Top Banner
DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,
44

DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Dec 18, 2015

Download

Documents

Kellie Hunter
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

DIELECTRIC PROPERTIES OF ION -CONDUCTING MATERIALS

F. Kremer

Coauthors: J. Rume, A. Serghei,

Page 2: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

The relationship between the complex dielectric function and the complex conductivity

Phenomenology of the conductivity of charge – conductingmaterials

The dielectric properties of zwitterionic polymethacrylate

The dielectric properties of „Ionic Liquids“

Theoretical descriptions of the observed frequencyand temperature dependemce of the complex conductivity

Page 3: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

The spectral range of Broadband Dielectric Spectroscopy (BDS) and its information content

for studying dielectric relaxations and charge transport.

Page 4: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Dcurl H j

t

0D E j E (Ohm‘s law)

The linear interaction of electromagnetic fields with matter is described by Maxwell‘s equations

Current-density and the time derivative of D are equivalent

0i

i i

Page 5: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Dielectric spectroscopy

2( )1s

2( )1

s

*

(1 )s

i

Debye relaxation

2.0

2.4

2.8

3.2

3.6

'=s

'==s-

'10

010

110

210

310

410

510

6

0.0

0.2

0.4

0.6

0.8

''max

max

'' [rad s-1]

complex dielectric function

electric field E

E

t0

polarization P

PD( )

P

PS

P

t0

Page 6: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

10-2

10-1

100

101

102

103

104

105

106

100

101

102

103

104

105

235 K220 K

205 K

190 K

propylene glycol

´

frequency [Hz]

10-2

10-1

100

101

102

103

104

105

106

100

101

102

103

104

´

frequency [Hz]

Analysis of the dielectric spectra

Page 7: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

(sample amount required < 5 mg)

The spectral range (10-3 Hz to 1011 Hz) of Broadband Dielectric Spectroscopy (BDS)

Page 8: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Brief summary concerning Broadband Dielectric Spectroscopy (BDS)

1. The spectral range of BDS ranges from 10-3 Hz to 1011 Hz.

2. Orientational polarisation of polar moieties and charge transport are equivalent and observed both.

3. The main information content of dielectric spectra comprises for fluctuations of polar moieties the relaxation- rate, the type of its thermal activation, the relaxational strength and the relaxation-time distribution function. For charge transport the mean attempt rate to overcome the largest barrier determining the d.c.conductivity and its type of thermal activation can be deduced

Page 9: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Phenomenology of the conductivity of charge – conducting materials

Page 10: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

407K417K427K438K448K

458K468K478K488K491K

1 2 5 6-10

-9

-8

-7

-6

4

log ( [H z ])3

log

([S

cm])

’-1

Frequency and temperature dependence of the conductivity of a mixed alkali-glass 50LiF-30KF-20Al(PO3)3

Page 11: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

3 4 5 6 7-11

-10

-9

-8

-7

-6

log( [rad/s])

100 mol%

log

(' [

Scm

-1])

396 K 391 K 382 K 373 K 364 K 355 K 346 K

Frequency and temperature dependence of the conductivity of a zwitterionic polymer

Page 12: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

T [K]

295285

262250

236

223

210

1 3 5 7

-4

-2

log ( [H z ])

-6

log

([S

cm])

’-1

Frequency and temperature dependence of the electronic conductivity of poly(methyl-thiophene)

Page 13: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

p

0 .1 00

0 .0 75

0 .0 50

0 .0 30

0 .0 20

0.015

0.012 5

0 .0 10

2 3 4 5 6 7 8 9

log( [Hz])

1

0

-1

-2

-3

-5

-4

-6

-7

-8

-9

-10

Frequency and concentration dependence of the electronic conductivity of composites of carbonblack

and poly(ethylene terephthalate)

Page 14: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

-2 0 2 4 6

0

1

2

3

4

- 396 K - 391 K - 382 K - 372 K - 364 K - 355 K

log

('/

o)

log()

Mixed alkali-glass: Scaling with temperature is possible

Page 15: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

-4-6-8-10-12-1

0

1

2

3

4

5

log e 2kT 0

log

’ 0

poly(methyl-thiophene): Scaling with temperature is possible

Page 16: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

2 4 8 10 12

log(a [Hz])p

3

2

1

0

composites of carbonblack and poly(ethylene terephthalate): Scaling with concentration is possible

Page 17: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

-1 0 1 2 3 4 5 6 7 8

-12

-10

-8

-6

-4

-2

log

(0

[Scm

-1])

log(1/e [Hz])

- 0 mol% - 100 mol% - 200 mol% - conductor-polymer composite - mixed alkali glasses - polymer

The Barton-Nakajima-Namikawa (BNN) – relationship holds for all materials examined:

Page 18: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Experimental findings

In all examined materials the conductivity shows a similarfrequency and temperature (resp. concentration) dependence

There is no principle difference between electron – and ion –conducting materials

The conductivity „scales“ with the number of effective charge-carriers as determined by temperature or concentration

A characteristic frequency exists where the frequencydependence of the conductivity sets in

With increasing number of effective charge-carriers the conductivity increases.

The BNN-relationship is fulfilled

Page 19: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

The dielectric properties of zwitterionic poly-methacrylate: poly{3-[N-[-oxyalkyl)-N,N-

dimethylammonio]propanesulfonate}

H C3 C C O O

C H 2

(C H )2 m

x

N +

C H 3

C H 3

(C H )2 3 S O 3

Page 20: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Dielectric data as displayed for the complex dielectric function T)

3 4 5 6 7 8101

102

103

log( [rad/s])

396 K 391 K 382 K 373 K 364 K 355 K 346 K

'

3 4 5 6 710-1

100

101

102

103

104 396 K 391 K 382 K 373 K 364 K 355 K 346 K

"

log( [rad/s])

Page 21: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Dielectric data as displayed for the complex conductivity T)

3 4 5 6 7

-9,5-9,0-8,5-8,0-7,5-7,0-6,5-6,0-5,5-5,0

log( [rad/s])

log

(' [

Scm

-1])

3 4 5 6 7

-9

-8

-7

-6

-5

396 K 391 K 382 K 373 K 364 K 355 K 346 K

log(

" [S

cm-1

])log( [rad/s])

Page 22: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

3 4 5 6 7 8

0.00

0.02

0.04

0.06

0.08

0.10

M'

Log (Rad/s)3 4 5 6 7 8

0.00

0.01

0.02

0.03

0.04

M"

log( [rad/s])

Dielectric data as displayed for the complex

electrical modulus M*T) =1/ T)

Page 23: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Dyre‘s random free energy barrier model

Hopping Conduction in a spatially randomly varying energy barrier :

22 2 2

0 arctan1

ln 1 arctan4

e e

e e

2 2

22 2 2

0 ln 1

1ln 1 2 arctan

2

e e

e e

Page 24: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Fits using the Dyre theory „work well“

3 4 5 6 7 8

-9,5-9,0-8,5-8,0-7,5-7,0-6,5-6,0-5,5-5,0

log( [rad/s])

lo

g('

[S

cm-1])

Page 25: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

340 350 360 370 380 390 4002

3

4

5

6

7

log

(c,

M, 1

/ e)

T [K]

c

M

1/e

The rates c, M and 1/e nearly coincide and have - over 5 decades - a similar temperature dependence

Page 26: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

-1 0 1 2 3 4 5 6

-13

-12

-11

-10

-9

-8

-7

-6

log

( 0 [S

cm-1])

log(1/e [Hz])

- 0 mol% - 100 mol% - 200 mol%

The BNN-relationship holds for varying the charge carrier concentration

Page 27: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Summary

The dielectric properties of the zwitterionic poly-methacrylate:poly{3-[N-[-oxyalkyl)-N,N-dimethylammonio]propanesulfonate} are characterized by a pronounced frequency -and temperature dependence.

It should be analysed in terms of the complex dielectric function T), the complex conductivity T) and the complex electrical modulus M*T) =1/ T)

The data can be well described by Dyre‘s random freeenergy barrier model

The BNN-relation is fulfilled

At low frequencies electrode polarisation effects show up

Page 28: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

The dielectric properties of „Ionic Liquids“

BMIM BF4 BMIM SCN

1-n-butyl-3-methylimidazolium thiocyanate

1-butyl-3-methylimidazolium tetrafluoroborate

Page 29: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Temperature dependence

Imaginary and real part of the complex dielectric function are strongly temperature dependent

10-1 101 103 105 107101

103

105

107

109

280 K 270 K 260 K 250 K 240 K 230 K'

Frequency (Hz)

BMIM BF4

10-1 101 103 105 10710-1

101

103

105

107

280 K 270 K 260 K 250 K 240 K 230 K

" Frequency (Hz)

BMIM BF4

Page 30: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Temperature dependence

The complex conductivity of the ionic liquid BMIM BF4 is also strongly temperature dependent

10-1 101 103 105 107

10-6

10-5

10-4

10-3

280 K 270 K 260 K 250 K 240 K 230 K

' (S/c

m)

Frequency (Hz)

BMIM BF4

10-1 101 103 105 10710-9

10-8

10-7

10-6

10-5

10-4

10-3

280 K 270 K 260 K 250 K 240 K 230 K

" (S/c

m)

Frequency (Hz)

BMIM BF4

Page 31: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Broadband dielectric measurements displayedfor the complex dielectric function T)

10-2 100 102 104 106 108 101010-210-1100101102103104105106107

268 K 258 K 248 K 238 K

"

Frequency (Hz)

MMIM Me2PO

4

Thickness= 50µm

10-2 100 102 104 106 108 1010100

102

104

106

268 K 258 K 248 K 238 K'

Frequency (Hz)

MMIM Me2PO

4

Page 32: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Broadband dielectric measurements displayedfor the complex conductivity T)

10-2 100 102 104 106 108 101010-8

10-7

10-6

10-5

10-4

10-3

268 K 258 K 248 K 238 K

' (S/c

m)

Frequency (Hz)

MMIM Me2PO

4

10-2 100 102 104 106 108 1010

10-8

10-7

10-6

10-5

10-4

10-3

268 K 258 K 248 K 238 K

" (S/c

m)

Frequency (Hz)

MMIM Me2PO

4

Page 33: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Scaling with temperature possible

10-10 10-8 10-6 10-4 10-2 100 102 104100

101

102

103

104

105

106

107

e

268 K 258 K 248 K 238 K

'

MMIM Me2PO

4

10-10 10-8 10-6 10-4 10-2 100 102 10410-2

100

102

104

106

268 K 258 K 248 K 238 K

"

e

MMIM Me2PO

4

Page 34: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Scaling with temperature as displayed in terms of the complex conductivity T)

10-10 10-8 10-6 10-4 10-2 100 102 10410-5

10-3

10-1

101

103

268 K 258 K 248 K 238 K

' /0

e

MMIM Me2PO

4

10-10 10-8 10-6 10-4 10-2 100 102 10410-4

10-2

100

102

104

268 K 258 K 248 K 238 K

" /0

e

MMIM Me2PO

4

All data collapse into a single characteristic curve

Page 35: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

10-5 10-3 10-1 101 103 105102

104

106

108

s

"

317 mg/ml 44.63 mg/ml 4.09 mg/ml 0.52 mg/ml

NaCl

Scaling with concentration for NaCl solutions as displayed for the complex dielectric function

10-5 10-3 10-1 101 103 105101

103

105

107

109

s

' 317 mg/ml 44.63 mg/ml 4.09 mg/ml 0.52 mg/ml

NaCl

Scaling possible but deviations on the low frequency side

Page 36: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Scaling with concentration for NaCl solutions as displayed for the complex conductivity

10-5 10-3 10-1 101 103 10510-4

10-2

100

s

' /0

317 mg/ml 44.63 mg/ml 4.09 mg/ml 0.52 mg/ml

s is the angular frequency of the minimum in ´´

10-5 10-3 10-1 101 103 105

10-2

10-1

100

" (S

/cm

)

s

317 mg/ml 44.63 mg/ml 4.09 mg/ml 0.52 mg/ml

NaCl

Page 37: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

D y r e ‘ s r a n d o m f r e e e n e r g y b a r r i e r m o d e l

H o p p i n g C o n d u c t i o n i n a s p a t i a l l y r a n d o m l y v a r y i n g e n e r g y b a r r i e r :

22 2 2

0 a r c t a n1

l n 1 a r c t a n4

e e

e e

2 2

22 2 2

0 l n 1

1l n 1 2 a r c t a n

2

e e

e e

Page 38: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Fits using the Dyre-model of conduction

10-2 100 102 104 106 108 101010-3

10-1

101

103

105

107

109 268 K 258 K 248 K 238 K 228 K 218 K 208 K 198 K 188 K

"

Frequency (Hz)

10-2 100 102 104 106 108 1010100

102

104

106 268 K 258 K 248 K 238 K 228 K 218 K 208 K 198 K 188 K

'

Frequency (Hz)

The Dyre –model describes the observed frequency-and temperature dependence; additionally electrodepolarization effects show up

Page 39: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Fits using the Dyre-model

10-2 100 102 104 106 108 101010-15

10-13

10-11

10-9

10-7

10-5

10-3

268 K 258 K 248 K 238 K 228 K 218 K 208 K 198 K 188 K

' (S/c

m)

Frequency (Hz)

10-2 100 102 104 106 108 101010-14

10-12

10-10

10-8

10-6

10-4

10-2

268 K 258 K 248 K 238 K 228 K 218 K 208 K 198 K 188 K

" (S/c

m)

Frequency (Hz)

Electrode polarization effects show up already at 100 kHz

Page 40: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

The BNN Relation is fulfilled for 0 and e as obtained from Dyre-fits

10-2 100 102 104 106 10810-14

10-12

10-10

10-8

10-6

10-4

MMIM Me2PO

4

EMIM Et2PO

4

0(S/c

m)

1/e(Hz)

Page 41: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Alternative approach: Superposition of a thermally activated d.c. conductivity and „nearly constant loss“ contribution.

10-2 100 102 104 10610-15

10-13

10-11

10-9

10-7

0(T1)

0(T2)

0(T3)

0(T4)

' (S

/cm

)

Frequency (Hz)

e1

e2

e3

e4

e5

0(T5)

220 K210 K200 K190 k180 K170 K

' (S

/cm

) '

01

s

A

p

A:Near constant losscontribution

The BNN relation is a trivial consequence

Page 42: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Activation plots

Both 0 and 1/e show a VFT - dependence

3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,010-14

10-12

10-10

10-8

10-6

10-4

MMIM Me2PO

4

EMIM Et2PO

4

0(S/c

m)

1000 K/Temperature3,6 3,8 4,0 4,2 4,4 4,6 4,8 5,0

10-2

100

102

104

106

108

MMIM Me2PO

4

EMIM Et2PO

4

1/ e(H

z)1000/Temperature (K-1)

Page 43: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

Final Summary

The dielectric properties of „Ionic Liquids“ are similar to other ion - conducting systems

They should be analysed in terms of the complex dielectric function T), the complex conductivity T) and the complex electrical modulus M*T) =1/ T)

The data can be well described by Dyre‘s random freeenergy barrier model but as well a superposition a thermally activated d.c.conductivity,a power law and a „nearly constant loss“ contribution

The BNN-relation is fulfilled

At low frequencies electrode polarisation effects showup

Page 44: DIELECTRIC PROPERTIES OF ION - CONDUCTING MATERIALS F. Kremer Coauthors: J. Rume, A. Serghei,

A.

A.Serghei

Thanks to Joshua Rume

and

and financial support through the DFG