Top Banner
Interface-related micromechanics in TWIP steels I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe 28. October 2009, MS&T, Pittsburgh Acknowledgements: SFB 761 “Steel ab initio”; discussions with Marty Crimp and Tom Bieler (Michigan State University) see also: talk at 2 pm Thursday room 328, EBSD session
35
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Dierk  Raabe  T W I P Steel 2009  M S T

Interface-related micromechanics in TWIP steels

I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe

28. October 2009, MS&T, Pittsburgh

Acknowledgements: SFB 761 “Steel ab initio”;discussions with Marty Crimp and Tom Bieler (Michigan State University)

see also: talk at 2 pm Thursday room 328, EBSD session

Page 2: Dierk  Raabe  T W I P Steel 2009  M S T

Overview

Motivation

Characterization of interfaces in TWIP

Strain hardening behavior in TWIP

Conclusions

Dierk Raabe, MS&T, Pittsburgh, 28. Oct. 2009, MPIE

Page 3: Dierk  Raabe  T W I P Steel 2009  M S T

3

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 16000

10

20

30

40

50

60

70

80

tota

l elo

ngatio

n to f

ract

ure

[%

]

ultimate tensile strength [MPa]

TRIP and complex phaseTRIP and complex phase

martensiticmartensitic

maraging TRIPmaraging TRIP

dual phasedual phase

ferriticferritic

Ductility-strength profile for sheet steels

austenitic stainlessaustenitic stainless

advanced TWIP and TRIP

advanced TWIP and TRIP

www.mpie.de

www.mpie.de

www.mpie.de

Page 4: Dierk  Raabe  T W I P Steel 2009  M S T

4

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 16000

10

20

30

40

50

60

70

80

tota

l elo

ngatio

n to f

ract

ure

[%

]

ultimate tensile strength [MPa]

TRIP and complex phaseTRIP and complex phase

martensiticmartensitic

maraging TRIPmaraging TRIP

dual phasedual phase

ferriticferritic

Ductility-strength profile for sheet steels

austenitic stainlessaustenitic stainless

advanced TWIP and TRIP

advanced TWIP and TRIP

Page 5: Dierk  Raabe  T W I P Steel 2009  M S T

Characterization

TEM, EBSD

High spatial resolution EBSD

3D EBSD (joint 2D EBSD plus serial sectioning)

Electron channeling contrast imaging (ECCI)

ECCI combined with EBSD: ECCI under controlled diffraction conditions

Dierk Raabe, MS&T, Pittsburgh, 27. Oct. 2009, MPIE

Page 6: Dierk  Raabe  T W I P Steel 2009  M S T

6

Scaling issue in microscopy

?TEM EBSD

EBSD orientation contrastis not lattice defect contrast

Large scale mapping of lattice defects

TEM information in SEM

EBSD orientation contrastis not lattice defect contrast

Large scale mapping of lattice defects

TEM information in SEM

Electron Channeling Contrast Imaging

Example: Fe-22Mn-0.6C (wt%), TWIP

Page 7: Dierk  Raabe  T W I P Steel 2009  M S T

7

EBSD

High spatial and angular resolution

ECCI

1 nm

10 nm

100 nm

1000 nm

0.001º 0.01º 0.1º 1º

Spatial resolution

Angular resolution

Limited spatial and

angular resolution

Good spatial and angular resolution

TEM

Overview characterization

Page 8: Dierk  Raabe  T W I P Steel 2009  M S T

Electron channeling contrast mechanism

Dislocation imaging

[A.J. Wilkinson, P.B. Hirsch, Micron 28 (1997) 279]

Requirement: Crystal at Bragg conditionImaging under controlled diffraction conditions

Page 9: Dierk  Raabe  T W I P Steel 2009  M S T

9

Fe-22Mn-0.6C (wt%) TWIP steel

High resolution EBSD ECCItwins

Dislocation cells

Comparison EBSD-ECCI

Electron Channeling Contrast Imaging

Page 10: Dierk  Raabe  T W I P Steel 2009  M S T

10

SEM

Page 11: Dierk  Raabe  T W I P Steel 2009  M S T

11

SEM

TEM

Page 12: Dierk  Raabe  T W I P Steel 2009  M S T

12

ECCI / SEM

(-220)

Dislocation cells are clearly seen by ECCI

TEM-Bright Field

Fe-22Mn-0.6C (wt%) TWIP steel

Electron Channeling Contrast Imaging

I. Gutierrez-Urrutia et al. Scripta Mater. 61 (2009) 737-740

Page 13: Dierk  Raabe  T W I P Steel 2009  M S T

13

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5

True stressHardening (MPa)

Har

deni

ng/

Str

ess

(MP

a)

True strain

YS: 210 MPaUTS: 1200 MPaDuctility: 51%strain rate: 2.5x10-4 s-1

tensile test, room temperature10%

20%

40%

TA

twins

TA

step size: 50 nm

twins do not provide much strain but the 2nd hardening plateau

EBSD: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia et al. Scripta Mater. 61 (2009) 737-740

Page 14: Dierk  Raabe  T W I P Steel 2009  M S T

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5

True stressHardening (MPa)

Har

den

ing/

Str

ess

(MP

a)

True strain

YS: 210 MPaUTS: 1200 MPaDuctility: 51%strain rate: 2.5x10-4 s-1

2% 10% 25% 35%

2nd hardening stage:

2%<e< 10%

-Planar slip structures + wavy structures-Few mechanical twins*

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia et al. Scripta Mater. 61 (2009) 737-740

Page 15: Dierk  Raabe  T W I P Steel 2009  M S T

2nd hardening stage:

2%<e< 10%

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 16: Dierk  Raabe  T W I P Steel 2009  M S T

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5

True stressHardening (MPa)

Har

den

ing/

Str

ess

(MP

a)

True strain

YS: 210 MPaUTS: 1200 MPaDuctility: 51%strain rate: 2.5x10-4 s-1

2% 10% 25% 35%

3rd hardening stage:

10%<e< 25%

-Wavy structures: dislocation cells-Mechanical twins-3 Types of grains

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 17: Dierk  Raabe  T W I P Steel 2009  M S T

3rd hardening stage:

10%<e< 25%

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 18: Dierk  Raabe  T W I P Steel 2009  M S T

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.1 0.2 0.3 0.4 0.5

True stressHardening (MPa)

Har

den

ing/

Str

ess

(MP

a)

True strain

YS: 210 MPaUTS: 1200 MPaDuctility: 51%strain rate: 2.5x10-4 s-1

2% 10% 25% 35%

5th hardening stage:

35%<e< 50%

-Wavy structures: dislocation cells-Mechanical twins-3 Types of grains

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 19: Dierk  Raabe  T W I P Steel 2009  M S T

5th hardening stage:

35%<e< 50%

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 20: Dierk  Raabe  T W I P Steel 2009  M S T

Type I

5th hardening stage:

35%<e< 50%

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 21: Dierk  Raabe  T W I P Steel 2009  M S T

Type II

5th hardening stage:

35%<e< 50%

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 22: Dierk  Raabe  T W I P Steel 2009  M S T

Type III

5th hardening stage:

35%<e< 50%

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 23: Dierk  Raabe  T W I P Steel 2009  M S T

0

20

40

60

80

100

0.05 0.1 0.2 0.4

DDW+CellsDDW+Cells+TwinsType IType IIType III

%

True strain

Type of grain

Interface statistics

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 24: Dierk  Raabe  T W I P Steel 2009  M S T

Most of the grains follow the Schmid’s Law (3/4)

True strain: 40%

EBSD: Growth of deformation twins in TWIP steels

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 25: Dierk  Raabe  T W I P Steel 2009  M S T

True strain: 40%Some of the grains

follow the Schmid’s Law

EBSD: Growth of deformation twins in TWIP steels

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 26: Dierk  Raabe  T W I P Steel 2009  M S T

True strain: 40%

1-2activated twinning systems nucleated at

grain boundaries

No twins inside the grain (few degrees from [001])

EBSD: Growth of deformation twins in TWIP steels

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 27: Dierk  Raabe  T W I P Steel 2009  M S T

Grains with “low” twinning activity:-Short twins (less than 5 microns length)

-Few twins

EBSD: Growth of deformation twins in TWIP steels

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 28: Dierk  Raabe  T W I P Steel 2009  M S T

Grains with “high” twinning activity:-Long twins

-Thick bundles of twins-High population of twins

These results suggest a Sslip/Stwinning relationship

on twin growth

EBSD: Growth of deformation twins in TWIP steels

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 29: Dierk  Raabe  T W I P Steel 2009  M S T

Type I

3rd hardening stage:

10%<e< 25%

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 30: Dierk  Raabe  T W I P Steel 2009  M S T

Type II

3rd hardening stage:

10%<e< 25%

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 31: Dierk  Raabe  T W I P Steel 2009  M S T

Type III

3rd hardening stage:

10%<e< 25%

ECCI: Work hardening of TWIP steels, Fe-22Mn-0.6C (wt%)

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 32: Dierk  Raabe  T W I P Steel 2009  M S T

32Fe22Mn0.6C TWIP steel

Mechanical twins

Dislocation cells

Electron Channeling Contrast Imaging

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 33: Dierk  Raabe  T W I P Steel 2009  M S T

EBSD: Growth of deformation twins in TWIP steels

I. Gutierrez-Urrutia, et al. Mater. Sc. Engin. A 527 (2010) 3552

Page 34: Dierk  Raabe  T W I P Steel 2009  M S T

Set-up is proposed for ECCI under controlled diffraction conditions by means of EBSD in conventional FEG-SEM

Two positions set-up: low-tilt position for ECCI (high-tilt position (70º) for EBSD; optimized operation conditions: small working distance (<7 mm) and 10 kV

Dislocation cells and mechanical twins of 20 nm in thickness are imaged in a deformed TWIP steel

The ECCI technique under controlled diffraction conditions is a powerful tool for characterizing deformed bulk materials

Interface statistics in TWIP at different deformation regimes

Hall Petch parameter for twin-dislocation interaction below that for g.b.-dislocation interaction

Dierk Raabe, MS&T, Pittsburgh, 27. Oct. 2009, MPIE

Summary

Page 35: Dierk  Raabe  T W I P Steel 2009  M S T

35

I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe: Scripta Mater. 61 (2009) 737-740Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope

I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe: Mater. Sc. Engin. A 527 (2010) 3552-3560 The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel

References