Top Banner
Dietrich Baade (ESO) Peter Hoeflich (FSU) Ferdinando Patat (ESO) Lifan Wang (LBNL) J. Craig Wheeler (Austin) The Best SN of 2005?
41

Dietrich Baade (ESO) Peter Hoeflich (FSU) Ferdinando Patat (ESO) Lifan Wang (LBNL)

Feb 13, 2016

Download

Documents

cahil

The Best SN of 2005?. Dietrich Baade (ESO) Peter Hoeflich (FSU) Ferdinando Patat (ESO) Lifan Wang (LBNL) J. Craig Wheeler (Austin). SN 1006 at Discovery – Historical Image from Song Dynasty. SN 2005df. UV – Swift Optical photometry and spectropolarimetry Mid-IR - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Dietrich Baade (ESO)Peter Hoeflich (FSU)Ferdinando Patat (ESO)Lifan Wang (LBNL)J. Craig Wheeler (Austin)

The Best SN of 2005?

Page 2: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 3: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

SN 2005df

• UV – Swift• Optical photometry and spectropolarimetry• Mid-IR

• Structure of the ejecta

Page 4: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Optical Light Curves

Page 5: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Si II line atV~25000 km/sec

Fine structuresare found

Polarizationis strong At blue shiftedabsorptionfeatures

-12

-09

+09

+08

+05

+00

-03

-07

-08

+04

Page 6: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

OI CaII

Page 7: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 8: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 9: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 10: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 11: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Ca

Page 12: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Example 3: SN 2004dt

A high velocity SN Distorted envelope

HVS NVC

Page 13: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Wavelength

Rel

. Flu

x

SN 2004dt - IME only

Wang et al. 2004

Page 14: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 15: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Line/Polarization Profiles

Peak blueshifted by 4000 km/sec

Page 16: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

SN 2006X

HVS

NVC

HVS

NVC

Page 17: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

O I of SN 2006X

Page 18: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 19: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Example 2: SN 2001el

Detached Ca Shell/Clump/RingDay -4 Day 19

Page 20: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

SN 2001el

Si II Ca IIDay -4 Day 19 Day -4 Day 19

-2X104 0 2X104

Velocity(km/sec)

-2X104 0 2X104

Velocity(km/sec) -2X104 0 -2X104 0 Velocity(km/sec) Velocity(km/sec)

Page 21: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Q-U diagram for axially symmetric geometry

V1V3

V2

Q

U

Principle axis

V4

Q = (I0-I90)/(I0+I90)U = (I45-I135)/(I45+I135)Theorem: For axially symmetric geometry, the Q-U vectors

form a straight line on the Q-U Diagram

Page 22: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Pf=N1/2p0fi

Brownian Motion

f - total area covering factor of clumps (≤1)fi - area covering factor by a typical clump (~f/N)N - total number of clumps (=f/fi)pifi - polarized flux due to individual clump (~3f i%) P ≈ f N~1/23%/(1-f) ~ 0.5%, N ~ 36 for f ~ 0.5, fi~f/N=0.014dc- diameter of a typical clump ~ 2,400 km/sec

∑pifi fiN1/2 fN-1/2

P = ———— ~ ——p0 = —— p0 1-∑fi 1-f 1-f

Page 23: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Pf=N1/2p0fi

Brownian Motion1) When N is sufficiently large P will be a stable vector that does not show big, random fluctuations with time.

2) In the case of a small number of large clumps, P is again a stable quantity as such clumps will shield the photosphere at all epochs

These vectors/clumpsmoved outside the surfaceof the photosphere at a later epoch.

Page 24: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Polarization position angles: A corkscrew in the ejecta?

U

Q

v1

Q

U

v4

Q

U

v3

Q

U

v2

Page 25: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Polarization position angles: corkscrews in the ejecta?

U

QQLoops/arcs on Q-U diagram

Absorbing clumps at different velocity

Page 26: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

In velocity space,the radial elongation of the clumps determines the correlation of theobserved polarization at different velocities.

10,0

00 k

m/s

ec

15,0

00 k

m/s

ec

20,0

00 k

m/s

ec

Each velocity layerintercepts ~16 clumpsif the volume in frontof the photosphereis packed with clumpsof diameter of 5,000 km/sec

The volume in front of thephotosphere is big enoughto hold about 48 clumps of diameter ~5,000 km/secThe radial extension

of typical clumps has tobe ~ 5,000 km/sec toexplain the observedpolarization profile.

Peak blueshifted by 4000 km/sec

Page 27: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Si II 3859 Si II 6355

Mg II 4481

O I 7773

Page 28: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

SN 2001elSi II Ca II

Day -4 Day 19 Day -4 Day 19

-2X104 0 2X104

Velocity(km/sec)

-2X104 0 2X104

Velocity(km/sec) -2X104 0 -2X104 0 Velocity(km/sec) Velocity(km/sec)

Page 29: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

SN 2005df

08/06/200508/08/200508/09/2005

08/10/200508/14/200508/17/200508/21/200508/22/2005

08/25/200508/26/2005

Page 30: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 31: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Chemical Structure

Page 32: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Correlation

Page 33: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Correlation

Page 34: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Summary

1. High velocity component is always asymmetric2. The normal velocity component is symmetric, to a level below 5%3. The chemical burning is different for HV and NV events

1) The HV probably burned C to oxygen2) The NV did not burn C at the outer layer (this is why C is found only in some NV)

4. The core is likely asymmetric

Page 35: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Mid-IR

Page 36: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Mid-IR

Page 37: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Mid-IR – Day 135

Page 38: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

SN 2003hv – Day 375

Page 39: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 40: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)
Page 41: Dietrich Baade (ESO) Peter  Hoeflich  (FSU) Ferdinando Patat  (ESO) Lifan Wang (LBNL)

Deflagration Delayed Detonation

Observed

Turbulent/clumpy geometry at all velocities

Significantly reduced asymmetry at the central part of the ejecta

No significant asymmetry below photosphere

Clumpy chemical Layered chemical structure layeredLow energy Sufficient energy High speed layer? The seed for significant asymmetry

At the outermost layer, the turbulent plumes/bubbles generated during the deflagration may survive

Asymmetry in 1) pre-expansion2) Progenitor3) Rotation; magnetic field

No high velocity shell

No high velocity shell High velocity shell withstrong asymmetry

Comparable level of asymmetry at all velocities

Stronger asymmetry at outer layers

1) Asymmetry decreases from 30000 – 8000 km/sec;2) The core is likely asymmetric