Top Banner
Development of an Atlantis ecosystem model to study the impact of Ixtoc oil spill Joel G. Ortega-Ortiz & Cameron Ainsworth College of Marine Science, University of South Florida Development of an Atlantis ecosystem model to study the impact of Ixtoc oil spill Joel G. Ortega-Ortiz & Cameron Ainsworth College of Marine Science, University of South Florida Model polygons In the Atlantis modelling framework, ecosystems are resolved spatially in three dimensions using an irregular polygon structure that saves computation time. For the SGoM model, 42 polygons were outlined to capture important climatic, biophysical or jurisdictional features. Physical features considered include depth and bathymetry. In general, the polygons reflect the continental shelf (from shore to the 200m isobaths), slope (200m to 3000 m) and abyssal regions (> 3000m). Bottom type, sediments and riverine discharge were also taken into account. Major estuaries (Laguna Madre, Panuco delta, Tamiahua Lagoon, Alvarado Lagoon and Terminos Lagoon) and protected areas (Sistema Arrecifal Veracruzano, Pantanos de Centla, Los Petenes and Celestun) are represented. Exploitation patterns and political boundaries were also considered. The exclusion zone around the oil platforms and the economic exclusive zone of the U.S.A. and Mexico are delineated. Distance to ports, distance to shore and the depth contours selected to create polygons are consistent with areas for major fisheries in the region. Research questions Research questions How did the Ixtoc-I oil spill impact the ecosystem composition? How did bottom-up and top-down drivers interact? Was the sustainability of fisheries impacted? Can we partition the effects of oil spill, fisheries and climatic variability (e.g., AMO) on ecosystem changes in the southern Gulf of Mexico? How did the Ixtoc-I oil spill impact the ecosystem composition? How did bottom-up and top-down drivers interact? Was the sustainability of fisheries impacted? Can we partition the effects of oil spill, fisheries and climatic variability (e.g., AMO) on ecosystem changes in the southern Gulf of Mexico? SGoM Atlantis model status SGoM Atlantis model status Model coverage area defined and polygon geometry completed Hydrographic data (HYCOM GoM) processed Biomass initial conditions estimated Fisheries catch data obtained Model has been parameterized and is currently being tuned Model coverage area defined and polygon geometry completed Hydrographic data (HYCOM GoM) processed Biomass initial conditions estimated Fisheries catch data obtained Model has been parameterized and is currently being tuned SGoM Fisheries Landings (Arreguín-Sánchez & Arcos-Huitrón 2007) SGoM Fisheries Landings (Arreguín-Sánchez & Arcos-Huitrón 2007) 0 6,000 12,000 18,000 Tons Pink Shrimp 0 2,000 4,000 6,000 8,000 Tons Octopus Spanish Mackerel 0 1,000 2,000 3,000 4,000 5,000 6,000 Tons Snappers 0 1,000 2,000 3,000 4,000 1960 1967 1974 1981 1988 1995 2002 2009 Tons Year Biomass densities Biomass densities Fish and invertebrate distributions estimated Gulf-wide by GAM & validated against SEAMAP (Drexler & Ainsworth 2013) Depth Bottom O 2 Bottom temp Sediment Chl a GAM abundance (modeled) Predictor variables Atlantis Scientific Literature Data sources Data sources Zooplankton bongo tows (Daly, USF) SEAMAP Ainsworth et al. 2015. NOAA Technical Memorandum NMFS-SEFSC-676 DOI: 10.7289/V5X63JVH (Manickchand-Heileman et al. 1998, Arreguín-Sánchez & Arcos-Huitrón 2007, Masi et al. 2014, Zetina-Rejón et al. 2015, Tarnecki et al. 2016) Diet: FWRI, Fishbase, Sealifebase, TAMUCC-MarFIN, GOMEXSI Migration: ICCAT, Literature Life history: Fishbase, Literature Biomass/catch: SEDAR, log books, reef surveys, ICCAT, SEAMAP, CONAPESCA, Literature Oceanography: NODC, NCDDC, NASA Habitat: GOM Data Atlas, Literature ROV surveys (Patterson, USA) G ! ! ! ! ! ! ! ! ! ! ! ! ! ! Tuxpan Tampico Alvarado Veracruz La Pesca Freeport Matamoros Corpus Christi Coatzacoalcos Progreso Celestún Campeche Champotón Cd. del Carmen 90°W 90°W 92°W 92°W 94°W 94°W 96°W 96°W 98°W 98°W 28°N 28°N 26°N 26°N 24°N 24°N 22°N 22°N 20°N 20°N 18°N 18°N G Ixtoc-I Isobatas (metros) 20 50 200 2000 3000 3500 Zona de Exclusión Zona de Prevención 0 100 200 300 Kilómetros Ecology sub-models Consumption, production, waste production, migration, predation, reproduction & recruitment, habitat dependence and mortality. Nutrients tracked (Si, N) Fisheries Target, bycatch, habitat effects, ports, costs, compliance Effort models: CPUE / cost based Oceanography sub-model ROMS (e.g., HYCOM GoM) (Fulton et al. 2004) Biogeochemical deterministic ecosystem modelling framework: Atlantis represents habitat structure, physical oceanography, nutrient dynamics, microbial cycles, trophic dynamics from apex predators to primary producers and fisheries in a three-dimensional, spatially-explicit domain using a modular structure. The Southern Gulf of Mexico model SGoM simulates food web dynamics using 91 functional groups, including reef fish (11 groups), demersal fish (12), pelagic fish (14), forage fish (4), elasmobranchs (6), shrimp (4), seabirds (2), mammals (4), sea turtles (3), commercial benthos (3), structural species (4), macrobenthos (4), filter feeders (3), primary producers (8), pelagic invertebrates (4) and nutrient cyclers (4). Atlantis Physical and biogenic habitat Diet matrix Nutrient & waste cycling dynamics Climate and Oceanography Biogeochemistry Nutrient & waste cycling Hydro- Fleet 1 2 3 4 5 6 Next steps Next steps Complete model tuning Evaluate model using fisheries catch data Evaluate oil spill effects using new Atlantis spatial forcing functions on growth, mortality and recruitment Evaluate environmental and management scenarios Complete model tuning Evaluate model using fisheries catch data Evaluate oil spill effects using new Atlantis spatial forcing functions on growth, mortality and recruitment Evaluate environmental and management scenarios Research objective Research objective Create a robust simulation of ecological processes in the southern Gulf of Mexico to examine potential effects of disturbances and alternate management scenarios over various temporal and spatial scales Create a robust simulation of ecological processes in the southern Gulf of Mexico to examine potential effects of disturbances and alternate management scenarios over various temporal and spatial scales References References Ainsworth, C. H., M. J. Schirripa and H. N. Morzaria Luna. 2015. An Atlantis ecosystem model for the northern Gulf of Mexico supporting integrated ecosystem management. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-SEFSC-TM-676. Pages 149. Arreguín-Sánchez, F. and E. Arcos-Huitrón. 2007. Fisheries catch statistics for Mexico. Pages 81-103 in D. Zeller and D. Pauly eds. Reconstruction of marine fisheries catches for key countries and regions (1950-2005). Fisheries Centre Research Reports 15(2). Fisheries Centre, University of British Columbia. Drexler, M. and C. H. Ainsworth. 2013. Generalized additive models used to predict species abundance in the Gulf of Mexico: An ecosystem modeling tool. PLoS ONE 8:Article No. e64458. Fulton, E. A., M. Fuller, A. D. M. Smith and A. E. Punt. 2004. Ecological Indicators of the Ecosystem Effects of Fishing: Final Report. Australian Fisheries Management Authority Report, R99/1546. 240 pp. Fulton, E. A., J. S. Link, I. C. Kaplan, et al. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish & Fisheries 12:171-188. Manickchand-Heileman, S., L. A. Soto and E. Escobar. 1998. A preliminary trophic model of the continental shelf, south-western Gulf of Mexico. Estuarine, Coastal and Shelf Science 46:885–899. Masi, M. D., C. H. Ainsworth and D. Chagaris. 2014. A probabilistic representation of fish diet compositions from multiple data sources: A Gulf of Mexico case study. Ecological Modelling 284:60-74. Sun, S., C. Hu and J. W. Tunnell, Jr. 2015. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Marine Pollution Bulletin. Tarnecki, J. H., A. A. Wallace, J. D. Simons and C. H. Ainsworth. 2016. Progression of a Gulf of Mexico food web supporting Atlantis ecosystem model development. Fisheries Research 179:237-250. Zetina-Rejón, M. J., E. Cabrera-Neri, G. A. López-Ibarra, N. E. Arcos-Huitrón and V. Christensen. 2015. Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity analysis. Ecological Modelling 313:314-324. Ainsworth, C. H., M. J. Schirripa and H. N. Morzaria Luna. 2015. An Atlantis ecosystem model for the northern Gulf of Mexico supporting integrated ecosystem management. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-SEFSC-TM-676. Pages 149. Arreguín-Sánchez, F. and E. Arcos-Huitrón. 2007. Fisheries catch statistics for Mexico. Pages 81-103 in D. Zeller and D. Pauly eds. Reconstruction of marine fisheries catches for key countries and regions (1950-2005). Fisheries Centre Research Reports 15(2). Fisheries Centre, University of British Columbia. Drexler, M. and C. H. Ainsworth. 2013. Generalized additive models used to predict species abundance in the Gulf of Mexico: An ecosystem modeling tool. PLoS ONE 8:Article No. e64458. Fulton, E. A., M. Fuller, A. D. M. Smith and A. E. Punt. 2004. Ecological Indicators of the Ecosystem Effects of Fishing: Final Report. Australian Fisheries Management Authority Report, R99/1546. 240 pp. Fulton, E. A., J. S. Link, I. C. Kaplan, et al. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish & Fisheries 12:171-188. Manickchand-Heileman, S., L. A. Soto and E. Escobar. 1998. A preliminary trophic model of the continental shelf, south-western Gulf of Mexico. Estuarine, Coastal and Shelf Science 46:885–899. Masi, M. D., C. H. Ainsworth and D. Chagaris. 2014. A probabilistic representation of fish diet compositions from multiple data sources: A Gulf of Mexico case study. Ecological Modelling 284:60-74. Sun, S., C. Hu and J. W. Tunnell, Jr. 2015. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Marine Pollution Bulletin. Tarnecki, J. H., A. A. Wallace, J. D. Simons and C. H. Ainsworth. 2016. Progression of a Gulf of Mexico food web supporting Atlantis ecosystem model development. Fisheries Research 179:237-250. Zetina-Rejón, M. J., E. Cabrera-Neri, G. A. López-Ibarra, N. E. Arcos-Huitrón and V. Christensen. 2015. Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity analysis. Ecological Modelling 313:314-324. Basemap of Ixtoc oil pathway (black) and coastline affected (red) generated by W Tunnell and F. Morerzsohn. Overlaid contours (violet) indicate the surface oil footprint (cumulative number of images) determined from Landsat/MSS and CZCS satellite observations (Sun et al. 2015). Extent of the Atlantis SGoM modeled area is indicated by the yellow line. Longline surveys Abstract Abstract We describe a biogeochemical marine ecosystem model developed for the southern Gulf of Mexico (SGoM). The spatially explicit Atlantis model represents bioregional features through an irregular polygon geometry with bathymetric, biogenic substrate and hydrodynamic characterization. We build upon a previous model developed to study the effects of the Deepwater Horizon oil spill (DWHOS) with a more detailed focus on the area potentially affected by the 1979 Ixtoc oil spill. We used results from previous C-IMAGE research projects, including use of generalized additive models (GAMs) to allocate biomass spatially, and fish gut content analysis to parameterize the diet matrix. The model also includes fisheries statistics and bycatch estimations. Model simulations will be used to analyze changes in ecosystem structure and function following the Ixtoc-I oil spill in a comparison against DWHOS. We will consider whether reduced shrimp landings in the Southern Gulf may have been influenced by Ixtoc. We describe a biogeochemical marine ecosystem model developed for the southern Gulf of Mexico (SGoM). The spatially explicit Atlantis model represents bioregional features through an irregular polygon geometry with bathymetric, biogenic substrate and hydrodynamic characterization. We build upon a previous model developed to study the effects of the Deepwater Horizon oil spill (DWHOS) with a more detailed focus on the area potentially affected by the 1979 Ixtoc oil spill. We used results from previous C-IMAGE research projects, including use of generalized additive models (GAMs) to allocate biomass spatially, and fish gut content analysis to parameterize the diet matrix. The model also includes fisheries statistics and bycatch estimations. Model simulations will be used to analyze changes in ecosystem structure and function following the Ixtoc-I oil spill in a comparison against DWHOS. We will consider whether reduced shrimp landings in the Southern Gulf may have been influenced by Ixtoc. The Ixtoc-I oil spill The Ixtoc-I oil spill On June 3, 1979, an explosion occurred on the exploratory oil well Ixtoc-I in Campeche Sound. The rig caught fire and sinked and the well pored oil into the Gulf for nearly ten months. By the time the well was capped on March 23, 1980, and extimated 126 million gallons of oil had been released into the environment. On June 3, 1979, an explosion occurred on the exploratory oil well Ixtoc-I in Campeche Sound. The rig caught fire and sinked and the well pored oil into the Gulf for nearly ten months. By the time the well was capped on March 23, 1980, and extimated 126 million gallons of oil had been released into the environment. Acknowledgements Acknowledgements Development of the SGoM Atlantis model was made possible by a grant from The Gulf of MexicoResearch Initiative to the Center for Integrated Modeling and Anal-ysis of Gulf Ecosystems (C-IMAGE) (GRI2011-I-072). Florida Sea Grant provided funding for life history and biomass data collection, NOAA Marfin provided funding for diet matrix. Scott Cross and Charles Carleton at NCDDC provided hydrodynamic data. Beth Fulton and Bec Gorton provided technical assistance with Atlantis. Also, students in the Ainsworth lab (USF) and Babcock lab (UM) provided help on basic model parameterization. Development of the SGoM Atlantis model was made possible by a grant from The Gulf of MexicoResearch Initiative to the Center for Integrated Modeling and Anal-ysis of Gulf Ecosystems (C-IMAGE) (GRI2011-I-072). Florida Sea Grant provided funding for life history and biomass data collection, NOAA Marfin provided funding for diet matrix. Scott Cross and Charles Carleton at NCDDC provided hydrodynamic data. Beth Fulton and Bec Gorton provided technical assistance with Atlantis. Also, students in the Ainsworth lab (USF) and Babcock lab (UM) provided help on basic model parameterization.
2

Development of an Atlantis ecosystem model to study … · Development of an Atlantis ecosystem model to study the impact of Ixtoc oil spill Joel G. Ortega-Ortiz & Cameron Ainsworth

Sep 19, 2018

Download

Documents

tranmien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Development of an Atlantis ecosystem model to study … · Development of an Atlantis ecosystem model to study the impact of Ixtoc oil spill Joel G. Ortega-Ortiz & Cameron Ainsworth

Development of an Atlantis ecosystem model to study the impact of Ixtoc oil spillJoel G. Ortega-Ortiz & Cameron Ainsworth

College of Marine Science, University of South Florida

Development of an Atlantis ecosystem model to study the impact of Ixtoc oil spillJoel G. Ortega-Ortiz & Cameron Ainsworth

College of Marine Science, University of South Florida

Model polygons• In the Atlantis modelling framework, ecosystems are resolved spatially in three dimensions

using an irregular polygon structure that saves computation time. For the SGoM model, 42 polygons were outlined to capture important climatic, biophysical or jurisdictional features. Physical features considered include depth and bathymetry. In general, the polygons reflect the continental shelf (from shore to the 200m isobaths), slope (200m to 3000 m) and abyssal regions (> 3000m). Bottom type, sediments and riverine discharge were also taken into account. Major estuaries (Laguna Madre, Panuco delta, TamiahuaLagoon, Alvarado Lagoon and Terminos Lagoon) and protected areas (Sistema ArrecifalVeracruzano, Pantanos de Centla, Los Petenes and Celestun) are represented. Exploitation patterns and political boundaries were also considered. The exclusion zone around the oil platforms and the economic exclusive zone of the U.S.A. and Mexico are delineated. Distance to ports, distance to shore and the depth contours selected to create polygons are consistent with areas for major fisheries in the region.

Research questionsResearch questions

• How did the Ixtoc-I oil spill impact the ecosystem composition?

• How did bottom-up and top-down drivers interact?

• Was the sustainability of fisheries impacted?

• Can we partition the effects of oil spill, fisheries and climatic variability (e.g., AMO) on ecosystem changes in the southern Gulf of Mexico?

• How did the Ixtoc-I oil spill impact the ecosystem composition?

• How did bottom-up and top-down drivers interact?

• Was the sustainability of fisheries impacted?

• Can we partition the effects of oil spill, fisheries and climatic variability (e.g., AMO) on ecosystem changes in the southern Gulf of Mexico?

SGoM Atlantis model statusSGoM Atlantis model status

• Model coverage area defined and polygon geometry completed• Hydrographic data (HYCOM GoM) processed • Biomass initial conditions estimated • Fisheries catch data obtained• Model has been parameterized and is currently being tuned

• Model coverage area defined and polygon geometry completed• Hydrographic data (HYCOM GoM) processed • Biomass initial conditions estimated • Fisheries catch data obtained• Model has been parameterized and is currently being tuned

SGoM Fisheries Landings(Arreguín-Sánchez & Arcos-Huitrón 2007)

SGoM Fisheries Landings(Arreguín-Sánchez & Arcos-Huitrón 2007)

0

6,000

12,000

18,000

1960 1967 1974 1981 1988 1995 2002 2009

Tons

Year

Pink Shrimp

0

2,000

4,000

6,000

8,000

1960 1967 1974 1981 1988 1995 2002 2009

Tons

Year

Octopus

Spanish Mackerel

01,0002,0003,0004,0005,0006,000

1960 1967 1974 1981 1988 1995 2002 2009

Tons

YearSnappers

0

1,000

2,000

3,000

4,000

1960 1967 1974 1981 1988 1995 2002 2009

Tons

Year

Biomass densitiesBiomass densitiesFish and invertebrate distributions estimated Gulf-wide by GAM & validated against SEAMAP

(Drexler & Ainsworth 2013)

DepthBottom O2Bottom temp Sediment Chl a

GAMabundance (modeled)

Predictor variables

AtlantisScientific Literature

90°W

90°W

92°W

92°W

94°W

94°W

96°W

96°W

98°W

98°W

28°N 28°N

26°N 26°N

24°N 24°N

22°N 22°N

20°N 20°N

18°N 18°N

BSH0 - 50005000 - 5000050000 - 100000100000 - 200000200000 - 400000400000 - 800000800000 - 532472631

0 100 200 300

Kilometers

90°W

90°W

92°W

92°W

94°W

94°W

96°W

96°W

98°W

98°W

28°N 28°N

26°N 26°N

24°N 24°N

22°N 22°N

20°N 20°N

18°N 18°N

BSH0.000000 - 0.0135480.013549 - 0.0538520.053853 - 0.1496320.149633 - 0.2532490.253250 - 0.8058900.805891 - 1.1601831.160184 - 1.6136631.613664 - 1.876222

0 100 200 300

Kilometers

Data sourcesData sources

Zooplankton bongo tows (Daly, USF)

SEAMAP

Ainsworth et al. 2015. NOAA Technical Memorandum NMFS-SEFSC-676 DOI: 10.7289/V5X63JVH

(Manickchand-Heileman et al. 1998, Arreguín-Sánchez & Arcos-Huitrón 2007, Masi et al. 2014, Zetina-Rejón et al. 2015, Tarnecki et al. 2016)

Diet: FWRI, Fishbase, Sealifebase, TAMUCC-MarFIN, GOMEXSI

Migration: ICCAT, Literature

Life history: Fishbase, Literature

Biomass/catch: SEDAR, log books, reef surveys, ICCAT, SEAMAP, CONAPESCA, Literature

Oceanography: NODC, NCDDC, NASA

Habitat: GOM Data Atlas, LiteratureROV surveys (Patterson, USA)

G

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Tuxpan

Tampico

Alvarado

Veracruz

La Pesca

Freeport

Matamoros

Corpus Christi

Coatzacoalcos

Progreso

Celestún

Campeche

Champotón

Cd. del Carmen

90°W

90°W

92°W

92°W

94°W

94°W

96°W

96°W

98°W

98°W

28°N 28°N

26°N 26°N

24°N 24°N

22°N 22°N

20°N 20°N

18°N 18°N

G Ixtoc-IIsobatas (metros)

2050200200030003500Zona de Exclusión

Zona de Prevención

0 100 200 300

Kilómetros

Ecology sub-models

Consumption, production, waste production, migration, predation, reproduction & recruitment, habitat dependence and mortality.

Nutrients tracked (Si, N)

FisheriesTarget, bycatch, habitat effects, ports, costs, complianceEffort models: CPUE / cost based

Oceanography sub-modelROMS (e.g., HYCOM GoM)

(Fulton et al. 2004)

Biogeochemical deterministic ecosystem modelling framework: Atlantis represents habitat structure, physical oceanography, nutrient dynamics, microbial cycles, trophic dynamics from apex predators to primary producers and fisheries in a three-dimensional, spatially-explicit domain using a modular structure.

The Southern Gulf of Mexico model SGoM simulates food web dynamics using 91 functional groups, including reef fish (11 groups), demersal fish (12), pelagic fish (14), forage fish (4), elasmobranchs (6), shrimp (4), seabirds (2), mammals (4), sea turtles (3), commercial benthos (3), structural species (4), macrobenthos (4), filter feeders (3), primary producers (8), pelagic invertebrates (4) and nutrient cyclers (4).

Atlantis

Physical and biogenic habitat

Diet matrix

Nutrient & waste cycling

dynamics

Fleet 1 2 3 4 5 6

Climate and Oceanography

BiogeochemistryNutrient & waste cycling

Hydro-

Fleet 1 2 3 4 5 6

Next stepsNext steps• Complete model tuning• Evaluate model using fisheries catch data• Evaluate oil spill effects using new Atlantis spatial forcing

functions on growth, mortality and recruitment• Evaluate environmental and management scenarios

• Complete model tuning• Evaluate model using fisheries catch data• Evaluate oil spill effects using new Atlantis spatial forcing

functions on growth, mortality and recruitment• Evaluate environmental and management scenarios

Research objectiveResearch objective• Create a robust simulation of ecological processes in

the southern Gulf of Mexico to examine potential effects of disturbances and alternate management scenarios over various temporal and spatial scales

• Create a robust simulation of ecological processes in the southern Gulf of Mexico to examine potential effects of disturbances and alternate management scenarios over various temporal and spatial scales

ReferencesReferences

• Ainsworth, C. H., M. J. Schirripa and H. N. Morzaria Luna. 2015. An Atlantis ecosystem model for the northern Gulf of Mexico supporting integrated ecosystem management. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-SEFSC-TM-676. Pages 149.

• Arreguín-Sánchez, F. and E. Arcos-Huitrón. 2007. Fisheries catch statistics for Mexico. Pages 81-103 in D. Zeller and D. Pauly eds. Reconstruction of marine fisheries catches for key countries and regions (1950-2005). Fisheries Centre Research Reports 15(2). Fisheries Centre, University of British Columbia.

• Drexler, M. and C. H. Ainsworth. 2013. Generalized additive models used to predict species abundance in the Gulf of Mexico: An ecosystem modeling tool. PLoS ONE 8:Article No. e64458.

• Fulton, E. A., M. Fuller, A. D. M. Smith and A. E. Punt. 2004. Ecological Indicators of the Ecosystem Effects of Fishing: Final Report. Australian Fisheries Management Authority Report, R99/1546. 240 pp.

• Fulton, E. A., J. S. Link, I. C. Kaplan, et al. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish & Fisheries 12:171-188.

• Manickchand-Heileman, S., L. A. Soto and E. Escobar. 1998. A preliminary trophic model of the continental shelf, south-western Gulf of Mexico. Estuarine, Coastal and Shelf Science 46:885–899.

• Masi, M. D., C. H. Ainsworth and D. Chagaris. 2014. A probabilistic representation of fish diet compositions from multiple data sources: A Gulf of Mexico case study. Ecological Modelling 284:60-74.

• Sun, S., C. Hu and J. W. Tunnell, Jr. 2015. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Marine Pollution Bulletin.

• Tarnecki, J. H., A. A. Wallace, J. D. Simons and C. H. Ainsworth. 2016. Progression of a Gulf of Mexico food web supporting Atlantis ecosystem model development. Fisheries Research 179:237-250.

• Zetina-Rejón, M. J., E. Cabrera-Neri, G. A. López-Ibarra, N. E. Arcos-Huitrón and V. Christensen. 2015. Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity analysis. Ecological Modelling 313:314-324.

• Ainsworth, C. H., M. J. Schirripa and H. N. Morzaria Luna. 2015. An Atlantis ecosystem model for the northern Gulf of Mexico supporting integrated ecosystem management. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-SEFSC-TM-676. Pages 149.

• Arreguín-Sánchez, F. and E. Arcos-Huitrón. 2007. Fisheries catch statistics for Mexico. Pages 81-103 in D. Zeller and D. Pauly eds. Reconstruction of marine fisheries catches for key countries and regions (1950-2005). Fisheries Centre Research Reports 15(2). Fisheries Centre, University of British Columbia.

• Drexler, M. and C. H. Ainsworth. 2013. Generalized additive models used to predict species abundance in the Gulf of Mexico: An ecosystem modeling tool. PLoS ONE 8:Article No. e64458.

• Fulton, E. A., M. Fuller, A. D. M. Smith and A. E. Punt. 2004. Ecological Indicators of the Ecosystem Effects of Fishing: Final Report. Australian Fisheries Management Authority Report, R99/1546. 240 pp.

• Fulton, E. A., J. S. Link, I. C. Kaplan, et al. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish & Fisheries 12:171-188.

• Manickchand-Heileman, S., L. A. Soto and E. Escobar. 1998. A preliminary trophic model of the continental shelf, south-western Gulf of Mexico. Estuarine, Coastal and Shelf Science 46:885–899.

• Masi, M. D., C. H. Ainsworth and D. Chagaris. 2014. A probabilistic representation of fish diet compositions from multiple data sources: A Gulf of Mexico case study. Ecological Modelling 284:60-74.

• Sun, S., C. Hu and J. W. Tunnell, Jr. 2015. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Marine Pollution Bulletin.

• Tarnecki, J. H., A. A. Wallace, J. D. Simons and C. H. Ainsworth. 2016. Progression of a Gulf of Mexico food web supporting Atlantis ecosystem model development. Fisheries Research 179:237-250.

• Zetina-Rejón, M. J., E. Cabrera-Neri, G. A. López-Ibarra, N. E. Arcos-Huitrón and V. Christensen. 2015. Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity analysis. Ecological Modelling 313:314-324.

Basemap of Ixtoc oil pathway (black) and coastline affected (red) generated by W Tunnell and F. Morerzsohn. Overlaid contours (violet) indicate the surface oil footprint (cumulative number of images) determined from Landsat/MSS and CZCS satellite observations (Sun et al. 2015). Extent of the Atlantis SGoM modeled area is indicated by the yellow line.

Basemap of Ixtoc oil pathway (black) and coastline affected (red) generated by W Tunnell and F. Morerzsohn. Overlaid contours (violet) indicate the surface oil footprint (cumulative number of images) determined from Landsat/MSS and CZCS satellite observations (Sun et al. 2015). Extent of the Atlantis SGoM modeled area is indicated by the yellow line.

Longline surveys

AbstractAbstract

We describe a biogeochemical marine ecosystem model developed for the southern Gulf of Mexico (SGoM). The spatially explicit Atlantis model represents bioregional features through an irregular polygon geometry with bathymetric, biogenic substrate and hydrodynamic characterization. We build upon a previous model developed to study the effects of the Deepwater Horizon oil spill (DWHOS) with a more detailed focus on the area potentially affected by the 1979 Ixtoc oil spill. We used results from previous C-IMAGE research projects, including use of generalized additive models (GAMs) to allocate biomass spatially, and fish gut content analysis to parameterize the diet matrix. The model also includes fisheries statistics and bycatch estimations. Model simulations will be used to analyze changes in ecosystem structure and function following the Ixtoc-I oil spill in a comparison against DWHOS. We will consider whether reduced shrimp landings in the Southern Gulf may have been influenced by Ixtoc.

We describe a biogeochemical marine ecosystem model developed for the southern Gulf of Mexico (SGoM). The spatially explicit Atlantis model represents bioregional features through an irregular polygon geometry with bathymetric, biogenic substrate and hydrodynamic characterization. We build upon a previous model developed to study the effects of the Deepwater Horizon oil spill (DWHOS) with a more detailed focus on the area potentially affected by the 1979 Ixtoc oil spill. We used results from previous C-IMAGE research projects, including use of generalized additive models (GAMs) to allocate biomass spatially, and fish gut content analysis to parameterize the diet matrix. The model also includes fisheries statistics and bycatch estimations. Model simulations will be used to analyze changes in ecosystem structure and function following the Ixtoc-I oil spill in a comparison against DWHOS. We will consider whether reduced shrimp landings in the Southern Gulf may have been influenced by Ixtoc.

The Ixtoc-I oil spillThe Ixtoc-I oil spill

On June 3, 1979, an explosion occurred on the exploratory oil well Ixtoc-I in Campeche Sound. The rig caught fire and sinked and the well pored oil into the Gulf for nearly ten months. By the time the well was capped on March 23, 1980, and extimated 126 million gallons of oil had been released into the environment.

On June 3, 1979, an explosion occurred on the exploratory oil well Ixtoc-I in Campeche Sound. The rig caught fire and sinked and the well pored oil into the Gulf for nearly ten months. By the time the well was capped on March 23, 1980, and extimated 126 million gallons of oil had been released into the environment.

AcknowledgementsAcknowledgementsDevelopment of the SGoM Atlantis model was made possible by a grant from The Gulf of MexicoResearch Initiative to the Center for Integrated Modeling and Anal-ysis of Gulf Ecosystems (C-IMAGE) (GRI2011-I-072). Florida Sea Grant provided funding for life history and biomass data collection, NOAA Marfin provided funding for diet matrix. Scott Cross and Charles Carleton at NCDDC provided hydrodynamic data. Beth Fulton and Bec Gorton provided technical assistance with Atlantis. Also, students in the Ainsworth lab (USF) and Babcock lab (UM) provided help on basic model parameterization.

Development of the SGoM Atlantis model was made possible by a grant from The Gulf of MexicoResearch Initiative to the Center for Integrated Modeling and Anal-ysis of Gulf Ecosystems (C-IMAGE) (GRI2011-I-072). Florida Sea Grant provided funding for life history and biomass data collection, NOAA Marfin provided funding for diet matrix. Scott Cross and Charles Carleton at NCDDC provided hydrodynamic data. Beth Fulton and Bec Gorton provided technical assistance with Atlantis. Also, students in the Ainsworth lab (USF) and Babcock lab (UM) provided help on basic model parameterization.

Page 2: Development of an Atlantis ecosystem model to study … · Development of an Atlantis ecosystem model to study the impact of Ixtoc oil spill Joel G. Ortega-Ortiz & Cameron Ainsworth

Desarrollo de un modelo ecológico Atlantis para estudiar el impacto del derrame IxtocJoel G. Ortega-Ortiz & Cameron Ainsworth

College of Marine Science, University of South Florida

Desarrollo de un modelo ecológico Atlantis para estudiar el impacto del derrame IxtocJoel G. Ortega-Ortiz & Cameron Ainsworth

College of Marine Science, University of South Florida

Polígonos del modelo SGoMCon la finalidad de ahorrar tiempo de computo, en el programa de modelación Atlantis los ecosistemas se resuelven en el contexto espacial en tres dimensiones a través de polígonos irregulares. Para el modelo SGoM se definieron 42 polígonos que capturan las características climáticas, biofísicas y jurisdiccionales importantes. Las características físicas que se consideraron incluyen profundidad y relieve del fondo. En general, los polígonos reflejan la plataforma continental (desde la línea de costa a la isobata de 200m), el talud (200m a 3000 m) y la región abisal (> 3000m). También fueron considerados el tipo de fondo, sedimentos y descarga fluvial. Los grandes esteros (Laguna Madre, delta del Pánuco, Laguna de Tamiahua, Laguna de Alvarado y Laguna de Términos) y áreas protegidas (Sistema Arrecifal Veracruzano, Pantanos de Centla, Los Petenes and Celestún) están representados. Los patrones de explotación pesquera y las fronteras políticas también fueron consideradas. La zona de exclusión alrededor de las plataformas petroleras y la zona económica exclusiva de U.S.A. y México están delineadas. La distancia a puerto, distancia a la costa e isobatas seleccionadas para crear polígonos son consistentes con las áreas de las pesquerías mayores la región.

Preguntas a investigarPreguntas a investigar• ¿Cómo afectó el derrame de Ixtoc-I la composición del

ecosistema?

• ¿Cómo interactuaron los controles bottom-up y top-downdespués del derrame?

• ¿Se afectó la sustentabilidad de las pesquerías?

• ¿Podemos separar los efectos del derrame Ixtoc de los efectos de las pesquerías y la variación climática (e.g., AMO) en los cambios de ecosistema del sur del Golfo de México?

• ¿Cómo afectó el derrame de Ixtoc-I la composición del ecosistema?

• ¿Cómo interactuaron los controles bottom-up y top-downdespués del derrame?

• ¿Se afectó la sustentabilidad de las pesquerías?

• ¿Podemos separar los efectos del derrame Ixtoc de los efectos de las pesquerías y la variación climática (e.g., AMO) en los cambios de ecosistema del sur del Golfo de México?

Estado actual del modelo Atlantis SGoMEstado actual del modelo Atlantis SGoM

• Área de estudio y polígonos definidos• Datos hidrográficos (HYCOM GoM) procesados • Estimaciones de biomasa inicial completadas• Datos de captura pesquera incluidos• El modelo ha sido parametrizado y está siendo afinado

• Área de estudio y polígonos definidos• Datos hidrográficos (HYCOM GoM) procesados • Estimaciones de biomasa inicial completadas• Datos de captura pesquera incluidos• El modelo ha sido parametrizado y está siendo afinado

Estadísticas de captura pesquera en el SGoM(Arreguín-Sánchez & Arcos-Huitrón 2007)

Estadísticas de captura pesquera en el SGoM(Arreguín-Sánchez & Arcos-Huitrón 2007)

0

6,000

12,000

18,000

1960 1967 1974 1981 1988 1995 2002 2009

Tons

Year

Camarón rosado

0

2,000

4,000

6,000

8,000

1960 1967 1974 1981 1988 1995 2002 2009

Tons

Year

Pulpo

Sierra

01,0002,0003,0004,0005,0006,000

1960 1967 1974 1981 1988 1995 2002 2009

Tons

YearPargos

0

1,000

2,000

3,000

4,000

1960 1967 1974 1981 1988 1995 2002 2009

Tons

Year

Densisdad de BiomasaDensisdad de BiomasaDistribución de peces e invertebrados estimada a lo largo del golfo con GAMs y validada con SEAMAP

(Drexler & Ainsworth 2013)

Profundidad[O2 ]Temp. de fondo Sedimentos [Clorofila a]

Abundancia (modelación)GAM

Predictor variables

AtlantisLiteraturaCientífica

90°W

90°W

92°W

92°W

94°W

94°W

96°W

96°W

98°W

98°W

28°N 28°N

26°N 26°N

24°N 24°N

22°N 22°N

20°N 20°N

18°N 18°N

BSH0 - 50005000 - 5000050000 - 100000100000 - 200000200000 - 400000400000 - 800000800000 - 532472631

0 100 200 300

Kilometers

90°W

90°W

92°W

92°W

94°W

94°W

96°W

96°W

98°W

98°W

28°N 28°N

26°N 26°N

24°N 24°N

22°N 22°N

20°N 20°N

18°N 18°N

BSH0.000000 - 0.0135480.013549 - 0.0538520.053853 - 0.1496320.149633 - 0.2532490.253250 - 0.8058900.805891 - 1.1601831.160184 - 1.6136631.613664 - 1.876222

0 100 200 300

Kilometers

DatosDatos

Zooplankton bongo tows (Daly, USF)

SEAMAP

Ainsworth et al. 2015. NOAA Technical MemorandumNMFS-SEFSC-676 DOI: 10.7289/V5X63JVH

(Manickchand-Heileman et al. 1998, Arreguín-Sánchez & Arcos-Huitrón 2007, Masi et al. 2014, Zetina-Rejón et al. 2015, Tarnecki et al. 2016)

Dieta: FWRI, Fishbase, Sealifebase, TAMUCC-MarFIN, GOMEXSI

Migración: ICCAT, Literatura

Historia de vida: Fishbase, Literatura

Biomasa/captura: SEDAR, bitácoras, muestreos, ICCAT, SEAMAP, CONAPESCA, Literatura

Oceanografía: NODC, NCDDC, NASA

Hábitat: GOM Data Atlas, Literatura

ROV surveys (Patterson, USA)

Sub-modelos de ecología

Consumo, producción, excreción, migración, depredación, reproducción y reclutamiento, dependencia del hábitat y mortalidad.

Nutrientes rastreados (Si, N)

Sub-modelos de PesqueríasEspecies explotadas, captura incidental, efectos del hábitat, puertos, costos, regulación.Modelos: CPUE / costo

Sub-modelos de OceanografíaROMS (e.g., HYCOM GoM)

(Fulton et al. 2004)

Plataforma para modelación ecológica biogeoquímica y determinística: Atlantis representa la estructura del hábitat, oceanografía física, dinámica de nutrientes, ciclos microbianos, dinámica trófica (desde depredadores tope hasta productores primarios) y pesquerías en un domino tridimensional, espacialmente explícito, utilizando una estructura modular.

El modelo del Sur del Golfo de México (SGoM) simula la trama trófica a través de 91 grupos funcionales, incluyendo peces de arrecife (11 grupos), peces demersales (12), peces pelágicos mayores (14), pelágicos menores (4), elasmobranquios (6), camarón (4), aves (2), mamíferos (4), tortugas (3), jaiba y langosta (3), especies estructurales (4), macrobentos (4), filtradores (3), productores primarios (8), invertebrados pelágicos (4) y recicladores de nutrientes (4).

Atlantis

Hábitat físicoy biogénico

Tramatrófica

y reciclamiento

Fleet 1 2 3 4 5 6

Clima y Oceanografía

BiogeoquímicaNutrientes

Hidrodinámica

Flota 1 2 3 4 5 6

Próximos pasosPróximos pasos• Completar la afinación del modelo• Evaluar el modelo usando datos de captura pesquera• Evaluar efectos de derrame de Ixtoc usando funciones nuevas en

Atlantis para forzar efectos en las funciones en crecimiento mortalidad y reclutamiento.

• Evaluar escenarios ambientales y de manejo de recursos

• Completar la afinación del modelo• Evaluar el modelo usando datos de captura pesquera• Evaluar efectos de derrame de Ixtoc usando funciones nuevas en

Atlantis para forzar efectos en las funciones en crecimiento mortalidad y reclutamiento.

• Evaluar escenarios ambientales y de manejo de recursos

ObjetivoObjetivo• Crear una simulación robusta de los procesos ecológicos en el

sur del Golfo de México para examinar los efectos potenciales de perturbaciones y de planes alternativos de manejo a través de varias escalas espacio-temporales.

• Crear una simulación robusta de los procesos ecológicos en el sur del Golfo de México para examinar los efectos potenciales de perturbaciones y de planes alternativos de manejo a través de varias escalas espacio-temporales.

ReferenciasReferencias• Ainsworth, C. H., M. J. Schirripa and H. N. Morzaria Luna. 2015. An Atlantis ecosystem model for the northern Gulf of Mexico supporting integrated ecosystem management. U.S. Dept. Commer., NOAA Tech. Memo.

NMFS-SEFSC-TM-676. Pages 149.

• Arreguín-Sánchez, F. and E. Arcos-Huitrón. 2007. Fisheries catch statistics for Mexico. Pages 81-103 in D. Zeller and D. Pauly eds. Reconstruction of marine fisheries catches for key countries and regions (1950-2005). Fisheries Centre Research Reports 15(2). Fisheries Centre, University of British Columbia.

• Drexler, M. and C. H. Ainsworth. 2013. Generalized additive models used to predict species abundance in the Gulf of Mexico: An ecosystem modeling tool. PLoS ONE 8:Article No. e64458.

• Fulton, E. A., M. Fuller, A. D. M. Smith and A. E. Punt. 2004. Ecological Indicators of the Ecosystem Effects of Fishing: Final Report. Australian Fisheries Management Authority Report, R99/1546. 240 pp.

• Fulton, E. A., J. S. Link, I. C. Kaplan, et al. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish & Fisheries 12:171-188.

• Manickchand-Heileman, S., L. A. Soto and E. Escobar. 1998. A preliminary trophic model of the continental shelf, south-western Gulf of Mexico. Estuarine, Coastal and Shelf Science 46:885–899.

• Masi, M. D., C. H. Ainsworth and D. Chagaris. 2014. A probabilistic representation of fish diet compositions from multiple data sources: A Gulf of Mexico case study. Ecological Modelling 284:60-74.

• Soto, L. A., A. V. Botello, S. Licea-Durán, M. L. Lizárraga-Partida and A. Yáñez-Arancibia. 2014. The environmental legacy of the Ixtoc-I oil spill in Campeche Sound, southwestern Gulf of Mexico. Frontiers in Marine Science 1:57.

• Sun, S., C. Hu and J. W. Tunnell, Jr. 2015. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Marine Pollution Bulletin.

• Tarnecki, J. H., A. A. Wallace, J. D. Simons and C. H. Ainsworth. 2016. Progression of a Gulf of Mexico food web supporting Atlantis ecosystem model development. Fisheries Research 179:237-250.

• Zetina-Rejón, M. J., E. Cabrera-Neri, G. A. López-Ibarra, N. E. Arcos-Huitrón and V. Christensen. 2015. Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity analysis. Ecological Modelling 313:314-324.

• Ainsworth, C. H., M. J. Schirripa and H. N. Morzaria Luna. 2015. An Atlantis ecosystem model for the northern Gulf of Mexico supporting integrated ecosystem management. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-SEFSC-TM-676. Pages 149.

• Arreguín-Sánchez, F. and E. Arcos-Huitrón. 2007. Fisheries catch statistics for Mexico. Pages 81-103 in D. Zeller and D. Pauly eds. Reconstruction of marine fisheries catches for key countries and regions (1950-2005). Fisheries Centre Research Reports 15(2). Fisheries Centre, University of British Columbia.

• Drexler, M. and C. H. Ainsworth. 2013. Generalized additive models used to predict species abundance in the Gulf of Mexico: An ecosystem modeling tool. PLoS ONE 8:Article No. e64458.

• Fulton, E. A., M. Fuller, A. D. M. Smith and A. E. Punt. 2004. Ecological Indicators of the Ecosystem Effects of Fishing: Final Report. Australian Fisheries Management Authority Report, R99/1546. 240 pp.

• Fulton, E. A., J. S. Link, I. C. Kaplan, et al. 2011. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish & Fisheries 12:171-188.

• Manickchand-Heileman, S., L. A. Soto and E. Escobar. 1998. A preliminary trophic model of the continental shelf, south-western Gulf of Mexico. Estuarine, Coastal and Shelf Science 46:885–899.

• Masi, M. D., C. H. Ainsworth and D. Chagaris. 2014. A probabilistic representation of fish diet compositions from multiple data sources: A Gulf of Mexico case study. Ecological Modelling 284:60-74.

• Soto, L. A., A. V. Botello, S. Licea-Durán, M. L. Lizárraga-Partida and A. Yáñez-Arancibia. 2014. The environmental legacy of the Ixtoc-I oil spill in Campeche Sound, southwestern Gulf of Mexico. Frontiers in Marine Science 1:57.

• Sun, S., C. Hu and J. W. Tunnell, Jr. 2015. Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Marine Pollution Bulletin.

• Tarnecki, J. H., A. A. Wallace, J. D. Simons and C. H. Ainsworth. 2016. Progression of a Gulf of Mexico food web supporting Atlantis ecosystem model development. Fisheries Research 179:237-250.

• Zetina-Rejón, M. J., E. Cabrera-Neri, G. A. López-Ibarra, N. E. Arcos-Huitrón and V. Christensen. 2015. Trophic modeling of the continental shelf ecosystem outside of Tabasco, Mexico: A network and modularity analysis. Ecological Modelling 313:314-324.

Esquema de la deriva del derrame Ixtoc (negro) y costa afectada (rojo) generado por W Tunnell y F. Morerzsohn. Se superpone (violeta) la extensión de manchas de petróleo observadas en imágenes satelitales de Landsat/MSS and CZCS (Sun et al. 2015). La línea amarilla indica la extensión del área del modelo Atlantis SGoM.

Esquema de la deriva del derrame Ixtoc (negro) y costa afectada (rojo) generado por W Tunnell y F. Morerzsohn. Se superpone (violeta) la extensión de manchas de petróleo observadas en imágenes satelitales de Landsat/MSS and CZCS (Sun et al. 2015). La línea amarilla indica la extensión del área del modelo Atlantis SGoM.

Longline surveys

ResumenResumen

Hemos desarrollado un modelo ecológico biogeoquímico para el sur del Golfo de México (SGoM). El modelo usa el programa de computo Atlantis y es espacialmente explícito, representando características regionales a través de polígonos irregulares basados en la batimetría, substrato e hidrodinámica. Extendemos el trabajo previo que desarrolló un modelo para estudiar los efectos del derrame de petróleo después del accidente en la plataforma Deepwater Horizon (DWHOS) enfocándonos con más detalle en el área potencialmente afectada por el derrame del pozo Ixtoc-I en 1979. Utilizamos resultados de proyectos C-IMAGE anteriores, incluyendo el uso de modelos aditivos generalizados (GAMs) para estimar espacialmente la biomasa y análisis de contenidos estomacales para determinar relaciones tróficas. El modelo también incluye estadísticas pesqueras y estimaciones de captura incidental. Simulaciones del modelo serán utilizadas para analizar cambios en la estructura y función del ecosistema después del derrame de Ixtoc y compararlo con el análisis de DWHOS.

Hemos desarrollado un modelo ecológico biogeoquímico para el sur del Golfo de México (SGoM). El modelo usa el programa de computo Atlantis y es espacialmente explícito, representando características regionales a través de polígonos irregulares basados en la batimetría, substrato e hidrodinámica. Extendemos el trabajo previo que desarrolló un modelo para estudiar los efectos del derrame de petróleo después del accidente en la plataforma Deepwater Horizon (DWHOS) enfocándonos con más detalle en el área potencialmente afectada por el derrame del pozo Ixtoc-I en 1979. Utilizamos resultados de proyectos C-IMAGE anteriores, incluyendo el uso de modelos aditivos generalizados (GAMs) para estimar espacialmente la biomasa y análisis de contenidos estomacales para determinar relaciones tróficas. El modelo también incluye estadísticas pesqueras y estimaciones de captura incidental. Simulaciones del modelo serán utilizadas para analizar cambios en la estructura y función del ecosistema después del derrame de Ixtoc y compararlo con el análisis de DWHOS.

El derrame IxtocEl derrame IxtocEl 3 de junio de 1979 ocurrió una explosión en el pozo exploratorio de Ixtoc-I de PEMEX en la Sonda de Campeche. La plataforma se incendió y el pozo vertió petróleo al Golfo de México durante casi diez meses hasta que el derrame fue controlado el 23 de marzo de 1980. Se estima que mas de 3.4 millones de barriles de petróleo fueron derramados. Las alteraciones ambientales de este acaecimiento aún no han sido completamente estimadas, en parte debido a la falta de información de referencia previa al derrame (Soto et al. 2014).

El 3 de junio de 1979 ocurrió una explosión en el pozo exploratorio de Ixtoc-I de PEMEX en la Sonda de Campeche. La plataforma se incendió y el pozo vertió petróleo al Golfo de México durante casi diez meses hasta que el derrame fue controlado el 23 de marzo de 1980. Se estima que mas de 3.4 millones de barriles de petróleo fueron derramados. Las alteraciones ambientales de este acaecimiento aún no han sido completamente estimadas, en parte debido a la falta de información de referencia previa al derrame (Soto et al. 2014).

AgradecimientosAgradecimientosDevelopment of the SGoM Atlantis model was made possible bya grant from The Gulf of Mexico Research Initiative to the Center for Integrated Modeling and Analysis of Gulf Ecosystems (C-IMAGE) (GRI2011-I-072). Florida Sea Grant proporcionó fondos para colecta de datos de biomasa y demografía de peces, NOAA Marfin proporcionó fondos para el análisis de dieta de peces. Scott Cross y Charles Carleton (NCDDC) proporcionaron los datos de hidrodinámica. Beth Fulton y BecGorton proporcionaron asistencia técnica con Atlantis. Estudiantes de los laboratorios de Ainsworth (USF) y Babcock(University of Miami) proporcionaron ayuda con la parametrización de modelo.Francisco Arreguín-Sánchez, Adolfo Gracia, Ángel Morán-Silva, Martín Ramírez y Jesús Jurado-Molina proporcionaron información, datos y/o comentarios para el desarrollo del modelo.

Development of the SGoM Atlantis model was made possible bya grant from The Gulf of Mexico Research Initiative to the Center for Integrated Modeling and Analysis of Gulf Ecosystems (C-IMAGE) (GRI2011-I-072). Florida Sea Grant proporcionó fondos para colecta de datos de biomasa y demografía de peces, NOAA Marfin proporcionó fondos para el análisis de dieta de peces. Scott Cross y Charles Carleton (NCDDC) proporcionaron los datos de hidrodinámica. Beth Fulton y BecGorton proporcionaron asistencia técnica con Atlantis. Estudiantes de los laboratorios de Ainsworth (USF) y Babcock(University of Miami) proporcionaron ayuda con la parametrización de modelo.Francisco Arreguín-Sánchez, Adolfo Gracia, Ángel Morán-Silva, Martín Ramírez y Jesús Jurado-Molina proporcionaron información, datos y/o comentarios para el desarrollo del modelo.

Año

+

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Tuxpan

Tampico

Alvarado

Veracruz

La Pesca

Freeport

Matamoros

Corpus Christi

Coatzacoalcos

Progreso

Celestún

Campeche

Champotón

Cd. del Carmen

90°W

90°W

92°W

92°W

94°W

94°W

96°W

96°W

98°W

98°W

28°N 28°N

26°N 26°N

24°N 24°N

22°N 22°N

20°N 20°N

18°N 18°N

+ Ixtoc-IIsobatas (metros)

2050200200030003500Zona de Exclusión

Zona de Prevención

0 100 200 300

Kilómetros