Top Banner
August 2001 Lesson 4 1 Lesson 4 Implementation of Synchronous Frame Harmonic Control for High-Performance AC Power Supplies Lesson 4 Implementation of Synchronous Frame Harmonic Control for High-Performance AC Power Supplies
12

Digital Control Applications in Power Electronics Lesson4

Jun 04, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 1/39

August 2001 Lesson 4 1

Lesson 4

Implementation of Synchronous Frame

Harmonic Control for High-Performance ACPower Supplies

Lesson 4

Implementation of Synchronous Frame

Harmonic Control for High-Performance ACPower Supplies

Page 2: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 2/39

August 2001 Lesson 4 2

Goal of the workGoal of the work

Investigation of  selective control on output

voltage harmonics.

Motivations:

• reduction of voltage distortion in AC Power 

Supplies (even with limited voltage loopbandwidth);

refinements aimed at an efficientimplementation in fixed-point DSP’s (here

tested on ADMC401 by Analog Devices).

Investigation of  selective control  on output

voltage harmonics.

Motivations:

• reduction of voltage distortion in AC Power 

Supplies (even with limited voltage loopbandwidth);

refinements aimed at an efficientimplementation in fixed-point DSP’s (here

tested on ADMC401 by Analog Devices).

Page 3: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 3/39

August 2001 Lesson 4 3

Presentation outlinePresentation outline

• Review of synchronous reference frame

harmonic regulation

• Decomposition in three-layer control

scheme

• A modified solution based on DiscreteFourier Transform

•Design guidelines for regulator parameters

• DSP implementation using ADMC401

•Experimental results

• Review of synchronous reference frame

harmonic regulation

• Decomposition in three-layer control

scheme

• A modified solution based on DiscreteFourier Transform

•Design guidelines for regulator parameters

• DSP implementation using ADMC401

•Experimental results

Page 4: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 4/39

August 2001 Lesson 4 4

Current

Controller

Space

Vector Modulator 

Space

Vector Modulator 

 Current control(optional) Current control(optional)

udc

+

 _ 

L

C

Fi Li

+

+Ouput voltagefeed-forwardOuput voltagefeed-forward

Fi

Load

ou+

 _ 

+

+

+

+

KsKs

conventional regulator conventional regulator 

iFαααα

+

+

abc

αβαβαβαβ

+

+

Transformer

αααα

ββββ

εεεε

εεεε+

abc

αβαβαβαβ

ou*αααα

ou*ββββ

Closed-loopcontrol ofselectedharmonics

ou

+

*

iF*ββββ

Synchronous frame harmonic controlSynchronous frame harmonic control

Page 5: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 5/39

August 2001 Lesson 4 5

Basic schemeBasic scheme

Outputvoltageerrors

Outputvoltageerrors

Referencecurrents

Referencecurrents

Leadingangle φ φφ φ k 

Leadingangle φ φφ φ k 

εεεεααααεεεε ββββ

αβαβαβαβ

αβαβαβαβ

αβαβαβαβ

αβαβαβαβ

dqk+

dqk+

dqk-

dqk-

 Reg k 

iFαααα∗∗∗∗+

+ +

+

θθθθk + φ+ φ+ φ+ φk 

iFββββ∗∗∗∗

 Reg k 

 Reg k 

 Reg k 

θθθθk + φ+ φ+ φ+ φk 

θθθθk 

θθθθk 

Regulation of positive sequence k-th harmonicRegulation of positive sequence k-th harmonic

Regulation of negative sequence k-th harmonicRegulation of negative sequence k-th harmonic

Page 6: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 6/39

August 2001 Lesson 4 6

εεεε

εεεε

ωωωωωωωω−−−−

ωωωωωωωω====

εεεε

εεεε

ββββ

αααα

++++

++++

)tkcos()tk(sin

)tk(sin)tkcos(

SS

SS

qk

dk

εεεε

εεεε

ωωωωωωωω−−−−

ωωωωωωωω====

εεεε

εεεε

ββββ

αααα

++++

++++

)tkcos()tk(sin

)tk(sin)tkcos(

SS

SS

qk

dk

φφφφ++++ωωωωφφφφ++++ωωωω

φφφφ++++ωωωω−−−−φφφφ++++ωωωω====

++++

++++

++++ββββ

++++αααα

qk

dk

kSkS

kSkS

k

k

y

y

)tkcos()tk(sin

)tk(sin)tkcos(

y

y

φφφφ++++ωωωωφφφφ++++ωωωω

φφφφ++++ωωωω−−−−φφφφ++++ωωωω====

++++

++++

++++ββββ

++++αααα

qk

dk

kSkS

kSkS

k

k

y

y

)tkcos()tk(sin

)tk(sin)tkcos(

y

y

φφφφ++++ωωωωφφφφ++++ωωωω−−−−

φφφφ++++ωωωωφφφφ++++ωωωω====

−−−−

−−−−

−−−−ββββ

−−−−αααα

qk

dk

kSkS

kSkS

k

k

y

y

)tkcos()tk(sin

)tk(sin)tkcos(

y

y

φφφφ++++ωωωωφφφφ++++ωωωω−−−−

φφφφ++++ωωωωφφφφ++++ωωωω====

−−−−

−−−−

−−−−ββββ

−−−−αααα

qk

dk

kSkS

kSkS

k

k

y

y

)tkcos()tk(sin

)tk(sin)tkcos(

y

y

εεεε

εεεε

ωωωωωωωω

ωωωω−−−−ωωωω====

εεεε

εεεε

ββββ

αααα

−−−−

−−−−

)tkcos()tk(sin

)tk(sin)tkcos(

SS

SS

qk

dk

εεεε

εεεε

ωωωωωωωω

ωωωω−−−−ωωωω====

εεεε

εεεε

ββββ

αααα

−−−−

−−−−

)tkcos()tk(sin

)tk(sin)tkcos(

SS

SS

qk

dk

Basic scheme equationsBasic scheme equations

αβαβαβαβ

dqk+

αβαβαβαβ

dqk-

αβαβαβαβ

dqk+

αβαβαβαβ

dqk-

Page 7: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 7/39

August 2001 Lesson 4 7

Equivalence with stationary frame controlEquivalence with stationary frame control

 Reg kAC 

 Reg kAC 

[[[[ ]]]]

[[[[ ]]]])k js(gRe)k js(gResin j

)k js(gRe)k js(gRecos)s(gRe

skskk

skskkkAC

ωωωω++++−−−−ωωωω−−−−φφφφ++++

++++ωωωω++++++++ωωωω−−−−φφφφ====   [[[[ ]]]]

[[[[ ]]]])k js(gRe)k js(gResin j

)k js(gRe)k js(gRecos)s(gRe

skskk

skskkkAC

ωωωω++++−−−−ωωωω−−−−φφφφ++++

++++ωωωω++++++++ωωωω−−−−φφφφ====

εεεεααααεεεεββββ

αβαβαβαβ

αβαβαβαβ

αβαβαβαβ

αβαβαβαβ

dqk+

dqk+

dqk-

dqk-

 Reg k 

iFαααα

∗∗∗∗++

+

+

θθθθ k    θθθθk + φ+ φ+ φ+ φ k 

iFββββ∗∗∗∗

EquivalenceEquivalence

iFαααα∗∗∗∗

iFββββ∗∗∗∗

εεεεαααα

εεεε ββββ

 Reg k 

 Reg k 

 Reg k 

θθθθ θθθθ k + φ+ φ+ φ+ φ k k 

Page 8: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 8/39

August 2001 Lesson 4 8

• If Regk(s) is a integral regulator, the previous

equivalence implies that RegkAC(s) is a band-

pass filter centered on the kth

 harmonicfrequency.

• This is true if and only if both direct and reverse

sequence controllers are implemented.

• It is possible to implement synchronous

regulators either in the dq rotating frame or in

the αβαβαβαβ stationary frame, with perfectly equivalent

performance.

• If Regk(s) is a integral regulator, the previous

equivalence implies that RegkAC(s) is a band-

pass filter  centered on the kth

 harmonicfrequency.

• This is true if and only if  both direct and reverse

sequence controllers are implemented.

• It is possible to implement synchronous

regulators either in the dq rotating frame or in

the αβαβαβαβ stationary frame, with perfectly equivalent

performance.

Equivalence with stationary frame controlEquivalence with stationary frame control

Page 9: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 9/39

August 2001 Lesson 4 9

Equivalence with stationary frame controlEquivalence with stationary frame control

• The leading angle φφφφk can be used to

compensate for internal delays, such as that of 

the current controller.

• In practice, the current reference is phase

shifted to compensate for the currentcontroller delay.

• In the stationary frame implementation, based

on band-pass filters, this may or may not have

a possible equivalent (depending on the

regulator structure).

• The leading angle φφφφk can be used to

compensate for  internal delays, such as that of 

the current controller.

• In practice, the current reference is phase

shifted to compensate for the currentcontroller delay.

• In the stationary frame implementation, based

on band-pass filters, this may or may not have

a possible equivalent (depending on the

regulator structure).

Page 10: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 10/39

August 2001 Lesson 4 10

Three-layer decompositionThree-layer decomposition

AC Power Supplies requirements

Fast transient response with limitedovershoot under load changes;

• Possibly fast regulation of output voltage

fundamental harmonic component;

• For distorting loads with slowly-varying

harmonics, harmonic control in somefundamental cycles (decoupling between

different controllers is needed!).

AC Power Supplies requirements

Fast transient response with limitedovershoot under load changes;

• Possibly fast regulation of output voltage

fundamental harmonic component;

• For distorting loads with slowly-varying

harmonics, harmonic control in somefundamental cycles (decoupling between

different controllers is needed!).

Page 11: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 11/39

August 2001 Lesson 4 11

Three-layer decompositionThree-layer decomposition

• The previous requirements suggest a

decomposition of the control system in three

layers:• reference tracking control (for a quick

dynamic response) loop bandwidth;

• fundamental component control high loop

gain at the fundamental frequency, with low

selectivity;

• harmonics control high loop gain at each

harmonic frequency with high selectivity.

• The previous requirements suggest a

decomposition of the control system in three

layers:• reference tracking control (for a quick

dynamic response) loop bandwidth;

• fundamental component control high loop

gain at the fundamental frequency, with low

selectivity;

• harmonics control high loop gain at each

harmonic frequency with high selectivity.

Page 12: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 12/39

August 2001 Lesson 4 12

Three-Layer  DecompositionThree-Layer  Decomposition

x xz-1

e+jωωωω st e-j ωωωω st

x xz-1

z-Na

running DFTrunning DFT

+ ++

+

+

+

+

+

K P

proportional gainproportional gain

fundamental frequency controlfundamental frequency control

1

uoαβαβαβαβ

uoαβαβαβαβ

 _ 

*

i Fαβαβαβαβ

currentreferences

*

K F

TswK I1

TswK I1

εεεεαβαβαβαβ

HarmonicsControl

HarmonicsControl

FundamentalComponentControl

FundamentalComponentControl

TrackingControl

TrackingControl

e-j ωωωω st e+jωωωω st

2

3

Page 13: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 13/39

Page 14: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 14/39

August 2001 Lesson 4 14

• In principle, harmonics could be controlled by

integral, rotating frame regulators.

• This solution is cumbersome, requiring a largenumber of dq transformations.

The AC equivalent of the integral controller is ahigh selectivity band-pass filter. This is difficult

to implement because of fixed point arithmetic.

• Even if no stability problems can be generated,the selectivity is strongly limited by rounding

errors affecting the filter coefficients.

• In principle, harmonics could be controlled by

integral, rotating frame regulators.

• This solution is cumbersome, requiring a largenumber of dq transformations.

The AC equivalent of the integral controller is ahigh selectivity band-pass filter. This is difficult

to implement because of fixed point arithmetic.

• Even if no stability problems can be generated,the selectivity is strongly limited by rounding

errors affecting the filter coefficients.

NotesNotes

Page 15: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 15/39

August 2001 Lesson 4 15

 F h- pass-band filter with unity gain and zero phase at harmonic h, with good selectivity  F h- pass-band filter with unity gain and zero phase at harmonic h, with good selectivity 

(((( ))))  

∈∈∈∈

∈∈∈∈

∈∈∈∈∈∈∈∈   −−−−≈≈≈≈

−−−−====

ωωωω++++====

h

h

hh

Nh

h

Nh h

F

Nh h

hF

Nh2

s2

Ih

hACF1

F

KF1

FKhs

sK2)s(gRe(((( ))))  

∈∈∈∈

∈∈∈∈

∈∈∈∈∈∈∈∈   −−−−≈≈≈≈

−−−−====

ωωωω++++====

h

h

hh

Nh

h

Nh h

F

Nh h

hF

Nh2

s2

Ih

hACF1

F

KF1

FKhs

sK2)s(gRe

Harmonic controlHarmonic control

sh

IhF

h

KK

ωωωωξξξξ

====sh

IhF

h

KK

ωωωωξξξξ

====

KF is defined as follows:KF is defined as follows:

KF is constant provided KIh are equal to h·KIKF is constant provided KIh are equal to h·KI

Page 16: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 16/39

August 2001 Lesson 4 16

−−−−

====

−−−−

  ππππ====

1N

0i

idh zih

N

2cos

N

2)z(F  

−−−−

====

−−−−

  ππππ====

1N

0i

idh zih

N

2cos

N

2)z(F

The above approximation is well verified by

several types of band-pass filters. A good choice,

which offers significant implementationadvantages, is represented by FIR filters based on

DFT such as:

The above approximation is well verified by

several types of band-pass filters. A good choice,

which offers significant implementationadvantages, is represented by FIR filters based on

DFT such as:

For a single harmonic frequencyFor a single harmonic frequency

Harmonic controlHarmonic control

Page 17: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 17/39

August 2001 Lesson 4 17

Harmonic controlHarmonic control

−−−−

====

−−−−

  ππππ====

1N

0i

idh zih

N

2cos

N

2)z(F  

−−−−

====

−−−−

  ππππ====

1N

0i

idh zih

N

2cos

N

2)z(F

• This equation is based on the expression of 

the h-th harmonic component of a given input

signal’s DFT to derive a filter (running DFT).• The structure is that of a typical FIR filter 

(linear combination of delays).

•From this standpoint N·Ts (Ts is the samplingperiod) does not necessarily represent the

period of the input signal, which can be even

non-periodic.

• This equation is based on the expression of 

the h-th harmonic component of a given input

signal’s DFT to derive a filter (running DFT).• The structure is that of a typical FIR filter 

(linear combination of  delays).

•From this standpoint N·Ts (Ts is the samplingperiod) does not necessarily represent the

period of the input signal, which can be even

non-periodic.

Page 18: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 18/39

August 2001 Lesson 4 18

−−−−

====

−−−−

  ππππ====

1N

0i

idh zih

N

2cos

N

2)z(F  

−−−−

====

−−−−

  ππππ====

1N

0i

idh zih

N

2cos

N

2)z(F

Computing this equation in the time-domain gives:Computing this equation in the time-domain gives:

Harmonic controlHarmonic control

FIR filter transfer function

−−−−

====

−−−−

  ππππ====1N

0i

h )ik(xihN2cos

N2)k(y  

−−−−

====

−−−−

  ππππ====1N

0i

h )ik(xihN2cos

N2)k(y

yh(k) is a sinusoidal signal that represents theprojection of the input signal x(k) upon the cosine

base function of order h.

yh(k) is a sinusoidal signal that represents theprojection of the input signal x(k) upon the cosine

base function of order h.

coefficients are nottime dependent!

Page 19: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 19/39

August 2001 Lesson 4 19

Harmonic controlHarmonic control

Comparison with DFT:Comparison with DFT:

−−−−

====

  ππππ====

1N

0k

N )k(xkhN

2cos)h(X  

−−−−

====

  ππππ====

1N

0k

N )k(xkhN

2cos)h(X

−−−−

====

−−−−

  ππππ====

1N

0ih)ik(xih

N

2cos

N

2)k(y

 

−−−−

====

−−−−

  ππππ====

1N

0ih)ik(xih

N

2cos

N

2)k(y FIR filter 

hth order cosine

component in theDFT of signal x(k)

k is the time index, so in the DFT coefficients are

time dependent. The structure of the two algorithms

is exactly the same.

Page 20: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 20/39

August 2001 Lesson 4 20

0 2 4 6 8 10 12 14 16 18 200

1

Harmonic orderHarmonic order

Harmonic controlHarmonic control

Sampledfrequency

response, asseen by signalswith periodN·T

s /h.

Sampledfrequency

response, asseen by signalswith periodN·T

s /h.

Frequency response of function Fdh

(z) for h = 3.Frequency response of function Fdh

(z) for  h = 3.

Page 21: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 21/39

August 2001 Lesson 4 21

Harmonic controlHarmonic control

−−−−

====

−−−−

  ππππ====

1N

0i

i

dhzih

N

2cos

N

2)z(F

 

−−−−

====

−−−−

  ππππ====

1N

0i

i

dhzih

N

2cos

N

2)z(F

−−−−

====

−−−−

∈∈∈∈∈∈∈∈

   

   

   

  ππππ====

1N

0i

i

NhNh

dh zihN

2cos

N

2)z(F

kh

−−−−

====

−−−−

∈∈∈∈∈∈∈∈

   

   

   

  ππππ====

1N

0i

i

NhNh

dh zihN

2cos

N

2)z(F

kh

For a single harmonicFor a single harmonic

No additional calculations

for more harmonics

No additional calculations

for more harmonics

For multiple frequenciesFor multiple frequencies

0 2 4 6 8 10 12 14 16 18 200

1

Harmonic order

0 2 4 6 8 10 12 14 16 18 200

1

Example: 3rdExample: 3rd

Example: 3rd, 5thExample: 3rd, 5th

Harmonic order

H i lH i l

Page 22: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 22/39

August 2001 Lesson 4 22

Harmonic controlHarmonic control

−−−−

====

−−−−

∈∈∈∈∈∈∈∈   

   

   

  ππππ====

1N

0i

i

NhNh

dh zihN

2cos

N

2)z(F

kh

−−−−

====

−−−−

∈∈∈∈∈∈∈∈   

   

   

  ππππ====

1N

0i

i

NhNh

dh zihN

2cos

N

2)z(F

kh

• The coefficient for the i-th term can be

computed off-line according to:

• The control complexity does not depend on

the number of harmonic components taken

into account.

• The coefficient for the i-th term can be

computed off-line according to:

• The control complexity does not depend on

the number of harmonic components taken

into account.

∈∈∈∈

  ππππ

kNh

ihN

2cos

∈∈∈∈

  ππππ

kNh

ihN

2cos

Page 23: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 23/39

August 2001 Lesson 4 23

Design CriteriaDesign Criteria

Proportional terms and fundamental frequency

control are based on specified bandwidth andphase margin:

Proportional terms and fundamental frequency

control are based on specified bandwidth andphase margin:

2c

2

s

2

cIc1I

2KK

ωωωωωωωω−−−−ωωωω====2c

2

s

2

cIc1I

2KK

ωωωωωωωω−−−−ωωωω====Equivalence with PI Equivalence with PI 

Fundamental frequency controlFundamental frequency control

KIc is the integral gain of a conventionally

designed PI regulator.

KIc is the integral gain of a conventionally

designed PI regulator.

H i t lH i t l

Page 24: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 24/39

August 2001 Lesson 4 24

Harmonic controlHarmonic control

• Amplification of frequencies close to the

harmonics is an undesired effect of the filter 

superposition.

• Introduction of the leading angle φφφφk is possible

by means of positive feedback, provided that

the angle is proportional to the harmonicfrequency.

• Internal delays can be compensated.

• Amplification of frequencies close to the

harmonics is an undesired effect of the filter 

superposition.

• Introduction of the leading angle φφφφk is possible

by means of  positive feedback, provided that

the angle is proportional to the harmonicfrequency.

• Internal delays can be compensated.

−−−−

====

−−−−

∈∈∈∈∈∈∈∈   

   

   

++++

ππππ====

1N

0i

i

Nk

a

Nh

dh z)Ni(kN

2cos

N

2)z(F

kh

−−−−

====

−−−−

∈∈∈∈∈∈∈∈   

   

   

++++

ππππ====

1N

0i

i

Nk

a

Nh

dh z)Ni(kN

2cos

N

2)z(F

kh

Page 25: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 25/39

August 2001 Lesson 4 25

Design CriteriaDesign Criteria

Specification

on the response time (npk )

Specification

on the response time (npk )Spk

Ik Tn

2.2

K   ====

Harmonic controlHarmonic control

npk is the desired number of fundamental cyclesfor the dynamic response. It must be high enough

to provide de-coupling with the fundamental

frequency control. The equation is derived byapproximated relations between gain and settling

time of 2nd order band-pass filters.

npk is the desired number of fundamental cyclesfor the dynamic response. It must be high enough

to provide de-coupling with the fundamental

frequency control. The equation is derived byapproximated relations between gain and settling

time of 2nd order band-pass filters.

CC

Page 26: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 26/39

August 2001 Lesson 4 26

Design CriteriaDesign Criteria

Harmonic controlHarmonic control

 gain of DFT filtersgain of DFT filters s

Ik

F 32.0

K

K ωωωω≈≈≈≈ s

Ik

F 32.0

K

K ωωωω≈≈≈≈

This relation is based on the approximation of thesingle DFT filter with a conventional second order 

band-pass filter.

By trial and errors the 0.32 coefficient can bedetermined as the one minimizing the “distance”

between the two frequency responses.

This relation is based on the approximation of thesingle DFT filter  with a conventional second order 

band-pass filter.

By trial and errors the 0.32 coefficient can bedetermined as the one minimizing the “distance”

between the two frequency responses.

Page 27: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 27/39

DSP I l iDSP I l i

Page 28: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 28/39

August 2001 Lesson 4 28

DSP ImplementationDSP Implementation

Main features of DSP-based controller ADMC401:

• 16-bit fixed point DSP based on ADSP 2171 core.

• Fast arithmetic unit (38.5ns cycle).

• High-performance peripherals (double-update

PWM modulators, flash A/D 12 bit converters,

etc..).

• Suited for single-chip high-performance motion

control applications.

Main features of  DSP-based controller ADMC401:

• 16-bit fixed point DSP based on ADSP 2171 core.

• Fast arithmetic unit (38.5ns cycle).

• High-performance peripherals (double-update

PWM modulators, flash A/D 12 bit converters,

etc..).

• Suited for  single-chip high-performance motion

control applications.

C t l PC t l PInitialization

Routines

Page 29: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 29/39

August 2001 Lesson 4 29

Control Program 

Flow-Chart

Control Program 

Flow-Chart

Routines

Wait

Interrupt?

No

Yes

Reference Generation

[ s ]µµµµ

0

transformationsαβαβαβαβerrors calculations

Voltage control:proportional +

fundamental frequency

Harmonic control

deadbeat currentcontrol

SVM

Dead-time compensation

PWMSYNC

Timing starting

from ADC conversion

2 µµµµs

~3 µµµµs

~3 µµµµs

~18.4 µµµµsN=200

~ 6.4 µµµµsN=50

~2.7 µµµµs

~5 µµµµs

~36 µµµµs ~24 µµµµs

• Implementation on

ADMC401

• The control program

is written in assembly

language.• The use of DFT based

filters greatly

simplifies theimplementation.

• Execution times are

short.

• Implementation on

ADMC401

• The control program

is written in assembly

language.• The use of DFT based

filters greatly

simplifies theimplementation.

• Execution times are

short.

DSP ImplementationDSP Implementation

Page 30: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 30/39

August 2001 Lesson 4 30

.MODULE/RAM/SEG=USER_PM1 DFT_FILTER200;

.CONST ORD_N=200;

.VAR/RAM/PM/CIRC Filt_Coef[ORD_N];

#include "dft.dat” /* coefficients

  initialization */

.ENTRY DFT200;

DFT200:

i5=^Filt_Coef; /* use dedicated */l5=%Filt_Coef; /* circular registers */

m5=1; /* i,l,m (0-7) */

l0=%Filt_Coef; /* i0 data pointer (same lenght) */

.MODULE/RAM/SEG=USER_PM1 DFT_FILTER200;

.CONST ORD_N=200;

.VAR/RAM/PM/CIRC Filt_Coef[ORD_N];

#include "dft.dat”  /* coefficients

  initialization */

.ENTRY DFT200;

DFT200:

i5=^Filt_Coef;  /* use dedicated  */l5=%Filt_Coef;  /* circular  registers */

m5=1; /* i,l,m (0-7) */

l0=%Filt_Coef; /* i0 data pointer (same lenght) */

DSP ImplementationProgram sample

DSP ImplementationProgram sample

DSP ImplementationDSP Implementation

Page 31: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 31/39

August 2001 Lesson 4 31

m1=1;

mr = 0, mx0 = dm(i0,m1), my0 = pm(i5,m5);

cntr=%Filt_coef-1;

do calc0 until ce;

calc0: mr = mr + mx0 * my0 (ss),mx0 = dm(i0,m1), my0 = pm(i5,m5);

mr = mr + mx0 * my0 (rnd);

if mv sat mr;

rts;

.ENDMOD;

m1=1;

mr = 0, mx0 = dm(i0,m1), my0 = pm(i5,m5);

cntr=%Filt_coef-1;

do calc0 until ce;

calc0: mr = mr + mx0 * my0 (ss),mx0 = dm(i0,m1), my0 = pm(i5,m5);

mr = mr + mx0 * my0 (rnd);

if mv sat mr;

rts;

.ENDMOD;

DSP ImplementationProgram sample

DSP ImplementationProgram sample

Page 32: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 32/39

Page 33: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 33/39

August 2001 Lesson 4 33

Experimental SetupExperimental Setup

Prototype ratings:

•DC-link voltage 300V

• Filter Inductance 1 mH

•Output Filter Capacitor  120µµµµF

• Switching frequency 10kHz

•Selected frequencies: 3rd, 5th,7th,9th,11th

Experimental ResultsExperimental Results

Page 34: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 34/39

August 2001 Lesson 4 34

Experimental ResultsThree-phase diode rectifiers - Proposed solution

Experimental ResultsThree-phase diode rectifiers - Proposed solution

(a) Ouput Voltage (40V/div)(a) Ouput Voltage (40V/div)

time (5ms/div)time (5ms/div) frequency (50Hz/div)frequency (50Hz/div)

(a)

(b) Ouput current (10A/div)(b) Ouput current (10A/div)

c) Output voltage

spectrum (10dB/div)

c) Output voltage

spectrum (10dB/div)

(c)(c)(b)

22

33 44 55 9966

77 88

Experimental ResultsExperimental Results

Page 35: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 35/39

August 2001 Lesson 4 35

(a) Ouput Voltage (40V/div)(a) Ouput Voltage (40V/div)

time (5ms/div)time (5ms/div) frequency (50Hz/div)frequency (50Hz/div)

(a)(a)

(b) Ouput current (10A/div)(b) Ouput current (10A/div)

(c)(c)

(b)(b)

22

33 44

55

9966

77

88

Experimental ResultsThree-phase diode rectifiers - PI controller 

Experimental ResultsThree-phase diode rectifiers - PI controller 

c) Output voltage

spectrum (10dB/div)

c) Output voltage

spectrum (10dB/div)

Experimental ResultsExperimental Results

Page 36: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 36/39

August 2001 Lesson 4 36

pSingle-phase diode rectifier 

pSingle-phase diode rectifier 

(a) Ouput Voltage (40V/div)(a) Ouput Voltage (40V/div)

time (5ms/div)time (5ms/div)

(a)(a)

(b) Ouput current (5A/div)(b) Ouput current (5A/div)

(b)(b)

(a)(a)

(b)(b)

Proposed solutionProposed solution Conventional PIConventional PI

time (5ms/div)time (5ms/div)

Experimental ResultsExperimental Results

Page 37: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 37/39

August 2001 Lesson 4 37

pDistorting Load Turn-on

pDistorting Load Turn-on

time (10ms/div)time (10ms/div)

(a)(a)

(b)(b)(b)

(a) Ouput Voltage (40V/div)(a) Ouput Voltage (40V/div) (b) Ouput current (10A/div)(b) Ouput current (10A/div)

Experimental ResultsExperimental Results

Page 38: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 38/39

August 2001 Lesson 4 38

pLinear Load Step-Changes

pLinear Load Step-Changes

Turn-off Turn-off  Turn-onTurn-on

time (5ms/div)time (5ms/div) time (5ms/div)time (5ms/div)

(a) Ouput Voltage and its reference (40V/div)(a) Ouput Voltage and its reference (40V/div)

(b) Ouput current (5A/div)(b) Ouput current (5A/div)

(a)(a)

(b)(b)

(a)(a)

(b)(b)

R fR f

Page 39: Digital Control Applications in Power Electronics Lesson4

8/13/2019 Digital Control Applications in Power Electronics Lesson4

http://slidepdf.com/reader/full/digital-control-applications-in-power-electronics-lesson4 39/39

August 2001 Lesson 4 39

ReferenceReference

P. Mattavelli, S. Fasolo: “Implementation of Synchronous

Frame Harmonic Control for High-Performance AC Power 

Supplies”, IEEE IAS Annual Meeting 2000, Rome, Italy, 8-12 October, 2000, pp. 1988-1995.

P. Mattavelli, S. Fasolo: “Implementation of Synchronous

Frame Harmonic Control for High-Performance AC Power 

Supplies”, IEEE IAS Annual Meeting 2000, Rome, Italy, 8-12 October, 2000, pp. 1988-1995.