Top Banner

of 27

Differential Equations - Solved Assignments - Semester Spring 2008

May 29, 2018

Download

Documents

Muhammad Umair
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    1/27

    ASSIGNMENT 01Maximum Marks: 30

    Q#1:

    Solution:4 2

    2 4

    2 4

    2 2 2

    1 1 2

    1 2

    (1 ) (1 ) 0

    1

    1 1

    1

    1 1

    1 1 21 2 1 ( )

    1tan ( ) tan ( )

    2

    tan ( )tan[ ]

    2

    .

    x dy x y dx

    xdy dx

    y x

    Integrating both sides we get

    xdy dx

    y x

    xdy dxy x

    y x c

    xy c

    isthe general solution

    Q#2:

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    2/27

    2

    2 2 2

    2 2

    2

    2 2

    2

    2

    2

    2 2

    2 2 2

    2

    ( 1) ( )

    1 ( ) ( )

    / hom .

    dy x y x y

    dx

    dy x x yx y

    dx

    dy x yx y

    dx x

    x yx y

    dy x

    xdx

    x

    dy x xy y

    dx x x x

    dy y y

    dx x x

    As it is a function of y x so it is ogeneous

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    3/27

    2

    2

    2

    2

    1

    1

    1

    1

    1

    1

    tan ( ) ln ln

    tan ( ) ln

    tan[ ln ]

    tan[ ln ]

    .

    To solve it put y vx

    yv

    x

    Then above equation becomes

    dvv x v v

    dx

    dvx v

    dx

    dv dx

    v x

    Integrating both sides we get

    dv dx

    v x

    v x c

    v cx

    v cx

    y x cx

    isthe general solution

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    4/27

    Q#3:In the given problem, determine whether the given equation is exact. If exact, solve it

    2( 2 tan ) (sec ) 0 ; ( )4

    Sin x y dx x y dy y

    Solution:

    2

    2 2

    2

    Here

    2 tan & sec

    sec sec

    .

    2 tan 1 & sec 2

    int 1 . . ,

    cos2( , ) tan ( ) 3

    2

    M Sin x y N x y

    NMy y

    xy

    M NClearly soit is an exact differential equaiton

    y x

    Nowtake

    f f M Sin x y N x y

    x y

    On egrating no w r t x we get

    x f x y x y g y

    Par

    . .tially differentiate w r t y we get

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    5/27

    :

    2 /

    1

    2 1

    1 2

    sec ( )

    ( )

    cos2( , ) tan

    2

    cos2tan

    2

    cos2( )tan

    2

    ( )4

    1

    2

    cos 2 1tan

    2 2

    f x y g y

    y

    g y c

    then above equation becomes

    x f x y x y c

    xc x y c

    xc c c x y c

    Given y

    Aboveequationbecomes

    c

    xThen the particular solution is x y

    we ge

    2 2 tan 1 2t Cos x x y

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    6/27

    ASSIGNMENT 02

    Maximum Marks: 30

    Due Date: 3rd May, 2008

    Question 1: Marks=10

    Tell that which kind of differential equation is that, also solve that D.E

    ( ) 1dy

    x y ydx

    1(1 )( ) ln

    ( ) 1

    1 1(1 ) (1)

    .

    1 1( ) 1 , ( )

    .

    (1),

    ( 1)

    ( )

    int ,

    dxP x d x x x xx

    x x x

    xx

    x x

    x x

    dy x y y

    dx

    dyy

    dx x x

    It is a linear D E

    Here P x Q xx x

    I F e e e xe

    Multiply it by no we get

    dy xe e x y e

    dx

    d xe ye

    dx

    On egrating we get

    xe y e dx

    xe y e c

    Question 2: Marks=10

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    7/27

    Solve the following D.E by using an appropriate substitution

    sec( ) x y dy dx Solution:

    2

    2

    sec ( )

    . . ,

    1

    1

    sec( ) 1

    sec ( 1) 1

    1sec sec

    sec

    1 sec

    1

    1 cos

    1

    2cos2

    1s

    2 2

    tan2

    (tan

    x y dy dx

    Put u x y

    Differentiate w r t x we get

    du dy

    dx dx

    dy du

    dx dx

    dy x y can be written as

    dx

    duu

    dx

    duu udx

    udu dx

    u

    du dxu

    du x cu

    uec du x c

    ux c

    x y

    )

    2x c

    Question 3: Marks=10

    Find an equation of orthogonal trajectory of the curve2 2

    x y C Solution:

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    8/27

    2 2

    2 2

    . . ,

    2 2 0

    .

    1

    int ,

    ln ln ln

    x y C

    Differentiate w r t x we get

    dyx y

    dxdy x

    dx y

    Now we write down the D E for theorthogonal family

    dy y

    dydx x

    dx

    dy dx

    y xon grating we get

    y x c

    cy

    x

    xy c

    Hencethe familyof concentriccircles x y c and the f

    .

    amily

    xy c are orthogonal trajectries

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    9/27

    ASSIGNMENT 03Maximum Marks: 30

    Upload Date: May 09, 2008

    Due Date: May 16, 2008

    Question 1: Marks=10

    By using Wronskian, check whether the following functions given below are linearly independent. If not, show its linearly

    dependence.

    2 2

    2 31

    21 2 3

    ( ) 2 3, ( ) 1, ( ) 2( )

    ( ) ( ) cos 2 , ( ) 1, ( ) cos

    i t f t t f t t t f t

    ii f x x f x f x x

    Solution:

    (i) / //

    1 1 1

    2 / //

    2 2 2

    2 / //

    3 3 3

    1 2 3

    / // /// 2

    1 1 1

    2 / // ///

    2 2 2

    2 3; 2 , 0( ) ( ) ( )

    ( ) 1; ( ) 2 , ( ) 2

    ( ) 2 ; ( ) 4 1, ( ) 4

    det min

    2 3 2 0

    1 2 2 14 0

    2 4 1 4

    .

    t f t f t f t

    f t t f t t f t

    f t t t f t t f t

    er ant is

    f f f t

    W t t f f f

    t t t f f f

    so it islinearlyindependent

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    10/27

    21 2 3

    / // ///

    1 1 1

    / // ///

    2 2 2

    2

    ( )

    2 1

    0 2 22 2

    4 2 0 2 2

    ( )

    22 2(4 2 2 4sin 2 2 ) 0

    4 2 2 2

    ii

    f f f Cos x Cos x

    W CosxSinx Sin x f f f Sin x

    Cos x Cos x f f f

    Expanding C IInd column

    Sin xSin xSin xCos x xCos x

    Cos x Cos x

    But vanishing of wroskiandoes not gu

    2

    3

    2 13

    3 1 2

    .

    socheck .

    ( ) cos

    1 cos2

    2

    2

    & .

    areenteethelinear dependence

    itslinear dependence by that method

    Since f x x

    x

    f ff

    It shows that f isa linear combinationof f f soit islinearlydependent

    Question 2: Marks=10

    Solve the given D.E subject to the indicated initial conditions.

    Solution:

    4 / // ///

    4

    4

    4

    2 2

    2

    2

    1 2 3 4

    0, (0) (0) (0) 0, (0) 1

    ( 1) 0

    1 0

    ( 1)( 1) 01 0 1,1

    1 0 ,

    x x

    d y y y y y y

    dx

    Above differential equation canbe writtenas

    D y

    Its auxiliary equationis

    m

    m mm gives m

    m gives m i i

    we get

    y c e c e c Cosx c Sinx

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    11/27

    /

    1 2 3 4

    //

    1 2 3 4

    ///

    1 2 3 4

    1 2 3

    /

    1 2 4

    //

    1 2 3

    ///

    1 2 4

    sin cos

    sin cos

    (0) 0 0 .....(1)

    (0) 0 0 .....(2)

    (0) 0 0 .....(3)

    (0) 1 1 ..

    x x

    x x

    x x

    y c e c e c x c x

    y c e c e c Cosx c Sinx

    y c e c e c x c x

    y givesc c c

    y gives c c c

    y gives c c c

    y gives c c c

    1 2 1 2 1 2

    1 2 1 2 2 2 2 1

    4 4

    3 3

    ...(4)

    2 2 0 0(1) & (3)

    1 1 1 12 4 2 2 1 &( ) & ( )

    2 2 4 4

    1 1 12 0

    4 4 2

    1 1(3) 0 0

    4 4

    1 1 1

    4 4 2

    x x

    Add c c c c c c

    Add c c c c c c c c

    From c c

    From c c

    Thereforethe general solution is y e e Sinx

    Question 3: Marks=10

    Suppose that an object of mass m is falling downwards from a heighth with some velocity m/sv (velocity of the ball changes

    w. r .t the time t).

    As the ball moving downwards, there is some air resistance (some kind of force) say v where is the constant.

    Deduce the differential equation that describes the rate of change of speed m/sv w.r.t the time t from above information.

    Also solve that differential equation for m=10 kg and 5 .

    Hint: In that Question, you have to use Newtons 2nd

    law of motion. Here you can also say that the ball moves downward with

    acceleration a.

    Solution:Since the ball is moving downward so the force applied is the weight W of the object where W = mg (g =9.8 ms

    -2or approx 10 ms

    -2)

    Also air resistance = R = v According to theNewtons 2

    ndlaw of motion

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    12/27

    2

    2

    2

    Net force = m a

    W-R =ma

    mg- v =ma

    dv d xmg- v = m m

    dt dtdv

    mg- v =mdt

    mg-5vdv

    mdt

    dv 5v( 10 , 10)g -

    dt

    .

    but g ms mm

    It is the required differential equation

    1

    5

    dv 5v 100 5v10-

    dt 10 10

    var ,

    dv 1

    100-5v 10

    int

    ln |100-5v| tln ...(1)

    5 10

    10; 0

    100

    (1) .

    Separating the iables we get

    dt

    while egrating we get

    c

    when t v then c

    put it in eqaution no we get the required differential equation

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    13/27

    ASSIGNMENT 04Maximum Marks: 30

    Upload Date: May 17, 2008

    Due Date: May 22, 2008

    Question 1: Marks=15

    Solve the Differential Equation by the variation of parameters

    // tan y y x Solution:

    // tan y y x is a non-homogeneous differential equation.

    Its particular solution is yp = u1(x) y1(x)

    Step1:To find out the complementary function

    //

    2

    1 2

    0

    ,

    1 0

    mx

    c

    y y

    Put y e we get

    m

    m i

    so y c Cosx c Sinx

    Step2:

    From the above complementary solution, we identify

    1 2

    1 2

    ,

    hom .

    ( , ) (cos ,sin ) 1 0os

    y Cosx y Sinx aretwolinearly independent solutions of associated

    ogeneous equationThereforeCosx Sinx

    W y y W x xSinx C x

    Step 3:

    The given D.E is// tan

    ( ) tan

    y y x

    where f x x

    Step 4:

    Now we construct the determinants W1 and W2 given by

    2

    21 /

    2

    1

    2 /

    1

    00 sintantan cos cos( )

    0 cos 0

    sin tan( )

    ySinx xW sinx x

    x x x f x y

    y xW sinx

    x x y f x

    Step 5:

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    14/27

    Next we determine the derivatives of the unknown variables u1 and u2 through the relations

    / 11

    / 22

    sin tansin tan

    1

    sin sin1

    W x xu x x

    W

    W xu xW

    Step 6:

    Now integrate the above following we get

    2

    1

    2

    2

    sinsin tan

    cos

    1 cos

    cos

    (cos sec )

    sin ln sec tan

    sin cos

    xu x x dx dx

    x

    xdx

    x

    x x dx

    x x x

    u x dx x

    Step 7:

    Therefore, the particular solution of the given differential equation is

    1 1 2 2

    (sin ln sec tan ) cos cos sin

    ln sec tan

    py u y u y

    x x x x x x

    x x

    Step 8:

    Now the general solution of the differential equation is

    1 2 ln sec tanc p y y y c Cosx c Sinx x x

    Question 2: Marks=15

    Solve the differential equation

    Solution:

    -------------------(1)

    It can be re-written as

    For complementary Solution

    2 cosx y y y e x

    2 cosx y y y e x

    2 2 cosx D y Dy y e x

    2 2 1 cosx D D y e x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    15/27

    Where

    Its characteristic or auxiliary equation is

    So ,

    For a particular solution we assume

    Putting values in (1)

    Equating co-efficient of like terms

    ---------------------(2)

    --------------------(3)

    Multiply (2) by 4 and (3) by 3

    2 2 1 0 D D y 0F D y

    2 2 1F D D D

    2 2 1 0m m

    2

    1 0m

    1, 1m

    1 2 xcy c c x e

    cos sinxpy e A x B x cos sin sin cosx xpy e A x B x e A x B x

    cos sinxpy e A B x A B x cos sin sin cosx xpy e A B x A B x e A B x A B x cos sinxe A B A B x A B A B x 2 cos 2 sinxe B x A x

    2 cos 2 sin 2 cos sin

    cos sin cos

    x x

    x x

    e B x A x e A B x A B x

    e A x B x e x

    2 cos 2 sin (2 2 )cos ( 2 2 )sin cos

    sin cos

    B x A x A B x A B x A x

    B x x

    (3 4 )cos ( 4 3 )sin cos A B x A B x x

    3 4 1A B 4 3 0A B

    12 16 4A B 12 9 0A B

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    16/27

    So

    3

    25A

    So general solution is

    1 2

    3 4

    ( ) ( )25 25

    c p

    x x

    y y y

    y c c x e e Cosx Sinx

    4

    25B

    43 4 1

    25A

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    17/27

    ASSIGNMENT 05Maximum Marks: 30

    Upload Date: June 25, 2008

    Due Date: July 01, 2008

    Question 1: Marks=15

    A 4-lb weight is attached to a spring whose constant is 2lb /ft. The medium offers a resistance to the motion of the weight numerically

    equal to the instantaneous velocity. If the weight is released from a point 1 ft above the equilibrium position with a downward velocity

    of 8ft /s, determine the time that the weight passes through the equilibrium position. Find the time for which the weight attains its

    extreme displacement from the equilibrium position. What is the position of the weight at this instant?

    Solution:Since Weight = 4 lbs and constant = k = 2lb/ft

    Therefore, by Hooks law

    4 = 2s

    S = Stretch = 2ft & Damping force = dx/dt

    Where

    1

    14 32

    8Since W mg m m slugs

    Thus Differential equation of motion of free damped motion is given by2

    2

    2

    2

    2

    2

    /

    0

    8 16 0

    the weight is released from a point 1 ft above

    the equilibrium position with a downward velocity

    of 8ft (0) 1,/ (0) 8s

    d x dxm kx

    dt dt

    d x dxm kx

    dt dt

    d x dxx

    dt dt

    As

    with initial conditions x x

    dAs

    2

    2

    2

    2

    8 16 0

    ,

    8 16 0

    ( 4) 0

    4, 4

    mt

    x dxx

    dt dt

    Put x e we get

    m m

    m

    m

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    18/27

    4

    1 2

    / 4 4

    1 2 2

    1 2

    4 4

    1 2

    4

    / 4 4

    / 4

    /

    /

    ( ) ( )

    ( ) 4( )

    1, 4

    ( ) ( ) ( ) ( 1 4 ) ... (1)

    ( ) ( 1 4 )

    ( ) 4 4 ( 1 4 )

    ( ) (4 4 16 )

    ( )

    (0) 1, (0) 8

    t

    t t

    t t

    t

    t t

    t

    x t c c t e

    x t c c t e c e

    c c

    x t c c t e becomes x t t e

    For extreme values x t t e

    x t e t e

    x x giv

    x t t e

    es

    x t

    4

    / 4

    // 4 4 4 4

    /

    4

    4

    1 1

    // 3

    (8 16 )

    ( ) 8(1 2 )

    ( ) 16 32 (1 2 ) ( 16 32 64 ) ( 48 64 ) ...(2)

    ( ) 0

    (8 16 ) 0

    10 8 16 0, (2),

    2

    1( ) ( 48 32) 16

    2

    t

    t

    t t t t

    t

    t

    t e

    x t t e

    x t e t e t e t e

    For critical value put x t

    t e

    but e so t t put it in no we get

    x e e

    3

    4 2

    max

    10 ( ) max

    2

    1 1, ( ) (1 12 ) ( ) 7

    2 2

    t

    ve so x t has imum value at t

    At t x t t e becomes x e

    //

    4

    det min " " ,

    . ( ) 0

    ( 48 64 ) 0 ( sin (2))

    48 64 0

    3

    4

    t

    To er e time t wheretheweight passes throughtheequilirium position

    its accelarationbecomes zero That is x t

    t e by u g no

    t

    t

    Question 2: Marks=15

    Solve the non homogeneous differential equation

    3 23 2 3

    3 23 6 6 3 ln

    d y d y dy x x x y x

    dx dx dx

    Solution:

    For yc

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    19/27

    Put

    2 31 2 3

    2 3

    3 3 2 2 1

    3 2

    2

    , ( 1) , ( 1)( 2)

    ( 1)( 2) 3 ( 1) 6 6 0

    ( 1)( 2) 3 ( 1) 6 0

    11 6 06

    1 5 6 0

    1 2

    m

    m m m

    m m m m

    y x

    dy d y d ymx m m x m m m x

    dx dx dx

    we get x m m m x x m m x x mx x

    Auxiliary equationbecomes

    m m m m m

    mm m

    either m or m m

    either m or m

    2 3

    1 2 3

    ,3

    c

    Therefore

    y c x c x c x

    Lets find the particular solution

    2 3

    1 2 2

    2 3 / / /

    1 2 3

    2 / / /

    1 2 3

    3 / / /

    1 2 3

    , ,

    0

    (1) (2 ) (3 ) 0

    (0) (2) (6 ) 3 ln 3(1 ln )

    Suppose

    y x y x y x

    Now

    u x u x u x

    u u x u x

    u u u x x x

    To solve these above equations, we can write them in matrix form as

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    20/27

    2 3

    2

    3

    1 2

    2 3

    2

    1 2

    2

    2 3

    0

    1 2 3 0

    0 2 6 3(1 ln )

    2

    0 2 0

    1 2 3 0

    3(1 ln )0 1 3

    2

    1 2 3 0

    0 2 0

    3(1 ln )0 1 3

    2

    x x x

    x x

    x x

    R

    Apply R xR and

    x x

    x x

    xx

    Interchange R and R

    x x

    x x

    xx

    From these above matrix, we write it as2 / / /

    1 2 3

    2 3/ /

    2 3

    / /

    2 3

    // /2 3

    /

    3

    /

    3

    2

    3

    2 3 0........(1)

    2 0.........(2)

    3(1 ln )3 .........(3)

    2

    (2) 2 ....(2 ) (3)

    3(1 ln )

    2

    3(1 ln )

    2

    int ,

    3 (ln )ln

    2 2

    u u x u x

    x u x u

    xu xu

    From u xu put it in no

    xwe get xu

    xu

    x

    After egaration we get

    xu x

    /

    /

    2

    2

    (2 )

    3(1 ln )

    int ,

    3 ln

    From

    we get u x

    after egaration

    u x x

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    21/27

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    22/27

    ASSIGNMENT 06Maximum Marks: 20

    Upload Date: July 10, 2008

    Due Date: July 18, 2008

    Question 1: Marks=10

    Find the interval of convergence of the given power series

    (i)

    1

    ( 7)n

    n

    x

    n

    (ii)

    1

    ( 1) ( 5)

    10

    n n

    nn

    x

    Solution:

    (i)

    1

    1

    1

    1

    1

    ( 7)

    ( 7) ( 7)

    1

    ( 7)lim lim lim 7 7

    ( 7) 1 1

    7 1

    . . 1 7 1 8 6 ( 8, 6)

    int

    n

    n

    n n

    n n

    n

    n

    nn n nn

    x

    n

    x x

    Here a an n

    a x n n R x x

    a x n n

    Theabove power seriesconverges for x

    i e x x or x

    It istherequired erval of converge

    .nce

    (ii)

    1

    1 1

    1 1

    1 1

    1

    1

    ( 1) ( 5)

    10

    ( 1) ( 5) ( 1) ( 5)

    10 10

    5( 1) ( 5) 10 1lim lim lim 7

    10 ( 1) ( 5) 10 10

    5 10

    . . 10 5 10 5 15

    n n

    nn

    n n n n

    n nn n

    n n n

    n

    n n nn n nn

    x

    x x Here a a

    xa xR x

    a x

    Theabove power series converges for x

    i e x x o

    ( 5,15)

    int .

    r x

    It is the required erval of convergence

    Question 2: Marks = 10

    Solve the Differential equation // 2 0 y x y

    Note: Mention each and every step

    Solution:

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    23/27

    // 2

    2

    2 1 0

    2

    0

    0

    0 ...(1)

    ( ) 1, ( ) 0, ( )

    & ( ) 1 0, ( ) 0, ( )

    0 int . sin

    int

    .

    ( )

    n

    n

    n

    n

    n

    n

    y x y

    Here a x a x a x x

    P x Q x R x x

    So x x is an ordinary po As there are no finite gular

    po so there exist two solutions of the form y c x which

    converges for x

    y x c x

    / 1 // 2

    0 1 2

    2 2

    2 0

    2 2

    2 0

    2 2

    2 3

    4 0

    , ( ) , ( ) ( 1)

    (1) ( 1) 0

    ( 1) 0

    2 6 ( 1) 0

    2 2 2

    n n

    n n

    n n

    n n

    n n

    n n

    n n

    n n

    n n

    n n

    n n

    n n

    y x nc x y x n n c x

    Therefore eq no becomes n n c x x c x

    n n c x c x

    c c x n n c x c x

    put k n and k n in Ist and nd

    2 3 2 2

    2 2

    2 3 2 2

    2

    2 3 2 2

    2

    3

    2 2

    .

    2 6 ( 2)( 1) 0

    2 6 [( 2)( 1) ] 0

    0, 0 & ( 2)( 1) 0

    0

    0

    12,3,4,...

    ( 2)( 1)

    k k

    k k

    k k

    k

    k k

    k

    k k

    k k

    summation respectively

    c c x k k c x c x

    c c x k k c c x

    Thus c c k k c c

    Thereforec

    c

    c c for k k k

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    24/27

    2 2

    4 0 0

    5 1 1

    6 2

    7 3

    2

    8 4 0 0

    9 5 1

    1

    ( 2)( 1)

    1 22,

    4 3 4!

    1 63,5 4 5!

    1 14, (0) 0

    6 5 6 5

    1 15, (0) 0

    7 6 7 6

    1 1 2 ( 1) 606, ( )

    8 7 8 7 4! 8!

    1 1 67, (

    9 8 9 8 5!

    k k As c ck k

    For k c c c

    For k c c c

    For k c c

    For k c c

    For k c c c c

    For k c c c

    2 2

    1 1

    2 3

    10 8 0 0

    11 7

    2 3 3

    12 8 0 0 0

    0

    0

    ( 1) 6.6.7 ( 1) 252)

    9! 9!

    1 1 ( 1) 60 ( 1) 608, ( )

    10 9 10 9 8! 10!

    19, 0

    11 10

    1 1 ( 1) 60 ( 1) 90 60 ( 1) 540010, ( )

    12 11 12 11 8! 12! 12!

    n

    n

    n

    c c

    For k c c c c

    For k c c

    For k c c c c c

    Therefore y c x c x

    0 1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10 ...c x c x c x c x c x c x c x c x c x c x

    Put the values of constants c0, c1, and get the answer

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    25/27

    ASSIGNMENT 07Maximum Marks: 20

    Upload Date: July 22, 2008

    Due Date: July 28, 2008

    Question 1: Marks=10Express the given Bessel function in terms of Sin(x) and Cos(x) and power of x.

    7

    2

    1 1

    sin

    2( ) ( ) ( )v v v

    J

    U g the technique

    v J x J x J x

    x

    Answer:

    1 1

    5

    2

    5 5 51 12 2 2

    3 7 52 2 2

    7 5 32 2 2

    52

    3 / 2

    72

    Consider that

    2

    522

    5

    5 (1)

    3 s in 2 2 2( . cos ) sin

    sin 2 2( ) . cos

    (1)

    5

    v v v

    t ak in g v

    v J x J x J xx

    A s f o r

    J x J x J xx

    J x J x J xx

    J x J x J xx

    w e k n o w

    x J x x x

    x x x x x

    x J x x

    x x x

    T he n e qu at io n b ec om es

    J x

    2

    2 3 2 3 2 s in[ 1 s in .( cos )] cos

    x x x x

    x x x x x xx

    Question 2: Marks=5

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    26/27

    Find the general solution of the differential equation2 '' ' 24 4 (4 25) 0 (0, ) x y xy x y on

    Solution:The general form of Bessel differential equation is

    22 2 2

    2( ) 0

    d y dy x x x v y

    dx dx -----(1)

    2 '' ' 2

    22 2

    2

    2

    2 2 22

    4 4 (4 25) 0

    4,

    25( ) 0

    4

    5( ( ) ) 0 (2)2

    x y xy x y

    Dividing by we get

    d y dy x x x y

    dx dx

    d y dy x x x ydx dx

    Comparing (1) and (2) , we get

    2 25 5

    4 2v v

    so the general solution is

    1 5 2 5

    2 2

    ( ) ( )y c J x c J x

    Question 3 : Marks=5

    Reduce the third order equation / / / / / / 23 6 10 1 y y y y t to the normal form.

    Solution: / / / / / / 2

    / / / / / / 2

    1

    /

    2

    / /

    3/ /

    1 2

    / / /

    2 3

    / / / /

    3

    / 2

    3 1 2 3

    3 6 10 1

    10 6 3 ( 1)

    int var

    10 6 3 1 .

    Given equationis y y y y t

    y y y y t

    Now roduce the iables

    y x

    y x

    y x x y x

    x y x

    x y

    x x x x t isthe required normal form

  • 8/9/2019 Differential Equations - Solved Assignments - Semester Spring 2008

    27/27

    1

    /

    2

    / /

    3

    / /

    1 2

    / / /

    2 3

    / / / /

    3

    /

    3 1 2 3

    1 13 2 cos

    3 3

    y x

    y x

    y x

    x y x

    x y x

    x y

    x x x x t