Top Banner
Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang
22

Diffusive Molecular Dynamics

Feb 02, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Diffusive Molecular Dynamics

Diffusive Molecular Dynamics

Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

Page 2: Diffusive Molecular Dynamics

2

Traditional Molecular Dynamics

• Numerically integrate Newton’s equation of motion with 3N degrees of freedom, the atomic positions:

• Difficult to reach diffusive time scales due to timestep (~ ps/100) required to resolve atomic vibrations.

{ }, 1..i i N=x

Page 3: Diffusive Molecular Dynamics

3

Diffusive MD: Basic Idea

Ferris wheel seen with long camera exposure time

Variational Gaussian Method

Lesar, Najafabadi, Srolovitz, Phys. Rev. Lett. 63 (1989) 624.

{ }, , 1..i i i Nα =x

DMD

ci: occupation probability(vacancy, solutes)

Define µi for each atomic site,to drive diffusion

{ }, , , 1..i i i i Nα =x c

Phase-Field Crystal: Elder, Grant, et al.Phys. Rev. Lett. 88 (2002) 245701Phys. Rev. E 70 (2004) 051605 Phys. Rev. B 75 (2007) 064107

change of basis: planewave → Gaussian

Page 4: Diffusive Molecular Dynamics

4

( ) ( ) ( )

0 0 0

3 23 2 2 2

1

Gibbs-Bogoliubov Free Energy Bound:

1 exp exp | |2

(| |, , )

Nji

i i i j j j i j i ji i j

i j i j

F F U U

u d d

w

αα α απ π

α α

∞ ∞

−∞ −∞= ≠

≤ + −

′ ′ ′ ′ ′ ′= − − − − −

∑∑ ∫ ∫ x x x x x x x x

x x

2

1

3 2ln thermal wavelength 2

Ni T

B Ti B

k Te mk T

α ππ=

Λ+ Λ =

Variational Gaussian Method

{xi,αi}true free energy

VG free energy

Page 5: Diffusive Molecular Dynamics

5

Comparison with Exact Solution

Lesar, Najafabadi, Srolovitz, Phys. Rev. Lett. 63 (1989) 624.

Page 6: Diffusive Molecular Dynamics

6

Page 7: Diffusive Molecular Dynamics

7

DMD thermodynamics

( ) ( )2

1 1

1 3(| |, , ) ln ln 1 ln 12 2

N Ni

i j i j i j B i i i i ii i j i

F c c w k T c c c c ce

αα απ= ≠ =

Λ≤ − + + + − −

∑∑ ∑x x

{ }Add occupation order parameters to sites: , , , 1..i i i i Nα =x c

VG view DMD view

01

=

c

10

=

c

Page 8: Diffusive Molecular Dynamics

8

2

1 1

The chemical potential for each atomic site is easily derived:

1 3(| |, , ) ln ln2 2 1

N Ni i

i j i j i j Bi i j ii i

A cc w k Tc e c

αµ α απ= ≠ =

∂ Λ = = − + + ∂ − ∑∑ ∑x x

DMD kinetics

nearest-neighbor network

( )1

1 , if and are nearest neighbors2

0 otherwise

Ni

ij j ij

i j

ij

c kt

c ck i j

k

µ µ=

∂= −

+ − =

2B 0

calibrate against experimental diffusivity:Dk

k T a Z=

Page 9: Diffusive Molecular Dynamics

9

log(D)

Atomic Environment-Dependent Diffusivity

Atomic coordination

number

12(perfect crystal)

9(surface)

10,11(dislocation core)

experimental or first-principles

diffusivities

Page 10: Diffusive Molecular Dynamics

10

Particleon surface

(largeparticle)

Page 11: Diffusive Molecular Dynamics

11

Particleon surface

(smallparticle)

Page 12: Diffusive Molecular Dynamics

12

Sinteringby hot

isostaticpressing

(porosityreduction in nanoparticlessuperlattice)

Page 13: Diffusive Molecular Dynamics

13

Sinteringby Hot

IsostaticPressing

(randompowders)

Page 14: Diffusive Molecular Dynamics

14

Nanoindentation

(only atomswith coordination

number ≠ 12are shown)

Page 15: Diffusive Molecular Dynamics

15

Small Contact Radius, High Temperature

Page 16: Diffusive Molecular Dynamics

16

Indenter accommodation by purely diffusional creep

Page 17: Diffusive Molecular Dynamics

17

coordination number coloring, showing edge dislocation

Dislocation Climb

vacancy occupation > 0.1

Page 18: Diffusive Molecular Dynamics

18

• DMD is atomistic realization of regular solution model, with gradient thermo, long-range elastic interaction, and short-range coordination interactions all included.

• DMD kinetics is “solving Cahn-Hilliard equation on a moving atom grid”, with atomic spatial resolution, but at diffusive timescales.

• The “quasi-continuum” version of DMD can be coupled to well-established diffusion - microelasticity equation solvers such as finite element method.

• No need to pre-build event catalog. Could be competitive against kinetic Monte Carlo.

Page 19: Diffusive Molecular Dynamics

19

Quasicontinuum - DMD?

image taken from Knap and Ortiz, Phys. Rev. Lett. 90 (2003) 226102.

DMDregion?

continuum diffusion

equation solver region,

with adaptive meshing?

Page 20: Diffusive Molecular Dynamics

20

Stress-Induced Bain Transformation

FCC

BCC

Page 21: Diffusive Molecular Dynamics

21

Page 22: Diffusive Molecular Dynamics

22