeningoperationof (1).TheopeningfnBofa function isa low-passnonlinearfilter thaterasesallpeaks (localmaxima) inwhichthestructuringelementnBcannotfit.Thus,theimagef fnBcontainsonlythosepeaksandnobackgroundatall.Sincecracksare localminimaratherthan localmaximathetop-hattransformshouldbeappliedonthenegatedluminanceimage.Alternatively,onecandetectcracksbyperformingclosingontheoriginalimagef(x)withthestructuringset nBand thensubtractingf(x) from the resultofclosingfnB(x):

    y(x) = fnB(x) f(x) (3)Itcanbeeasilyshownthattheresultof(3)isidenticaltothatofapplying(1)onthenegatedimage.Useof(3)doesnot requirenegationoff(x) whichgrands itasmallbutnotnegligiblecomputationaladvantageover (1).Insituationswherethecrack-likeartifactsareofhighluminance,asinthecaseofscratchesonphotographs,

    negationofthe luminancecomponentpriortothecrackdetectionisnotrequired, i.e.thecrackdetectionprocedurecanbeapplieddirectlyontheluminanceimage.Theusercancontroltheresultofthecrackdetectionprocedurebychoosingappropriatevalues for the followingparameters:

    The typeof thestructuringelementB.Thesizeof thestructuringelementBand thenumbernofdilations in (2).

    TheseparametersaffectthesizeofthefinalstructuringelementnB andmustbechosenaccordingtothethicknessofthecrackstobedetected.Itshouldbenotedhoweverthattheseparametersarenotverycriticalforthealgorithmperformanceduetothethresholdingoperationthatwillbedescribedinthenextparagraphandalsoduetotheexistenceofthebrushstroke/crackseparationprocedure(sectionIII),whichisabletoremovecrack-likebrushstrokesthathavebeenerroneouslyidentifiedascracks.Thefactthatalltheresultspresentedinthispaperhavebeenobtainedwiththesametop-hattransformparameterscomesasaclearindicationthattheabovestatementisindeedtrue.Theseparameterswere the following:

    Structuringelement type:squareStructuringelementsize:3 3Numbernofdilations in (2):2Thetop-hattransformgeneratesagrayscaleoutputimaget(k, l) wherepixelswithalargegreyvaluearepotential

    crackorcrack-likeelements.Therefore,a thresholdingoperationon t(k, l) isrequired toseparatecracks from therestoftheimage.ThethresholdTcanbechosenbyatrialanderrorprocedure,i.e.,byinspectingitseffectontheresultingcrackmap.The lowcomputationalcomplexityof the thresholdingoperationenables theuser toviewthecrackdetectionresultsinrealtimewhilechangingthethresholdvalue.e.g.,bymovingaslider.ThisfactNovember30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    4/26

    4

    makes interactive thresholdselectionveryeffectiveand intuitive.Alternatively, thresholdselectioncanbedonebyinspectingthehistogramoft(k, l)foralobeclosetothemaximumintensityvalue(whichwillmostprobablycorrespondtocrackorcrack-likepixels),andassigningitavaluethatseparatesthislobefromtherestoftheintensities.Theresultofthethresholdingisabinaryimageb(k, l)markingthepossiblecracklocations.Insteadofthisglobalthersholdingtechnique,morecomplexthresholdingschemes,whichuseaspatiallyvaryingthresholdcanbeused.Obviously,asthethresholdvalueincreasesthenumberofimagepixelsthatareidentifiedascracksdecreases.Thus,certaincracks,especiallyindarkimageareaswherethelocalminimumconditionmaynotbesatisfied,canremainundetected.Inprinciple,itismorepreferabletoselectthethresholdsothatsomecracksremainundetectedthantochooseathresholdthatwouldresultinthedetectionofallcracksbutwillalsofalselyidentifyascracks,andsubsequentlymodify,other imagestructures.Thethresholded (binary)outputofthetop-hattransformontheluminancecomponentofanimagecontainingcracks(Figure1)canbeseeninFigure2.Additionalexamplesofcracksdetectedusing thisapproachcanbeseen inFigures10-12.

    I I I .SEPARATIONOFTHE BRUSHSTROKESFROMTH ECRACKSInsomepaintings,certainareasexistwherebrushstrokeshavealmostthesamethicknessandluminancefeatures

    ascracks.Thehairofapersoninaportraitcouldbesuchanarea.Therefore,thetop-hattransformmightmisclassifythesedarkbrushstrokesascracks.Thus,inordertoavoidanyundesirablealterationstotheoriginalimage,itisveryimportanttoseparatethesebrushstrokesfromtheactualcracks,beforetheimplementationofthecrackfillingprocedure.Twomethods toachieve thisgoalaredescribed in the followingsubsections.A.Semi-automatic crack separation

    Asimpleinteractiveapproachfortheseparationofcracksfrombrushstrokesistoapplyaregiongrowingalgorithmonthethresholdedoutputofthetop-hattransform,starting frompixels(seeds)ontheactualcracks.Thepixelsarechosenbytheuserinaninteractivemode.Atleastoneseedperconnectedcrackelementshouldbechosen.Alternatively,theusercanchoosetoapplythetechniqueonthebrushstrokes,ifthisismoreconvenient.Thegrowthmechanismthatwasusedimplementsthewell-knowngrassfirealgorithmthatchecksrecursivelyforunclassifiedpixelswithvalue1inthe8-neighborhoodofeachcrackpixel.Attheendofthisprocedure,thepixelsinthebinaryimage,whichcorrespondtobrushstrokesthatarenot8-connectedtocrackswillberemoved.Theaboveprocedurecanbeusedeitherinastand-alonemodeorappliedontheoutputoftheMRBFseparationproceduredescribed in thenextsection toeliminateany remainingbrushstrokes.B.Discrimination on the basisof hue and saturationHueH isassociatedwiththedominantwavelengthinamixtureoflightwavelengthsandrepresentsthedominant

    color.IntheHSVcolormodel,hueisrepresentedastheanglearoundtheverticalaxis,withredat0,greenat120,andsoon.SaturationSreferstotheamountofwhite lightmixedwithacertainhue.Hueandsaturationare

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    5/26

    5

    definedsimilarly inotherrelatedcolordomains,e.g.inHueSaturation Intensity(HSI)orHueLightnessSaturation(HLS). Bystatisticalanalysisof47digitizedpaintings(24portablereligiousiconsfromtheByzantineeraand23

    paintingsofvariousstylesandages),ithasbeenconcludedthatthehueofthecracksusuallyrangesfrom0to60.Onthecontrary,weobservedthatthehueofthedarkbrushstrokesvaries,asexpected,intheentiregamut[0,360].Furthermore,cracksaturationusuallyrangesfrom0.3to0.7,whilebrushstrokesaturationrangesfrom0to0.4.Thus,onthebasisoftheseobservations,agreatportionofthedarkbrushstrokes,falselydetectedbythetop-hattransform,canbeseparatedfromthecracks.ThisseparationcanbeachievedbyclassificationusingaMedianRadialBasisFunction(MRBF)neuralnetwork,whichisarobust,orderstatisticsbased,variationofRadialBasisFunction (RBF)networks [16].RBFsaretwo-layer feedforwardneuralnetworks [17],thatmodelamappingbetweenasetof inputvectorsand

    asetofoutputs.Thenetworkarchitecture ispresentednFigure3.RBFs incorporatean intermediate,hidden layerwhere

    each

    hidden

    unit

    implements

    akernel

    function,

    usually

    aGaussian

    function:

    j(X) = exp[(j X)TS1(j X)],j= 1,...,L (4)

    wherej,SjdenotethemeanvectorandthecovariancematrixforkerneljandLdenotesthenumberofunits(kernels) in thehidden layer.Eachoutputconsistsofaweightedsumofkernels. In typicalsituations that involvepatternclassification,thenumberofoutputsequalstothenumberofclasses. Insuchasetting,thecurrentvector isassignedtotheclassassociatedwiththeoutputunitexhibitingthemaximumactivation(winnertakesallapproach).Afterthelearningstage,thenetworkimplementstheinput-outputmappingruleandcangeneralizeittoinputvectorsnotbeingpartof the trainingset.Theparameters tobeestimated (learned) inaRBFnetworkarethecenter (mean)vectorjand thecovariance

    matrixSjforeachGaussianfunctionandtheweightswk,jcorrespondingtotheconnectionsbetweenneuronsinthehidden layerandoutputnodes.Ahybridtechniquethathasbeenfrequentlyusedforthetrainingofsuchnetworks,hasbeenadoptedforthe learningstage.Accordingtothistechnique,training isperformed intwosuccessivesteps:thehiddenlayerparametersareestimatedusinganunsupervisedapproachand,afterwards,theoutputlayerweightsareupdated inasupervisedmanner,using the (nowfixed)hidden layerparametersevaluated in thepreviousstep.Intheclassicalversionoftheadoptedtrainingtechnique,avariationoftheLearningVectorQuantizer(LVQ)

    algorithmisusedfortheunsupervisedhiddenlayerparameterupdating.EachinputvectorisassignedtotheGaussiankernelwhosecenter iscloser (in termsofeither theEuclideanor theMahalanobisdistance) to thisvector:

    if Xi j= min Lk=1Xi k thenXiCj (5)where denoteseitherEuclideanorMahalanobisdistanceandCjdenotestheclassofinputvectorsassociatedwithkernelj.Subsequently,thealgorithmupdatesthecenterandcovariancematrixofthewinnerkernelusingrunningversionsoftheclassicalsamplemeanandsamplecovariancematrixformulas.Ontheotherhand,theMRBFalgorithmwhichhasbeenusedinourcaseisbasedonrobustestimation[16]ofthehiddenunitparameters.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    6/26

    j= marg na me an 0 j ,..., n1 j

    0 ifX/C

    6

    ItemploystheMarginalMedianLVQ[18]thatselectsthewinnerkernelusing(5)andutilizesthemarginalmedianofthe inputvectorscurrentlyassignedtothiskernel fortheupdateofthecentervector (locationparameter)jofthekernel:

    j= marginalmedian{X0,X1,...,Xn1}; (6)whereXn1isthelastvectorassignedtokernelj.Theupdateofthediagonalelementsofthecorrespondingcovariancematrixisperformedusingthemedianoftheabsolutedeviations(MAD)[19]oftheinputscurrentlyassigned to thiskernel:

    0.6745 (7)Inthepreviousexpression,jdenotesthevectorcontainingthediagonalelementsofthecovariancematrixand|X|denotesthevectorobtainedbytakingtheabsolutevalueofeachcomponentofX.Theoff-diagonalcomponentsofthecovariancematrixarealsocalculatedbasedonrobuststatistics[16].Inordertoavoidexcessivecomputationstheaboveoperationscanbeappliedonasubsetofdataextractedthroughamovingwindowthatcontainsonlythelast Wdata samplesassigned to thehiddenunitj.Inthesupervisedpartofthe learningprocedure,theweightsoftheoutput layer,whichgrouptheclusters found

    bythehiddenlayerintoclasses,areupdated.Theupdatemechanismfortheseweightsisdescribedbythefollowingexpression:

    wk,j(t+ 1)= wk,j(t)+ nw(Fk(X) Yk(X))Yk(X)(1 Yk(X))j(X) (8)fork= 1,...,M,j= 1,...,L,anda learning factornw(0,1]. In theprevious formulaYk(X),Fk(X) denotetheactualanddesirednetworkoutput for inputvectorX.The latter isgivenby:

    1 ifXCkFk(X) =

    k (9)Theupdate formula (8)corresponds to thebackpropagation for theoutputweightsofaRBFnetworkwith respectto themeansquareerrorcost function.Inourimplementation,aMRBFnetworkwithtwooutputswasused.Thefirstoutputrepresentstheclassof

    crackswhilethesecondonetheclassofbrushstrokes.Inputvectorsweretwo-dimensionalandconsistedofthehueandsaturationvaluesofpixelsidentifiedascracksbythetop-hattransform.Thenumberofclusters(hiddenunits)chosenforeachclassdependsontheoverlapbetweenthepopulationsofcracksandbrushstrokes.Ifthereisasubstantialoverlap,thenumbershouldbeincreased,inordertoreducetheclassificationerror.Inourimplementationthreehiddenunitshavebeenincorporated.Trainingwascarriedoutbypresentingthenetworkwithhueandsaturationvaluesforpixelscorrespondingtocracksandcrack-likebrushstrokes.Datafrom24digitizedportable religious icons from theByzantineerawereused for thispurpose.Thesystem trainedusing thisspecifictrainingsetcanbeconsideredtobeoptimizedforpaintingsofthisstyleanditsuseonpaintingsofotherstylemightresult insomewhatsuboptimalresults.However,appropriatelyselectedtrainingsetscanbeused totrainthesystemtoseparatecracksfrombrushstrokesonpaintingsofdifferentartisticstylesorcontent.InordertoselectNovember30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    7/26

    7

    pixelscorrespondingtocracksandcrack-likebrushstrokesthecrackdetectionalgorithmpresentedinsectionII wasappliedonthese images.Resultsweresubsequentlypost-processedbyanexpertusingthesemi-automaticapproachpresentedinsectionIII-A.Theaimofthispost-processingstepwastwofold:toremovepixelsthatareneithercracksnorcrack-likebrushstrokesandtoseparatecracksandcrack-likebrushstrokesforthesupervisedstepofthetrainingprocedure.Inthissupervisedtrainingstep,thenetworkwaspresentedwiththeselabelledinputs,i.e.,pairsofhue-saturationvaluesthatcorrespondedtoimagepixelsthathavebeenidentifiedasbelongingtocracksandcrack-likebrushstrokes.Afterthetrainingsession,theMRBFneuralnetworkwasabletoclassifypixelsidentifiedascracksbythetop

    hattransformtocracksorbrushstrokes.Thetrainednetworkhasbeentestedon12imagesfromthetrainingsetand15 images(ofthesameartisticstyleandera)thatdidnotbelongtothetrainingset.Naturally,theperformanceofthecracks/brushstrokesseparationprocedurewasjudgedonly inasubjectivemanner(i.e.byvisualinspectionoftheresults),asgroundtruthdata(i.e.brushstrokes-freecrackimages)arenotavailable.Forthisreasontworestoration

    experts

    were

    asked

    toinspect

    several

    crack

    images

    before

    and

    after

    the

    application

    of

    the

    separation

    systemandconcludedthatintheprocessedcrack imagesthegreatmajorityofthebrushstrokeshasbeenremoved.Athresholdedtop-hattransformoutputcontainingmanybrushstrokese.g.hairisillustratedinFigure5.Agreatpartof thesebrushstrokes isseparatedby theMRBF,ascanbeseen inFigure6.Theoriginal imagecanbeseeninFigure4.

    IV.CRACKFILLINGMETHODSAfteridentifyingcracksandseparatingmisclassifiedbrushstrokes,thefinaltaskistorestoretheimageusing

    localimageinformation(i.e.,informationfromneighboringpixels)tofill(interpolate)thecracks.Twoclassesoftechniques,utilizingorderstatisticsfilteringandanisotropicdiffusionareproposedforthispurpose.BothareimplementedoneachRGBchannel independentlyandaffectonly thosepixelswhichbelong tocracks.Therefore,providedthattheidentifiedcrackpixelsareindeedcrackpixels,thefillingproceduredoesnotaffecttheusefulcontentoftheimage. Imageinpaintingtechniquesliketheonescited inSectionIcanalsobeusedforcrackfilling.Theperformanceofthecrackfillingmethodspresentedbelowwasjudgedbyvisualinspectionoftheresults.

    Obviously,measuringtheperformanceofthesemethodsinanobjectivewayisinfeasiblesincegroundtruthdata(e.g.imagesdepictingthepaintingsinperfectcondition,i.e.,withoutcracks)arenotavailable.For theevaluationoftheresults, tworestorationexpertswereaskedto inspectseveral imagesrestoredusing thevariousmethodsandcomment,basedontheirexperience,onthequalityofthefillingresults,(i.e.,whethercracksweresufficientlyfilled),whether thecolorused forfillingwas thecorrectone,whetherfine imagedetailswere retained,etc.A.Crackfilling basedon order statisticsfilters

    Aneffectivewaytointerpolatethecracksistoapplymedianorotherorderstatisticsfilters[15]intheirneighborhood.Allfiltersareselectivelyappliedonthecracks,i.e.,thecenterofthefilterwindowtraversesonlythecrackpixels.Ifthefilterwindowissufficientlylarge,thecrackpixelswithinthewindowwillbeoutliersandNovember30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    8/26

    1 otherwise

    8

    willbe rejected.Thus, thecrackpixelwillbeassigned thevalueofoneof theneighboringnon-crackpixels.Thefollowingfilterscanbeused for thispurpose:

    Medianfilter:yi= med(xi,...,xi,...,xi+) (10)

    Recursivemedianfilter:yi= med(yi,...,yi1,xi,...,xi+) (11)

    wheretheyi,...,yi1arethealreadycomputedmedianoutputsamples.Forboththerecursivemedianandthemedianfilter,thefilterwindow (consideringonlyrectangularwindows)shouldbeapproximately50%widerthanthewidest(thickest)crackappearingontheimage.Thisisnecessarytoguaranteethatthefilteroutput isselected tobe thevalueofanon-crackpixel.Smallerwindowswill result incracks thatwillnotbesufficientlyfilledwhereaswindowsthataremuchwider than thecrackswillcreate largehomogeneousareas,thusdistortingfine imagedetails.

    Weightedmedianfilter:yi= med(wxi,...,wxi+) (12)

    wherewxdenotesduplicationofx, wtimes.Forthisfilter,smallerfilterwindows(e.g.windowsthatareapproximately30%widerthanthewidestcrackappearingontheimage)canbeusedsincetheprobabilitythatacolorvaluecorrespondingtoacrack isselectedasthefilteroutput(afactthatwouldresult inthecrackpixelunder investigationnotbeingfilledeffectivelyby thefilter)canbe limitedbyusingsmallweights (e.g.1)forthepixelscentrallylocatedwithinthewindow(whichareusuallypartofthecrack)andbiggerones(e.g.2or3) for theotherpixels.

    Avariationofthemodifiedtrimmedmean(MTM)filterwhichexcludesthesamplesxi+r,j+sinthefilterwindow,whichareconsiderablysmaller from the localmedianandaverages the remainingpixels:

    yij= Arsxi+r,j+sThesummationscover theentirefilterwindowA .Thefiltercoefficientsarechosenas follows:

    0 if med{xij} xi+r,j+sqrs= (14)

    Theamountoftrimmingdependsonthepositiveparameterq.Dataofsmallvaluedeviatingstronglyfromthelocal

    median

    (which

    correspond

    usually

    to

    cracks)

    are

    trimmed

    out.

    Windows

    used

    along

    with

    this

    variant

    of

    theMTMfiltercanalsobesmallerthanthoseusedforthemedianandrecursivemedianfilterssinceaportionof thecrackpixels isexpected tobe rejectedby the trimmingprocedure.

    AnothervariationoftheMTMfilterthatperformsaveragingonlyonthosepixelsthatarenotpartofthecrack,i.e., itutilizes informationfromthebinaryoutput imageb(k, l) ofthetophattransform.Inthiscase,thefilter

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    9/26

    Ii,j = Ii,j+ [cN DNI+ cS DSI+ cE DEI+ cWDWI]ti,j (17)

    coefficients in (13)arechosenas follows:rs=

    9

    1if b(k, l) = 10otherwise (15)

    Themedianoperatorcanbeusedinsteadofthearithmeticmeanin(13).ForthisvariantoftheMTMfilter,evensmallerfilterwindowscanbeused,sincecrackpixelsdonotcontributetothefilteroutput.Thus,itsuffices that thewindow is1pixelwider than thewidestcrack.

    The resultof theapplicationof thesecondvariationof themodified trimmedmeanfilteron thepaintingdepictedinFigure1aisshown inFigure7(filtersize5 5).Anotherimagerestoredbythesamecrack-fillingapproachcanbeseen inFigure8(filtersize3 3).Extensiveexperimentationprovedthatthisfiltergivesthebestresultsamongallfilterspresentedaboveaccordingtosubjectiveevaluationbyrestorationexperts.Thesuperiorityofthisfiltercanbeattributedtothe factthatonlynon-crackpixelscontributeto itsoutput.Onthecontrary, forallotherfilterspresented in thissection theprobability thatcrackpixelswillcontribute to theoutput issmallbutnotnegligible.B.ControlledAnisotropicDiffusionAnisotropicdiffusion[20]isanimageenhancementmethodthatsuccessfullycombinessmoothingofslowly

    varyingintensityregionsandedgeenhancement.Smoothingismodelledasadiffusionthatisallowedalonghomogeneousregionsandinhibitedbyregionboundaries.Anisotropicdiffusionisdescribedbythefollowingpartialdifferentialequation:

    I (x, y, t) t = div(c(x, y,t)I(x, y,t)) = c(x, y,t)I(x, y,t) +c(x, y,t)I(x, y,t) (16)

    wheredivdenotesthedivergenceoperatorand ,thegradientandLaplacianoperatorswithrespecttothespacevariablesx, y.Ateachpositionanditeration,diffusioniscontrolledbytheconduction(ordiffusion)coefficientsc(x, y,t).Sincediffusionshouldbeinhibitedacrossregionsseparatedbydiscontinuities,theconductioncoefficientsshouldobtainsmallvalues inpixelswith large intensitygradientmagnitude.AsimilarapproachnamedCurvatureDrivenDiffusion (CCD)hasbeenproposed in [9] for image inpaintingapplications.Inordertoobtainanumericalsolutiontothediffusionequation,discretizationofthespatialandtimecoordinates

    andapproximationofthedifferentialoperatorsbyfinitedifferenceoperatorsshouldbeperformed in(16).Wehaveusedthesamediscretizationsasproposedin[20].Theiterative,discretesolutionto(16)isgovernedbythefollowingequation:

    t twhere0 1/4fortheschemetobestable,N,S,E, WarethemnemonicsforNorth,South,East,Westand

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    10/26

    ctNi,j= g( | DNIi,j |)ctSi,j= g( | DSIi,j |) ctEi,j= g( | DEIi,j |)

    ctWi,j= g( | DWIi,j |) (19)

    10

    thesymbol Dindicatesnearest-neighbordifferences:DNIi,j Ii1,j Ii,jDSIi,j Ii+1,j Ii,jDEIi,j Ii,j+1 Ii,jDWIi,j Ii,j1 Ii,j (18)

    Theconductioncoefficientsareevaluatedateveryiterationasafunctiong( )ofthemagnitudeoftheintensitygradient. Inour implementation, the followingapproximationwasused [20]:

    tttt

    The following functiong( ),proposed in [20],hasbeenused inourcase:g(I) = 1

    1+( ITheconstantKwasmanuallyfixed.Inordertofillthecracks,theanisotropicdiffusionalgorithmwasapplied

    selectively,inneighborhoodscenteredoncrackpixels.Allpixelswithintheseneighborhoodsparticipateinthediffusionprocess.However,only thevaluesof thecrackpixelsareupdated in theoutput image.Furtherimprovementswereobtainedbytakingintoaccountcrackorientation,i.e.,byapplyingtheoperationonly

    inadirectionperpendiculartothecrackdirection.Forexample,ifthecrackishorizontal,onecanuseonlytheNorthandtheSouthneighbors,sincetheWestandtheEastneighborsbelongalsotothecrack. Inordertofindthedirectionsofthecracks,theHoughTransformwasapplied[21].TherestorationresultsofthisfiltercanbeseeninFigures9-12.Theorientation-sensitivecontrolledanisotropicdiffusionmethodgavethebestresultsamongallcrack-fillingmethodspresented inthispaper.The factthatthisfilterrequiresnowindowsizeselectiongrants itanadditionaladvantageover theorderstatisticsfilterspresented in theprevioussection.

    V.CONCLUSIONS AND DISCUSSIONInthispaper,wehavepresentedanintegratedstrategyforcrackdetectionandfillingindigitizedpaintings.

    Cracksaredetectedbyusingtop-hattransform,whereasthethindarkbrushstrokes,whicharemisidentifiedascracks,areseparatedeitherbyanautomatic technique (MRBFnetworks)orbyasemi-automaticapproach.Crackinterpolation isperformedbyappropriatelymodifiedorder statisticsfiltersor controlledanisotropicdiffusion.Themethodologyhasbeenappliedforthevirtualrestorationofimagesandwasfoundveryeffectivebyrestorationexperts.However,therearecertainaspectsoftheproposedmethodologythatcanbefurtherimproved.Forexample,

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    11/26

    11

    thecrackdetectionstageisnotveryefficientindetectingcrackslocatedonverydarkimageareas,sinceintheseareastheintensityofcrackpixelsisveryclosetotheintensityofthesurroundingregion.A possiblesolutiontothisshortcomingwouldbetoapplythecrackdetectionalgorithm locallyonthisareaandselecta low thresholdvalue.Anothersituationwherethesystem(moreparticularly,thecrackfillingstage)doesnotperformasefficientlyasexpectedisinthecaseofcracksthatcrosstheborderbetweenregionsofdifferentcolor.Insuchsituations,itmightbethecasethatpartofthecrackinoneareaisfilledwithcolorfromtheotherarea,resultinginsmallspursofcolorintheborderbetweenthetworegions.SuchasituationisdepictedinFigure11.Howeverthisphenomenonisratherseldomand, furthermore,theextentoftheseerroneouslyfilledareas isverysmall (2-3pixelsmaximum).A possiblesolutionwouldbetoperformedgedetectionorsegmentationontheimageandconfinethefillingofcracksthatcrossedgesorregionborderstopixelsfromthecorrespondingregion.Useof image inpaintingtechniques[6],[7],[8],[9],[10]couldalsoimproveresultsinthataspect.Anotherimprovementofthecrackfillingstagecouldaimatusingproperlyadaptedversionsofnonlinearmultichannelfilters(e.g.variantsofthevectormedianfilter)instead

    of

    processing

    each

    color

    channel

    independently.

    These

    improvements

    will

    be

    the

    topic

    of

    future

    work

    on

    thissubject.

    REFERENCES [1]M.Barni,F.Bartolini,V.Cappellini,Imageprocessingforvirtualrestorationofartworks,IEEEMultimedia,vol.7,no.2,pp.34-37,

    April-June2000.[2]F.Abas,K.Martinez,CraquelureAnalysisforContent-basedRetrieval,inProc.14thInternationalConferenceonDigitalSignal

    Processing,2002,vol1,pp.111-114.[3]L. Joyeux,O.Buisson,B. Besserer,S.Boukir,Detectionandremovaloflinescratchesinmotionpicturefilms,inProc.IEEEInternational

    ConferenceonComputerVisionandPatternRecognition,1999,pp.548-553.[4]A.Kokaram,R. Morris,W.Fitzgerald,P.Rayner,Detectionofmissingdatainimagesequences,IEEETransactionsonImageProcessing,

    vol.4,no.11,pp.1496-1508,November1995.[5]A.Kokaram,R.Morris,W.Fitzgerald,P.Rayner,Interpolationofmissingdatainimagesequences,IEEETransactionsonImage

    Processing,vol.4,no.11,pp.1509-1519,November1995.[6]M.Bertalmio,G.Sapiro,V.Caselles,C.Ballester,Image Inpainting, inProc.SIGGRAPH2000,pp.417424,2000.[7]C.Ballester,M.Bertalmio,V.Caselles,G.Sapiro, J.Verdera,Filling-InbyJoint InterpolationofVectorFieldsandGrayLevels,IEEE

    Transactionson ImageProcessing,vol.10,no.8,pp.12001211,August2001.[8]S.Masnou, J.M.Morel,LevelLinesBaseddisocclusion, inProc. IEEE ICIP98,vol. III,pp.259263,1998.[9]T.Chan,J.Shen,Non-textureinpaintingsbycurvature-drivendiffusions,JournalofVisualCommunicationandImageRepresentation,

    vol.12,no.4,pp.436-449,2001.[10]S.Esedoglu,J.Shen,DigitalInpaintingBasedontheMumford-Shah-EulerImageModel,EuropeanJournalofAppliedMathematics,

    vol.13,pp.353-370,2002.[11]A.Efros,T.Leung,TextureSynthesisbyNon-parametricSampling, inProc.1999 IEEE InternationalConferenceonComputerVision(ICCV),pp.10331038,1999.[12]M.Bertalmio,L.Vese,G.Sapiro,S.Osher,SimultaneousStructureandTextureImageInpainting,IEEETransactionsonImage

    Processing,vol.12,no.8,pp.882-889,August2003.[13]I.Giakoumis, I. Pitas,DigitalRestorationofPaintingCracks, inProc. IEEE InternationalSymposiumonCircuitsandSystems,vol.4,

    pp.269-272,1998.[14]F.Meyer,Iterative image transforms foranautomaticscreeningofcervicalsmears,J.Histoch.Cytochem.,vol.27,pp.128135,1979.[15]I.Pitas,A.N.Venetsanopoulos,NonlinearDigitalFilters,principlesandapplications,Norwell:KluwerAcademic,1990.November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    12/26

    12

    [16]A.G.Bors,I.Pitas,MedianRadialBasisFunctionNeuralNetwork,IEEETransactionsonNeuralNetworks,vol.7,no.6,pp.1351-1364,November1996

    [17]S.Haykin,NeuralNetworks,AComprehensiveFountation,2ndEdition,NewYork:PrenticeHall,1999.[18]I.Pitas,C.Kotropoulos,N.Nikolaidis,R.Yang,M.Gabbouj,OrderStatisticsLearningVectorQuantizer,IEEETransactionson Image

    Processing,vol.5,no.6,pp.1048-1053, June1996.[19]G.Seber,MultivariateObservations,NewYork: JohnWiley,1986.[20]P.Perona,J.Malik,Scale-SpaceandEdgeDetectionusinganisotropicdiffusion,IEEETransactionsonPatternAnalysisandMachine

    Intelligence,vol.12,no.7,pp.629639,July1990.[21]P.Hough, AMethodandMeans forRecognizingComplexPatterns,U.S.Patent,3069654,1962.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    13/26

    13

    Fig.1.Originalpainting.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    14/26

    14

    Fig.2.Thresholdedoutputof the tophat transform (thresholdvalue:23).

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    15/26

    15

    Fig.3.RadialBasisFunctionsneuralnetworkarchitecture.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    16/26

    16

    Fig.4.Originalpainting.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    17/26

    17

    Fig.5. Thresholdedoutputofthetop-hattransform(thresholdvalue:19).Anumberofbrushstrokes(hair,numberintheupperleftcorner)havebeenmisidentifiedascracks.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    18/26

    18

    Fig.6.Theseparatedbrushstrokesafter theapplicationof theMRBF technique.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    19/26

    19

    Fig.7.Crackfillingbyusing themodified trimmedmeanfilter(filtersize55).

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    20/26

    20

    Fig.8.(a)Originalpainting (detail). (b)Crackfillingbyusing themodified trimmedmeanfilter (filtersize33).

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    21/26

    21

    Fig.9.(a)Original imagewithcracks (detail), (b)crackfillingusing theorientation-sensitivecontrolledanisotropicdiffusion technique.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    22/26

    22

    Fig.10.(a)Originalpainting(detail),(b)crackimage(thresholdvalue:17),(c)crackfillingusingtheorientation-sensitivecontrolledanisotropicdiffusion technique.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    23/26

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    24/26

    24

    Fig.12.(a)Originalpainting(detail),(b)crackimage(thresholdvalue:23),(c)crackfillingusingtheorientation-sensitivecontrolledanisotropicdiffusion technique.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    25/26

    25

    IoannisGiakoumisreceived theDiplomaof Informatics in1997.He iscurrentlywith IntracomS.A.

    PLACEPHOTOHERE

    NikosNikolaidisreceivedtheDiplomaofElectricalEngineeringin1991andthePhDdegreeinElectricalEngineeringin1997,bothfromtheAristotleUniversityofThessaloniki,Greece.From1992to1996heservedasteachingassistantintheDepartmentsofElectricalEngineeringandInformaticsatthesameUniversity.From1998to2002hewaspostdoctoralresearcherandteachingassistantattheDepartmentofInformatics,AristotleUniversityofThessaloniki.He iscurrentlyaLecturer inthesameDepartment.Dr.Nikolaidis istheco-authorofthebook3-DImageProcessingAlgorithms(J.Wiley,2000).Hehasco-authored2bookchapters,18journalpapersand46conferencepapers.Hisresearchinterestsincludecomputergraphics,imageandvideoprocessingandanalysis,copyrightprotectionof

    multimediaand3-D imageprocessing.Dr.Nikolaidishasbeenascholarof theStateScholarshipFoundationofGreece.

    PLACEPHOTOHERE

    IoannisPitasreceivedtheDiplomaofElectricalEngineering in1980andthePhDdegreeinElectricalEngineering in1985bothfromtheAristotleUniversityofThessaloniki,Greece.Since1994,hehasbeenaProfessorattheDepartmentofInformatics,

    Aristotle

    University

    ofThessaloniki.

    From

    1980

    to1993

    he

    served

    asScientific

    Assistant,

    Lecturer,

    AssistantProfessor,andAssociateProfessorintheDepartmentofElectricalandComputerEngineeringatthesameUniversity.HeservedasaVisitingResearchAssociateattheUniversityofToronto,Canada,UniversityofErlangen-Nuernberg,Germany,TampereUniversityofTechnology,Finland,asVisitingAssistantProfessorattheUniversityofTorontoandasVisitingProfessorattheUniversityofBritishColumbia,Vancouver,Canada.Hewaslecturerin

    shortcoursesforcontinuingeducation.Hehaspublished140journalpapers,350conferencepapersandcontributedin18booksinhisareasofinterest.Heistheco-authorofthebooksNonlinearDigitalFilters:PrinciplesandApplications(Kluwer,1990),3-DImageProcessingAlgorithms(J.Wiley,2000),NonlinearModel-BasedImage/VideoProcessingandAnalysis(J.Wiley,2001)andauthorofDigitalImageProcessingAlgorithmsandApplications(J.Wiley,2000).HeistheeditorofthebookParallelAlgorithmsandArchitecturesforDigitalImageProcessing,ComputerVisionandNeuralNetworks (Wiley,1993).Hehasalsobeenan invitedspeakerand/ormemberof theprogramcommitteeofseveralscientificconferencesandworkshops. In thepastheservedasAssociateEditorofthe IEEETransactionsonCircuitsandSystems,IEEE TransactionsonNeuralNetworks,IEEETransactionsonImageProcessing,EURASIPJournalonAppliedSignalProcessingandco-editorofMultidimensionalSystemsandSignalProcessing.Hewasgeneralchairofthe1995IEEEWorkshoponNonlinearSignalandImageProcessing(NSIP95),technicalchairofthe1998EuropeanSignalProcessingConferenceandgeneralchairofIEEEICIP2001.Hiscurrentinterestsareintheareasofdigitalimageandvideoprocessingandanalysis,multidimensionalsignalprocessing,watermarkingandcomputervision.

    November30,2005 DRAFT

  • 7/27/2019 Digital Image Processing Techniques for the Detection and Removal of Cracks in Digitized Painting

    26/26

    26

    LIS TOFF IGURES1 Originalpainting............................................... 132 Thresholdedoutputof the tophat transform (thresholdvalue:23)..................... 143 RadialBasisFunctionsneuralnetworkarchitecture............................. 154 Originalpainting............................................... 165 Thresholdedoutputofthetop-hattransform(thresholdvalue:19).Anumberofbrushstrokes(hair,

    number in theupper leftcorner)havebeenmisidentifiedascracks.................... 176 Theseparatedbrushstrokesafter theapplicationof theMRBF technique................ 187 Crackfillingbyusing themodified trimmedmeanfilter (filtersize5 5)................ 198 (a)Originalpainting(detail).(b)Crackfillingbyusingthemodifiedtrimmedmeanfilter(filtersize

    3 3)..................................................... 209 (a)Originalimagewithcracks(detail),(b)crackfillingusingtheorientation-sensitivecontrolled

    anisotropicdiffusion technique. ...................................... 2110 (a)Originalpainting(detail),(b)crackimage(thresholdvalue:17),(c)crackfillingusingtheorientation-sensitivecontrolledanisotropicdiffusion technique............................. 22

    11 (a)Originalpainting(detail),(b)crackimage(thresholdvalue:21),(c)crackfillingusingtheorientation-sensitivecontrolledanisotropicdiffusion technique............................. 23

    12 (a)Originalpainting(detail),(b)crackimage(thresholdvalue:23),(c)crackfillingusingtheorientation-sensitivecontrolledanisotropicdiffusion technique............................. 24