Top Banner
Development of MicroTCA based LLRF control systems at cERL and STF Feng QIU (KEK) Oct. 18, 2018 1 Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018
20

Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Jul 15, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Development of MicroTCA based LLRF

control systems at cERL and STF

Feng QIU (KEK) Oct. 18, 2018

1Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 2: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Main Content

Introduction of cERL and STF facilities

Development of the µTCA Low Level RF systems

Performance of the LLRF systems

2Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 3: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

PF

PF-AR

Mont. Tsukuba

STF:Super-conducting Test

Facility.

Compact ERL

SuperKEKB

Facilities in KEK Compact ERL (cERL): Test facility for 3 GeV light source, 1.3 GHz, Super-

conducting (SC) and continuous wave (CW) mode.

Super-conducting Test Facility (STF): Test facility for ILC, 1.3 GHz, SC and Pulse

mode.

ILC: International Linear Collider

Future 3-GeV

ERL Light Source

3

Beam Commissioning: 2013~2018

Cryomodule Cool-down Test: 2016

Beam Commissioning: 2019~

Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Tsukuba-Campus

Page 4: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Main linac

8 kW SSA

Nine-cell SC

16 kW SSA

Main linac Two-cell SC

SC SC

300 kW Kly.

25 kW Kly.

8 kW SSA

Vector-sum

Controlling

~8.5 MV/m for main linac Cavities

~3 MV/m for Injector Cavities

~ 20 MeV

Dump

cERL facility Injector: 4 cavities (3-SC+1-NC), Mainlinac: 2 SC cavities.

Various of Power Sources

4

GUN

Cryomodule (ML)

Cryomodule (injector)

RF requirements

0.1 % (rms), 0.1°(rms)

Page 5: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

STF facility Motivation: Confirmation of the SC cavity technology, and cryomodule fabrication

for ILC.

PS mode (5 Hz, ~1.65 ms). SC nine-cell cavities (QL ≈ 5e6, Eacc about 30 MV/m).

Multi-beam klystron (MBK), 10 MW (65%).

Cryomodule

Power Distribution

10 MW MBK, (~65%), Toshiba E3736H

Nine-cell SC cavity (QL>5e6, Eacc>30 MV/m)

Degradation due

to field emission!

Capture Cryomodule

ILC main-lianc

5

Cryomodule Cool-

down Test @ 2016

Flat-top for beam acceleration

~30 MV/m

RF requirements of ILC

0.07% (rms), 0.35°(rms)

Page 6: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

µTCA LLRF systems

6Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 7: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Diagram of LLRF system

We need an FPGA

board to implement

the DSP algorithms.

We need data

communication.

7

Why LLRF?

Cavity field is easy

to be disturbed

→Need a feedback

system to stabilize

the cavity field.

Page 8: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

cERL: One RF source (Kly. or SSA)

drives one cavity (except injector2 & 3).

LLRF Systems for cERL and STF

ILC: 1-kly. 39 cavities

STF: One RF source drives twelve cavities (actually eight).

Cavity #1 Cavity #2 Cavity #12...

Kly. or

SSA

LLRF

FBKly. or

SSA

Cavity #1...

LLRF1

FB

Vector-sum field (LLRF needs to process lots

of signals)

RF requirements

0.1 % (rms), 0.1°(rms)

RF requirements of ILC

0.07% (rms), 0.35°(rms)

8Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

We only control VS ( )

1cV 2cV

cnV

1cV 2cV

cnV

We control every ( )

cnV

cnV1 2,c c cnV V V

Kly. or

SSA

Cavity #2...

LLRF2

FB

Individual cavity control (cERL), Vector-sum control (STF).

Page 9: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Example: LLRF system @cERL

Down-convertor

IQ Mod.

Thermostatic Chamber

(0.1 deg.)

LLRF Cabinet

µTCA

Virtex5-FPGA

ADCs

µTCA FPGA board

Linux

EPICS-

IOC

DSP algorithms

PPC

(ARM)

DACs

FPGA

(PPC)

4ch. ADC

4ch. DAC Dig.

I/O

µTCA board

Dig.

I/O

Ethernet

Pf

Pr

Ref

I

Q

Cavity

Control System

Studio (user

interface)

EPICS is installed inside µTCA and is used as

the DAQ (data acquisition) system.

9

Page 10: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

µTCA boards (3 types)

TYPE TYPE I TYPE II TYPE III

Facilities cERL STF-II ERL & STF

Function LLRF LLRF Monitor

Standard µTCA.0 µTCA.4 µTCA.0

ADC 4×16-bits

(LTC2208,130

MSPS)

14×16-bits

(AD9650,

105 MSPS)

2×14-bits

(ADS5474, 400MSPS)

FPGA Virtex-5 FX Virtex-5 FX Zynq-7000

DAC 4×16-bits

(AD9783,

500 MSPS)

2×16-bits

(AD9783,

500 MSPS)

N/A

CPU PPC 440 ARM PPC 440

OS Wind River Linux Xilinx Linux Wind River Linux

cERL (Type I , µTCA.0) STF (Type II, µTCA.4) cERL&STF (Type III, µTCA.0)

Mitsubishi Electric

TOKKI System Co.,Ltd.

Monitor the long-term drift

(directly sampling)

µTCA.0, Virtex-5 FPGA, 4×16-bits

ADCs, 4×16-bits DACs

LLRF controlLLRF control

µTCA.4, Zynq-700 FPGA, 12×16-

bits ADCs, 2×16-bits DACs

µTCA.0, Virtex-5 FPGA, 2×14-bits

fast ADCs (400 MHz)

RTM

(Rear Trans. Module)

AD/DAAD boardVirtex-5

ZynQ-7000

10

Cavity #1 Cavity #2 Cavity #12...

Kly. or

SSA

LLRF

FB

Kly. or

SSA

Cavity #1...

LLRF1

FB

SFP for

optical link

VS control

IFC board

Page 11: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Performance of LLRF systems

11Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 12: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Performance @ cERL (RF stabilities)

Amp. Amp.Pha. Pha.

RF stability Bun. Inj. 1 Inj. 2&3 (VS) ML1 ML2 Requirement

ΔA/A [%. rms] 0.07% 0.02% 0.02% 0.01% 0.01% 0.1%

Δθ [°.rms] 0.04° 0.02° 0.015° 0.01° 0.01° 0.1°

The results need to be confirmed by beam energy stabilities.

Type I

12Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 13: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Performance @ cERL (Beam energy)

Beam momentum jitter is measured by screen monitor and determined by

the peak point of the projection of the screen.

Dispersion

η=2.2m

Resolution

62.6 µm/pixel

Screen monitor

Main linac

Injector

~20 MeV

~3.0 MeV

Cam 15

ΔP/P=0.0065%. rms

13Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 14: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Performance @ STF (RF Stabilities)

RF stability Vector-sum (8 cavities) Requirement

ΔA/A [%. rms] 0.006% 0.07%

Δθ [°rms] 0.024° 0.35°

0.006% (rms) 0.024°(rms)

Vector-sum of

eight cavities

Type II

12 ADC channels

14

Page 15: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Summary

LLRF control systems with µTCA standards have been

developed in cERL and STF.

Performances satisfied our requirements.

15Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 16: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Thank you for your attention

16Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 17: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Back up

17Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 18: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Performance @ STF (Directly Sampling)

Cavity #1ADC

FsCav

Pf

Pf

Type III

ADC

0 500 1000 1500 2000 2500 3000 3500 40000

1000

2000

3000

4000

5000

6000

Time step

Ampli

tude [

A.U.

]

Amplitude

Backward Power

Cavity Field

1 2 3 4

Pf

Cav

6000

4000

2000

0

Am

p.

[counts

]

Time [ms]

Type III

900 1000 1100 1200 1300 1400 1500 1600 1700 18004950

4960

4970

4980

4990

5000

5010

5020

5030

5040

5050

Time step

Am

plit

ude [

A.U

.]

Amplitude

Conventional

Direct Sampling

Conventional

Directly Sampling

5050

5020

4990

4960

900 1200 1500 1800

Amplitude

Time [µs]

ADC

LO

RF

ADC

RF

IF

Conventional Directly Sampling

Stabilities becomes worse (directly sampling).

Monitor the long-term drift of the master

oscillator and local oscillator (we can use digital

filter to improve the precision).

0.1% (rms) and 0.1°(rms)

Fast ADC: 400 MHz

18Feng QIU, PCaPAC, Taiwan, Oct. 18, 2018

Page 19: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Direct Sampling Method

The relation of fclock, fRFand I,Q components:

Under-sampling procedure for Direct Sampling:

No LData Cycle

NRF Period

clock[MHz]

1 5 24 270.83

2 4 19 273.68

3 3 14 278.57

4 6 29 268.97

5 7 29 313.79

fRF = 1300 MHz

0 1 2 3 4

0 1 2 3

Sampling period = (24/5) * (1/1300 MHz)

RF period = 1/1300 MHz

Cavity

ADC

clock

RF

Page 20: Development of MicroTCA based LLRF control systems at cERL … · 2018-10-25 · Direct Sampling Conventional Directly Sampling 5050 5020 4990 4960 900 1200 1500 1800 Amplitude Time

Optical Communication Test Bench in STF, KEK.

DIV

ADC

VSFB/FF

O/E

ADCVS

DAC

DAC

0

90

ADC E/O

ADC

VS

CLKDIV

CLK

IQ MOD

STF2-LLRF (Master Unit)

STF2-LLRF (Slave Unit)

DIV = DividerADC = Analog to Digital ConverterDAC = Digital to Analog ConverterVS = Vector SumCLK = ClockE/O = Electrical to Optical ConverterO/E = Optical to Electrical ConverterFB/FF = Feedback / FeedforwardIQ MOD = IQ Modulator